Skip to main content
Log in

Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Wood is widely used in the field of construction, decoration, and electronics, but its inherent flammability has serious fire hazards. As one of the fire-retardant treatment methods of wood, fire-resistant coatings have greatly reduced and prevented the occurrence of fires in the field of combustible materials. In this work, using melamine polyphosphate (MPP) as intumescent flame retardant, graphite nanoplates (GNPs) as synergistic flame retardant/conductive filler, and acrylic resin as film forming agent, GNPs/MPP/acrylic coatings with outstanding flame retardancy, excellent heat resistance, and ideal electromagnetic interference (EMI) shielding were prepared by a simple physical blending method. The results showed that GNPs and MPP significantly improved the flame retardancy, heat resistance, and EMI shielding of acrylic coatings. By adding 20 wt% of GNPs and 20 wt% of MPP, the limiting oxygen index (LOI) value, heat resistance index (THRI), and EMI shielding effectiveness (SE) of GNPs/MPP/acrylic coating at the thickness of 40 μm reach 30% and 189.1 °C and 15 dB, respectively, which are better than those of pure acrylic coating (19%, 181.0 °C, and 0.1 dB). This intumescent fire-retardant coating with excellent flame retardancy, good heat resistance, and ideal EMI shielding performances has broad application prospects in the fields of construction, decoration, and electronics.

Graphical abstract

Fire-retardant mechanism and combustion diagram of GNPs/MPP/acrylic resin coated wood

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Himmel ME, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116:9305–9374

    Article  CAS  Google Scholar 

  2. Chen C, Kuang Y, Zhu S, Burgert I, Keplinger T, Gong A, Li T, Berglund L, Eichhorn SJ, Hu L (2020) Structure-property-function relationships of natural and engineered wood. Nat Rev Mater 5:642–666

    Article  CAS  Google Scholar 

  3. Yu Z-L, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma Z-Y, Xing W-Y, Qiao C, Bergstrom L, Antonietti M, Yu S-H (2018) Fire-retardant and thermally insulating phenolic-silica aerogels. Angew Chem Int Edit 57:4538–4542

    Article  CAS  Google Scholar 

  4. Liang C, Qiu H, Song P, Shi X, Kong J, Gu J (2020) Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci Bull 65:616–622

    Article  CAS  Google Scholar 

  5. Huang S, Wang L, Li Y, Liang C, Zhang J (2021) Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J Appl Polym Sci 138: 50649

    Article  CAS  Google Scholar 

  6. Wang L, Shi X, Zhang J, Zhang Y, Gu J (2020) Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J Mater Sci Technol 52:119–126

    Article  CAS  Google Scholar 

  7. Xiong Z, Zhang Y, Du X, Song P, Fang Z (2019) Green and scalable fabrication of core-shell biobased flame retardants for reducing flammability of polylactic acid. ACS Sustain Chem Eng 7:8954–8963

    Article  CAS  Google Scholar 

  8. Ren W, Yang Y, Yang J, Duan H, Zhao G, Liu Y (2021) Multifunctional and corrosion resistant poly(phenylene sulfide)/Ag composites for electromagnetic interference shielding. Chem Eng J 415:129052

    Article  CAS  Google Scholar 

  9. Xue Y, Feng J, Huo S, Song P, Yu B, Liu L, Wang H (2020) Polyphosphoramide-intercalated MXene for simultaneously enhancing thermal stability, flame retardancy and mechanical properties of polylactide. Chem Eng J 397:125336

    Article  CAS  Google Scholar 

  10. Velencoso MM, Battig A, Markwart JC, Schartel B, Wurm FR (2018) Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew Chem Int Edit 57:10450–10467

    Article  CAS  Google Scholar 

  11. Li Y, Lv L, Wang W, Zhang J, Lin J, Zhou J, Dong M, Gan Y, Seok I, Guo Z (2020) Effects of chlorinated polyethylene and antimony trioxide on recycled polyvinyl chloride/acryl-butadiene-styrene blends: flame retardancy and mechanical properties. Polymer 190:122198

    Article  Google Scholar 

  12. Feng Y, He C, Wen Y, Ye Y, Zhou X, Xie X, Mai Y-W (2018) Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater 346:140–151

    Article  CAS  Google Scholar 

  13. Lian Y, Han B, Liu D, Wang Y, Zhao H, Xu P, Han X, Du Y (2020) Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett 12:153

    Article  CAS  Google Scholar 

  14. Fang F, Song P, Ran S, Guo Z, Wang H, Fang Z (2018) A facile way to prepare phosphorus-nitrogen-functionalized graphene oxide for enhancing the flame retardancy of epoxy resin. Compos Commun 10:97–102

    Article  Google Scholar 

  15. Duan H, Zhu H, Gao J, Yan D, Dai K, Yang Y, Zhao G, Liu Y, Li Z (2020) Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J Mater Chem A 8:9146–9159

    Article  CAS  Google Scholar 

  16. Zhao H, Xu X, Wang Y, Fan D, Liu D, Lin K, Xu P, Han X, Du Y (2020) Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16:2003407

    Article  CAS  Google Scholar 

  17. Liu D, Du Y, Wang F, Wang Y, Cui L, Zhao H, Han X (2020) MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 157:478–485

    Article  CAS  Google Scholar 

  18. Sheng O, Jin C, Luo J, Yuan H, Huang H, Gan Y, Zhang J, Xia Y, Liang C, Zhang W, Tao X (2018) Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett 18:3104–3112

    Article  CAS  Google Scholar 

  19. Qiu Y, Qian L, Feng H, Jin S, Hao J (2018) Toughening effect and flame-retardant behaviors of phosphaphenanthrene/phenylsiloxane bigroup macromolecules in epoxy thermoset. Macromolecules 51:9992–10002

    Article  CAS  Google Scholar 

  20. Li X, Feng Y, Chen C, Ye Y, Zeng H, Qu H, Liu J, Zhou X, Long S, Xie X (2018) Highly thermally conductive flame retardant epoxy nanocomposites with multifunctional ionic liquid flame retardant-functionalized boron nitride nanosheets. J Mater Chem A 6:20500–20512

    Article  CAS  Google Scholar 

  21. Yan L, Xu Z, Liu D (2019) Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates. Prog Org Coat 129:327–337

    Article  CAS  Google Scholar 

  22. Shi Y, Wang G (2016) The novel epoxy/PEPA phosphate flame retardants: synthesis, characterization and application in transparent intumescent fire resistant coatings. Prog Org Coat 97:1–9

    Article  CAS  Google Scholar 

  23. Yan L, Xu Z, Deng N (2019) Effects of polyethylene glycol borate on the flame retardancy and smoke suppression properties of transparent fire-retardant coatings applied on wood substrates. Prog Org Coat 135:123–134

    Article  CAS  Google Scholar 

  24. Ng YH, Dasari A, Tan KH, Qian L (2021) Intumescent fire-retardant acrylic coatings: effects of additive loading ratio and scale of testing. Prog Org Coat 150:105985

    Article  CAS  Google Scholar 

  25. Riyazuddin BS, Husain FM, Siddique JA, Alharbi KH, Khan RA, Alsalme A (2020) Role of copper oxide on epoxy coatings with new intumescent polymer-based fire retardant. Molecules 25:5978

    Article  Google Scholar 

  26. Wang C, Huo S, Liu S, Zhang Q, Liu Z (2021) Exfoliated and functionalized boron nitride nanosheets towards improved fire resistance and water tolerance of intumescent fire retardant coating. J Appl Polym Sci 138:50177

    Article  CAS  Google Scholar 

  27. Zhang Y, Ruan K, Shi X, Qiu H, Pan Y, Yan Y, Gu J (2021) Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175:271–280

    Article  CAS  Google Scholar 

  28. Song P, Liu B, Qiu H, Shi X, Cao D, Gu J (2021) MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos Commun 24:100653

    Article  Google Scholar 

  29. Wang L, Song P, Lin C-T, Kong J, Gu J (2020) 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020:4093732

    Article  CAS  Google Scholar 

  30. Shen L, Li Y, Zhao W, Wang K, Ci X, Wu Y, Liu G, Liu C, Fang Z (2020) Tuning F-doped degree of rGO: restraining corrosion-promotion activity of EP/rGO nanocomposite coating. J Mater Sci Technol 44:121–132

    Article  Google Scholar 

  31. Liu S, Shen H, Xu J, Zhou X, Liu J, Cai Z, Zhao X, Xiao L (2021) Preparation of a tantalum-based MoSi2-Mo coating resistant to ultra-high-temperature thermal shock by a new two-step process. J Mater Sci Technol 81:117–122

    Article  Google Scholar 

  32. Yan H, Cai M, Li W, Fan X, Zhu M (2020) Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating. J Mater Sci Technol 54:144–159

    Article  Google Scholar 

  33. Liang C, Zhao P, Hou P, Wang S, Strokova V, Lu L, Cheng X (2020) Investigation of compatibility of fluorine-acrylic emulsion and sulphoaluminate cement in the design of composite coating: effects of sorbitol and its mechanism. ES Mater Manuf 8:36–45

    CAS  Google Scholar 

  34. Wang J, Liu Y, Fan Z, Wang W, Wang B, Guo Z (2019) Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater 2:1–33

    Article  Google Scholar 

  35. Zhu X, Xu J, Qin F, Yan Z, Guo A, Kan C (2020) Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 12:14589–14597

    Article  CAS  Google Scholar 

  36. Zhang J-X, Liang Y-X, Wang X, Zhou H-J, Li S-Y, Zhang J, Feng Y, Lu N, Wang Q, Guo Z (2018) Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv Compos Hybrid Mater 1:300–309

    Article  CAS  Google Scholar 

  37. Song P, Liu B, Liang C, Ruan K, Qiu H, Ma Z, Guo Y, Gu J (2021) Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett 13:91

    Article  CAS  Google Scholar 

  38. Zhang JP, Li HT, Xu T, Wu JJ, Zhou SL, Hang ZH, Zhang XH, Yang ZH (2020) Homogeneous silver nanoparticles decorating 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials. Carbon 165:404–411

    Article  CAS  Google Scholar 

  39. Liu J, Zhang J, Tang J, Pu L, Xue Y, Lu M, Xu L, Guo Z (2020) Polydimethylsiloxane resin nanocomposite coating with alternating multilayer structure for corrosion protection performance. ES Mater Manuf 10:29–38

    CAS  Google Scholar 

  40. Zhan YH, Lago E, Santillo C, Castillo AED, Hao S, Buonocore GG, Chen ZM, Xia HS, Lavorgna M, Bonaccorso F (2020) An anisotropic layer-by-layer carbon nanotube/boron nitride/rubber composite and its application in electromagnetic shielding. Nanoscale 12:7782–7791

    Article  CAS  Google Scholar 

  41. Liu XY, Jin XX, Li L, Wang JF, Yang YY, Cao YX, Wang WJ (2020) Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J Mater Chem A 8:12526–12537

    Article  CAS  Google Scholar 

  42. Xu YD, Yang YQ, Yan DX, Duan HJ, Zhao GZ, Liu YQ (2018) Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl Mater Interfaces 10:19143–19152

    Article  CAS  Google Scholar 

  43. Bian RJ, He GL, Zhi WQ, Xiang SL, Wang TW, Cai DY (2019) Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J Mater Chem C 7:474–478

    Article  CAS  Google Scholar 

  44. Park J-B, Rho H, Cha A-N, Bae H, Lee SH, Ryu S-W, Jeong T, Ha J-S (2020) Transparent carbon nanotube web structures with Ni-Pd nanoparticles for electromagnetic interference (EMI) shielding of advanced display devices. Appl Surf Sci 516:145745

    Article  CAS  Google Scholar 

  45. Liang C, Liu Y, Ruan Y, Qiu H, Song P, Kong J, Zhang H, Gu J (2020) Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos Part A-Appl S 139:106143

    Article  Google Scholar 

  46. Wei H, Gu H, Guo J, Cui D, Yan X, Liu J, Cao D, Wang X, Wei S, Guo Z (2018) Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields. Adv Compos Hybrid Mater 1:127–134

    Article  CAS  Google Scholar 

  47. Liang C, Ruan K, Zhang Y, Gu J (2020) Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and Joule heating performances. ACS Appl Mater Interfaces 12:18023–18031

    Article  CAS  Google Scholar 

  48. Chen Y, Ding L, Jiang B, Liu L, Du Y, Huang Y (2019) Excellent gas barrier properties PET film modified by silicone resin/sericite nanocomposite coatings. ES Mater Manuf 4:58–65

    Google Scholar 

  49. Ma Z, Kang S, Ma J, Shao L, Zhang Y, Liu C, Wei A, Xiang X, Wei L, Gu J (2020) Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14:8368–8382

    Article  CAS  Google Scholar 

  50. de Menezes BRC, Sampaio AD, da Silva DM, Montanheiro TLD, Koga-Ito CY, Thim GP (2021) AgVO3 nanorods silanized with gamma-MPS: An alternative for effective dispersion of AgVO3 in dental acrylic resins improving the mechanical properties. Appl Surf Sci 543:148830

    Article  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (51903145), Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ-176 and 2020JQ-164), Open Fund from Henan University of Science and Technology (2020-RSC02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Huang or Zhonglei Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 11789 KB)

Supplementary file2 (MP4 7126 KB)

Supplementary file3 (MP4 6623 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Du, Y., Wang, Y. et al. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 4, 979–988 (2021). https://doi.org/10.1007/s42114-021-00274-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00274-5

Keywords

Navigation