Skip to main content
Log in

A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

To enhance the thermal conductivity of polymers, a polymer composite system is an effective method, where types of thermally conductive fillers are often introduced into the polymer matrices to form special paths for the phonons or electrons. After years of studies, it can be concluded that selective fillers of different aspect ratio, size, and content and tailoring methods of filler network often result in multiple arrangements of filler network in space, which greatly affect the thermal conductivity of polymer composites. Thus, in this review, we summarize the main affecting factors of filler network, including the types, sizes, and shapes of fillers. Later, we discuss the latest progress of approaches to tailor the filler networks and outline the challenges and prospects of thermally conductive polymer composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Huang Y et al (2019) Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. Int Mater Rev 65(3):129–163

    Google Scholar 

  2. Pradhan SS et al (2020) Thermally conducting polymer composites with EMI shielding: a review. J Electron Mater 49(3):1749–1764

    CAS  Google Scholar 

  3. Guo Y et al (2020) Factors affecting thermal conductivities of the polymers and polymer composites: a review. Compos Sci Technol 193:108134

  4. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical thermal and electrical properties of polymer composites. Adv Compos Hybrid Mater 1(3):415–439

    Google Scholar 

  5. Yu W et al (2018) Advanced thermal interface materials for thermal management. Eng Sci 2(9):1–3

    Google Scholar 

  6. Guo Y et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6(12):3004–3015

    CAS  Google Scholar 

  7. Zhang P et al (2017) Thermal properties of graphene filled polymer composite thermal interface materials. Macromol Mater Eng 302(9):1700068

    Google Scholar 

  8. Altay L et al (2019) Synergistic effects of graphene nanoplatelets in thermally conductive synthetic graphite filled polypropylene composite. Polym Compos 40(1):277–287

    CAS  Google Scholar 

  9. Yang X et al (2018) A review on thermally conductive polymeric composites: classification measurement model and equations mechanism and fabrication methods. Adv Compos Hybrid Mater 1(2):207–230

    Google Scholar 

  10. Xu Z et al (2020) Enhanced thermal conductivity and electrically insulating of polymer composites. J Mater Sci 56(6):4225–4238

    Google Scholar 

  11. Pan C et al (2017) Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent. Compos Part B Eng 111:83–90

    CAS  Google Scholar 

  12. Deng S et al (2016) Effect of chain structure on the thermal conductivity of expanded graphite/polymer composites. RSC Adv 6(12):10185–10191

    CAS  Google Scholar 

  13. Wei B, Zhang L, Yang S (2021) Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem Eng J 404:126437

  14. Sun J et al (2021) The contribution of conductive network conversion in thermal conductivity enhancement of polymer composite: a theoretical and experimental study. ES Mater Manuf 13:53–65

    CAS  Google Scholar 

  15. Yang Y et al (2017) Effect of microstructure on thermal conductivity of polymer composites. Macromol Res 25(4):344–351

    CAS  Google Scholar 

  16. Yuan H et al (2019) Fabrication of thermal conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network. Nanoscale 11(23):11360–11368

    CAS  Google Scholar 

  17. Ouyang Y et al (2020) Design of network Al2O3 spheres for significantly enhanced thermal conductivity of polymer composites. Compos Part A Appl Sci Manuf 128:105673

  18. Li M et al (2020) Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos Part B Eng 184:107746

  19. Yu C et al (2018) Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50Wm/K. Compos Sci Technol 160:199–207

    CAS  Google Scholar 

  20. Hong H et al (2019) Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv Funct Mater 37(37):1902575

    Google Scholar 

  21. Krause B, Rzeczkowski P, Pötschke P (2019) Thermal conductivity and electrical resistivity of melt-mixed polypropylene composites containing mixtures of carbon-based fillers. Polymer 11(6):1073

    Google Scholar 

  22. Xie P et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185

    CAS  Google Scholar 

  23. Wang M et al (2020) Graphdiyne for significant thermal conductivity enhancement at ultralow mass fraction in polymer composites. 2D Mater 7(3):035007

  24. Shtein M et al (2015) Thermally conductive graphene-polymer composites: size percolation and synergy effects. Chem Mater 27(6):2100–2106

    CAS  Google Scholar 

  25. Chen J et al (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng Sci 12(14):13–22

    CAS  Google Scholar 

  26. Nidamanuri N et al (2020) Graphene and graphene oxide-based membranes for gas separation. Eng Sci 9(7):3–16

    CAS  Google Scholar 

  27. He X et al (2019) Enhancing thermal conductivity of polydimethylsiloxane composites through spatially confined network of hybrid fillers. Compos Sci Technol 172:163–171

    CAS  Google Scholar 

  28. Zhou S et al (2020) Preparation of thermally conductive polycarbonate/boron nitride composites with balanced mechanical properties. Polym Compos 41(12):5418–5427. https://doi.org/10.1002/pc.25805

    Article  CAS  Google Scholar 

  29. Kim K et al (2014) Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int 40(1):2047–2056

    CAS  Google Scholar 

  30. Shen M et al (2011) Thermal conductivity model of filled polymer composites. Int J Miner Metall Mater 18(5):623–631

    CAS  Google Scholar 

  31. Patti A et al (2016) The effect of filler functionalization on dispersion and thermal conductivity of polypropylene multi wall carbon nanotubes composites. Compos Part B Eng 94:350–359

    CAS  Google Scholar 

  32. Song J et al (2019) Thermal conductivity of natural rubber nanocomposites with hybrid fillers. Chin J Chem Eng 27(4):928–934

    CAS  Google Scholar 

  33. Zhang DL et al (2018) Enhanced thermal conductivity and mechanical property through boron nitride hot string in polyvinylidene fluoride fibers by electrospinning. Compos Sci Technol 156:1–7

    CAS  Google Scholar 

  34. Guiney LM et al (2018) Three-dimensional printing of cytocompatible thermally conductive hexagonal boron nitride nanocomposites. Nano Lett 18(6):3488–3493

    CAS  Google Scholar 

  35. Yang B et al (2020) Filler network structure in graphene nanoplatelet (GNP)-filled polymethyl methacrylate (PMMA) composites: from thermorheology to electrically and thermally conductive properties. Polym Test 89:106575

  36. Lee J et al (2019) Optimizing filler network formation in poly(hexahydrotriazine) for realizing high thermal conductivity and low oxygen permeation. Polymer 179:121639

  37. Fan X, Yin X (2018) Progress in research and development on matrix modification of continuous fiber-reinforced silicon carbide matrix composites. Adv Compos Hybrid Mater 1(4):685–695

    CAS  Google Scholar 

  38. Das TK, Ghosh P, Das NC (2019) Preparation development outcomes and application versatility of carbon fiber-based polymer composites: a review. Adv Compos Hybrid Mater 2(2):214–233

    CAS  Google Scholar 

  39. Du B et al (2021) Multifunctional carbon nanofiber-SiC nanowire aerogel films with superior microwave absorbing performance. Adv Compos Hybrid Mater 1–11

  40. Kim CY et al (2019) The alignment of AlN platelets in polymer matrix and its anisotropic thermal properties. J Materiomics 5(4):679–687

    Google Scholar 

  41. Wang H et al (2019) Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos Part B Engineering 158:311–318

    CAS  Google Scholar 

  42. Geng Y et al (2019) Enhanced through-plane thermal conductivity of polyamide 6 composites with vertical alignment of boron nitride achieved by fused deposition modeling. Polym Compos 40(2):3375–3382

    CAS  Google Scholar 

  43. Han J et al (2019) An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv Funct Mater 29(13):1900412

    Google Scholar 

  44. Shi Y et al (2019) Magnetically aligning multilayer graphene to enhance thermal conductivity of silicone rubber composites. J Appl Polym Sci 136(37):47951

    Google Scholar 

  45. Song J, Zhang Y (2020) Vertically aligned silicon carbide nanowires/reduced graphene oxide networks for enhancing the thermal conductivity of silicone rubber composites. Compos Part A Appl Sci Manuf 133:105873

  46. Bustero I et al (2020) Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Adv Compos Hybrid Mater 3(1):31–40

    CAS  Google Scholar 

  47. George J, Ishida H (2018) A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers. Prog Polym Sci 86:1–39

    CAS  Google Scholar 

  48. Stunda-Zujeva A, Irbe Z, Berzina-Cimdina L (2017) Controlling the morphology of ceramic and composite powders obtained via spray drying – a review. Ceram Int 43(15):11543–11551

    CAS  Google Scholar 

  49. Su CY et al (2014) Cosmetic properties of TiO2/mica-BN composite powder prepared by spray drying. Ceram Int 40(5):6903–6911

    CAS  Google Scholar 

  50. Barick P et al (2016) Spray-freeze-dried nanosized silicon carbide containing granules: properties compaction behaviour and sintering. J Eur Ceram Soc 36(16):3863–3877

    CAS  Google Scholar 

  51. Su KH et al (2019) Development of thermally conductive polyurethane composite by low filler loading of spherical BN/PMMA composite powder. Sci Rep 9(1):14397

    Google Scholar 

  52. Ren L et al (2019) Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem Eng J 370:166–175

    CAS  Google Scholar 

  53. Shin YK et al (2013) Effect of BN filler on thermal properties of HDPE matrix composites. Ceram Int 39:569–573

    Google Scholar 

  54. Tarhini A et al (2021) The effect of graphene flake size on the properties of graphene-based polymer composite films. J Appl Polym Sci 138(6):49821

    CAS  Google Scholar 

  55. Moradi S et al (2019) Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface. Polymer 11(7):1156

    Google Scholar 

  56. Jasmee S et al (2021) Interface thermal resistance and thermal conductivity of polymer composites at different types shapes and sizes of fillers: a review. Polym Compos 42(6):2629–2652

    CAS  Google Scholar 

  57. Han MS et al (2009) Electrical morphological and rheological properties of carbon nanotube composites with polyethylene and poly(phenylenesulfide) by melt mixing. Chem Eng Sci 64(22):4649–4656

    CAS  Google Scholar 

  58. Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43(7):1378–1385

    CAS  Google Scholar 

  59. Zhou WY et al (2007) Study on insulating thermal conductive BN/HDPE composites. Thermochim Acta 452(1):36–42

    CAS  Google Scholar 

  60. Zhang S et al (2011) The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym Lett 5(7):581–590

    CAS  Google Scholar 

  61. Wu D et al (2017) Spatial confining forced network assembly for preparation of high-performance conductive polymeric composites. Compos Part A Appl Sci Manuf 102:88–95

    CAS  Google Scholar 

  62. Wang J et al (2018) Enhancing dielectric performance of poly(vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticles. Eng Sci 4(24):79–86

    Google Scholar 

  63. Fang C et al (2020) Calculating the electrical conductivity of graphene nanoplatelet polymer composites by a monte carlo method. Nanomaterials 10(6):1129

    CAS  Google Scholar 

  64. Gkourmpis T et al (2019) Melt-mixed 3D hierarchical graphene/polypropylene nanocomposites with low electrical percolation threshold. Nanomaterials 9(12):1766

    CAS  Google Scholar 

  65. Du F et al (2006) An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity. J Polym Sci Part B Polym Phys 44(10):1513–1519

    CAS  Google Scholar 

  66. Xiao C et al (2019) Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity. Compos Part A Appl Sci Manuf 124:105511

  67. Yin L et al (2016) Fabrication of a polymer composite with high thermal conductivity based on sintered silicon nitride foam. Compos Part A Appl Sci Manuf 90:626–632

    CAS  Google Scholar 

  68. Liu Z et al (2016) Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Adv 6(27):22364–22369

    CAS  Google Scholar 

  69. Liu Z et al (2019) Graphene foam embedded epoxy composites with significant thermal conductivity enhancement. Nanoscale 11(38):17600–17606

    CAS  Google Scholar 

  70. Wu Y et al (2019) Cotton candy-templated fabrication of three-dimensional ceramic pathway within polymer composite for enhanced thermal conductivity. ACS Appl Mater Interfaces 11(47):44700–44707

    CAS  Google Scholar 

  71. Chen J et al (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater 27(5):1604754

    Google Scholar 

  72. Wu F et al (2020) Thermal conductivity of polycaprolactone/three-dimensional hexagonal boron nitride composites and multi-orientation model investigation. Compos Sci Technol 197:108245

  73. Hu J et al (2017) Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl Mater Interfaces 9(15):13544–13553

    CAS  Google Scholar 

  74. Yao Y et al (2018) Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small 14(13):e1704044

  75. Zeng X et al (2015) Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement. Small 11(46):6205–6213

    CAS  Google Scholar 

  76. Wang X, Wu P (2019) 3D vertically aligned BNNS network with long-range continuous channels for achieving a highly thermally conductive composite. ACS Appl Mater Interfaces 11(32):28943–28952

    CAS  Google Scholar 

  77. Yao Y et al (2018) Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl Mater Interfaces 10(11):9669–9678

    CAS  Google Scholar 

  78. Lin S et al (2019) Key factors in mechanical reinforcement by double percolation network: Particle migration and shear stability of filler network. Polymer 182:121820

  79. Wen B, Zheng X (2019) Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend. Compos Sci Technol 174:68–75

    CAS  Google Scholar 

  80. Amoabeng D et al (2020) Fumed silica induces co-continuity across a wide composition range in immiscible polymer blends. Polymer 186:121831

  81. Sultana SMN et al (2019) Tailoring MWCNT dispersion blend morphology and EMI shielding properties by sequential mixing strategy in immiscible PS/PVDF blends. J Electron Mater 49(3):1588–1600

    Google Scholar 

  82. Roman C et al (2020) Effect of selective distribution of MWCNTs on the solid-state rheological and dielectric properties of blends of PMMA and LDPE. J Mater Sci 55(20):8526–8540

    CAS  Google Scholar 

  83. Zhang Z et al (2019) Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface. Mater Des 177:107835

  84. Lan Y et al (2016) Electrically conductive thermoplastic polyurethane/polypropylene nanocomposites with selectively distributed graphene. Polymer 97:11–19

    CAS  Google Scholar 

  85. Huang J et al (2014) Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 73:267–274

    CAS  Google Scholar 

  86. Kashfipour MA et al (2019) Carbon nanofiber reinforced co-continuous HDPE/PMMA composites: Exploring the role of viscosity ratio on filler distribution and electrical/thermal properties. Compos Sci Technol 184:107859

  87. Beechem et al (2016) Thermal conductivity of turbostratic carbon nanofiber networks. J Heat Transfer 138(6):1–9

    Google Scholar 

  88. Chen H et al (2016) Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog Polym Sci 59:41–85

    CAS  Google Scholar 

  89. Cao M et al (2019) Effect of the blending processes on selective localization and thermal conductivity of BN in PP/EPDM Co-continuous blends. Polym Test 78:105978

  90. Liu B et al (2020) Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated filler networks prepared by solution-mixing and hot-pressing method. Chem Eng J 385(1):123829

  91. Zhang D et al (2017) High thermal conductivity and excellent electrical insulation performance in double-percolated three-phase polymer nanocomposites. Compos Sci Technol 144:36–42

    CAS  Google Scholar 

  92. Kwon Y (2014) Anisotropic thermal conductive MWCNT/polymer composites prepared with an immiscible PS/LDPE blend. J Nanosci Nanotechnol 14(8):6146–6149

    CAS  Google Scholar 

  93. Xiao C et al (2018) Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites. Compos Part A Appl Sci Manuf 110:133–141

    CAS  Google Scholar 

  94. Cao J et al (2013) High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos Sci Technol 89:142–148

    CAS  Google Scholar 

  95. Gumede TP et al (2019) Isothermal crystallization kinetics and morphology of double crystalline PCL/PBS blends mixed with a polycarbonate/MWCNTs masterbatch. Polymer 11(4):682

    Google Scholar 

  96. Zhou S et al (2015) Enhanced thermal conductivity of polyamide 6/polypropylene (PA6/PP) immiscible blends with high loadings of graphite. J Compos Mater 50(3):327–337

    Google Scholar 

  97. Zhou H et al (2017) Significant enhancement of thermal conductivity in polymer composite via constructing macroscopic segregated filler networks. ACS Appl Mater Interfaces 9(34):29071–29081

    CAS  Google Scholar 

  98. Hu M, Feng J, Ng KM (2011) Thermally conductive PP/AlN composites with a 3-D segregated structure. Compos Sci Technol 110:26–34

    Google Scholar 

  99. Feng CP et al (2016) Highly thermally conductive UHMWPE/graphite composites with segregated structures. RSC Adv 6(70):65709–65713

    CAS  Google Scholar 

  100. Jiang Y et al (2017) BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities. Compos Sci Technol 144:63–69

    CAS  Google Scholar 

  101. Ding D et al (2019) Highly thermally conductive polyimide composites via constructing 3D networks. Macromol Rapid Commun 40(17):1800805

    Google Scholar 

  102. Wang ZG et al (2018) Synergetic enhancement of thermal conductivity by constructing hybrid conductive network in the segregated polymer composites. Compos Sci Technol 162(7):7–13

    CAS  Google Scholar 

  103. Wu K et al (2017) Design and preparation of a unique segregated double network with excellent thermal conductive property. ACS Appl Mater Interfaces 9(8):7637–7647

    CAS  Google Scholar 

  104. Zhang X et al (2019) Preparation of highly thermally conductive but electrically insulating composites by constructing a segregated double network in polymer composites. Compos Sci Technol 175:135–142

    CAS  Google Scholar 

  105. Wang ZG et al (2018) Enhanced thermal conductivity of segregated poly(vinylidene fluoride) composites via forming hybrid conductive network of boron nitride and carbon nttttanotubes. Ind Eng Chem Res 57(31):10391–10397

    CAS  Google Scholar 

  106. Wang H et al (2020) Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles. ACS Omega 5(2):1170–1177

    CAS  Google Scholar 

  107. Li H et al (2019) Enhanced thermal conductivity by combined fillers in polymer composites. Thermochim Acta 676:198–204

    CAS  Google Scholar 

  108. Zhang X et al (2018) Thermal conductivity of rubber composite materials with a hybrid AlN/carbon fiber filler. Chin Sci Bull 63(23):2403–2410

    Google Scholar 

  109. Oh Y et al (2019) Investigation of mechanical thermal and electrical properties of hybrid composites reinforced with multi-walled carbon nanotubes and fused silica particles. Carbon Lett 30(4):353–365

    Google Scholar 

  110. Dang TML et al (2017) Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres. Compos Part B Eng 114:237–246

    CAS  Google Scholar 

  111. Ji T et al (2018) Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon 131:149–159

    CAS  Google Scholar 

  112. Yang J et al (2016) Three-dimensional-linked carbon fiber-carbon nanotube hybrid structure for enhancing thermal conductivity of silicon carbonitride matrix composites. Carbon 108:38–46

    CAS  Google Scholar 

  113. Singh AK et al (2017) Aligned multi-walled carbon nanotubes (MWCNT) and vapor grown carbon fibers (VGCF) reinforced epoxy adhesive for thermal conductivity applications. J Mater Sci Mater Electron 28(23):17655–17674

    CAS  Google Scholar 

  114. Tülbez S, Esen Z, Dericioglu AF (2020) Effect of CNT impregnation on the mechanical and thermal properties of C/C-SiC composites. Adv Compos Hybrid Mater 3(2):177–186

    Google Scholar 

  115. Han D et al (2019) Macroscopic carbon nanotube assembly/silicon carbide matrix composites produced by gas phase route. Adv Compos Hybrid Mater 2(1):142–150

    CAS  Google Scholar 

  116. He Y et al (2021) Reinforce the mechanical toughness heat resistance and friction and wear resistance of phenolic resin via constructing self-assembled hybrid particles of graphite oxide and zirconia as nano-fillers. Adv Compos Hybrid Mater 4(2):317–323

    CAS  Google Scholar 

  117. Zhang D et al (2020) Overview of ultrasonic assisted manufacturing multifunctional carbon nanotube nanopaper based polymer nanocomposites. Eng Sci 10(14):35–50

    CAS  Google Scholar 

  118. Li D et al (2019) Effect of different size complex fillers on thermal conductivity of PA6 thermal composites. Plast Rubber Compos 48(8):347–355

    CAS  Google Scholar 

  119. Vaisakh SS et al (2016) Effect of nano-modified SiO2/Al2O3 mixed-matrix micro-composite fillers on thermal mechanical and tribological properties of epoxy polymers. Polym Adv Technol 27(7):905–914

    CAS  Google Scholar 

  120. Ji B et al (2020) Mussel inspired interfacial modification of boron nitride/carbon nanotubes hybrid fillers for epoxy composites with improved thermal conductivity and electrical insulation properties. J Polym Res 27(8):1–12

    Google Scholar 

  121. An D et al (2019) Flexible thermal interfacial materials with covalent bond connections for improving high thermal conductivity. Chem Eng J 383:123151

  122. Wang Y et al (2020) Achieving a 3D thermally conductive while electrically insulating network in polybenzoxazine with a novel hybrid filler composed of boron nitride and carbon nanotubes. Polymer 12(10):2331

    CAS  Google Scholar 

  123. Xiao YJ et al (2016) Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidene fluoride)/boron nitride composites achieved by adding a few carbon nanotubes. J Phys Chem C 120(12):6344–6355

    CAS  Google Scholar 

  124. Guo Y et al (2019) Largely enhanced thermal conductivity and thermal stability of ultra high molecular weight polyethylene composites via BN/CNT synergy. RSC Adv 9(70):40800–40809

    CAS  Google Scholar 

  125. Su Z et al (2018) Fabrication of thermal conductivity enhanced polymer composites by constructing and oriented three-dimensional staggered interconnected network of boron nitride platelets and carbon nanotubes. ACS Appl Mater Interfaces 10(42):36342–36351

    CAS  Google Scholar 

  126. Cheewawuttipong W et al (2014) Thermal conductivity of polypropylene composites with hybrid fillers of boron nitride and vapor-grown carbon fiber. Polym Compos 37(3):1–8

    Google Scholar 

  127. Owais M et al (2019) Synergetic effect of hybrid fillers of boron nitride graphene nanoplatelets and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos Part A Appl Sci Manuf 117:11–22

    CAS  Google Scholar 

  128. Jiang X et al (2020) Simultaneously enhancing the thermal conductivity and dielectric constant of BN/CF hybrid filled polypropylene/polystyrene composites via in situ reactive processing. Polym Compos 41(4):1234–1241

    CAS  Google Scholar 

  129. Li M et al (2018) A thermally conductive and insulating epoxy polymer composite with hybrid filler of modified copper nanowires and graphene oxide. J Mater Sci 29(6):4948–4954

    Google Scholar 

  130. Wang B et al (2020) Highly thermally conductive PVDF-based ternary dielectric composites via engineering hybrid filler networks. Compos Part B Eng 191:107978

  131. Duan G et al (2019) Preparation of PMIA dielectric nanocomposite with enhanced thermal conductivity by filling with functionalized graphene–carbon nanotube hybrid fillers. Appl Nanosci 9(8):1743–1757

    CAS  Google Scholar 

  132. Li Q et al (2020) Enhanced thermal conductivity and isotropy of polymer composites by fabricating 3D network structure from carbon-based materials. J Appl Polym Sci 138(5):49781

    Google Scholar 

  133. Zhou Y et al (2018) High-performance thermal management nanocomposites: silver functionalized graphene nanosheets and multiwalled carbon nanotube. Curr Comput-Aided Drug Des 8(11):398

    Google Scholar 

  134. Liang D et al (2020) Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix. J Polym Res 27(8):1–12

    Google Scholar 

  135. Cho JK et al (2020) Heat dissipative mechanical damping properties of EPDM rubber composites including hybrid fillers of aluminium nitride and boron nitride. Soft Matter 16(29):6812–6818

    CAS  Google Scholar 

  136. Yuan W et al (2016) Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl Therm Eng 106:1067–1074

    CAS  Google Scholar 

  137. Akhtar MW et al (2017) Alumina-graphene hybrid filled epoxy composite: quantitative validation and enhanced thermal conductivity. Compos Part B Eng 131:184–195

    CAS  Google Scholar 

  138. Yu W et al (2016) Synergistic improvement of thermal transport properties for thermoplastic composites containing mixed alumina and graphene fillers. J Appl Polym Sci 133(13):43242

    Google Scholar 

  139. Huang H et al (2020) Morphological mechanical and thermal properties of PA6 nanocomposites Co-Incorporated with Nano-Al2O3 and graphene oxide fillers. Polymer 188:122119

  140. Liu M et al (2020) Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing. Ceram Int 46(13):20810–20818. https://doi.org/10.1016/j.ceramint.2020.05.096

    Article  CAS  Google Scholar 

  141. Song H et al (2019) Synergistic effects of various ceramic fillers on thermally conductive polyimide composite films and their model predictions. Polymer 11(3):484

    Google Scholar 

  142. Mai VD et al (2019) Rheological properties and thermal conductivity of epoxy resins filled with a mixture of alumina and boron nitride. Polymer 11(4):597

    Google Scholar 

  143. Yan H et al (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4(1):36–50

    CAS  Google Scholar 

  144. Gao C, Shen Y, Wang T (2020) Enhanced thermal conductivity for traditional epoxy packaging composites by constructing hybrid conductive network. Mater Res Express 7(6):p065308

  145. Wu Y et al (2020) Synergistic effects of boron nitride (BN) nanosheets and silver (Ag) nanoparticles on thermal conductivity and electrical properties of epoxy nanocomposites. Polymer 12(2):426

    CAS  Google Scholar 

  146. Pan C et al (2018) Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles. Compos Part B Eng 153:1–8

    CAS  Google Scholar 

  147. Yang J et al (2018) Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol Energ Mater Sol Cell 174:56–64

    Google Scholar 

  148. Lewis JS et al (2019) Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Mater Res Express 6(8):085325

  149. An D et al (2019) A polymer-based thermal management material with enhanced thermal conductivity by introducing three-dimensional networks and covalent bond connections. Carbon 155:258–267

    CAS  Google Scholar 

  150. Xing Z et al (2019) Size-controlled graphite nanoplatelets: thermal conductivity enhancers for epoxy resin. J Mater Sci 54(13):10041–10054

    CAS  Google Scholar 

  151. Ruan WH et al (2007) Effects of processing conditions on properties of nano-SiO2/polypropylene composites fabricated by pre-drawing technique. Compos Sci Technol 67(13):2747–2756

    CAS  Google Scholar 

  152. Chen J et al (2017) Vertically aligned and interconnected boron nitride nanosheets for advanced flexible nanocomposite thermal interface materials. ACS Appl Mater Interface 9(36):30909–30917

    CAS  Google Scholar 

  153. Wang X, Wu P (2017) Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets. ACS Appl Mater Interfaces 9(23):19934–19944

    CAS  Google Scholar 

  154. Guo H et al (2016) Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane. Mater Des 114(15):355–363

    Google Scholar 

  155. Yuan C et al (2015) Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets. ACS Appl Mater Interface 7(23):13000–13006

    CAS  Google Scholar 

  156. Shan B et al (2019) Preparation of graphene/aligned carbon nanotube array composite films for thermal packaging applications. Jpn J Appl Phys 58(SH):SHHH01

  157. Ziyadi H et al (2021) An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Adv Compos Hybrid Mater 1–12

  158. Yang S et al (2018) Thermal and mechanical performance of electrospun chitosan/poly(vinyl alcohol) nanofibers with graphene oxide. Adv Compos Hybrid Mater 1(4):722–730

    CAS  Google Scholar 

  159. Tan SC et al (2016) Compression-induced graphite nanoplatelets orientation in fibre-reinforced plastic composites. Compos Part B Eng 90:493–502

    CAS  Google Scholar 

  160. Park HJ, Woo JS, Park SY (2019) Poly (phenylene sulfide)-graphite composites for bipolar plates with preferred morphological orientation. Korean J Chem Eng 36(12):2133–2142

    CAS  Google Scholar 

  161. Park HJ, Woo JS, Park SY (2019) Poly(phenylene sulfide)-graphite composites for bipolar plates with preferred morphological orientation. Korean J Chem Eng 36(12):2133–2142

    CAS  Google Scholar 

  162. Yu C et al (2018) Hot pressing-induced alignment of hexagonal boron nitride in SEBS elastomer for superior thermally conductive composites. RSC Adv 8(45):25835–25845

    CAS  Google Scholar 

  163. Ohayon-Lavi A et al (2020) Compression-enhanced thermal conductivity of carbon loaded polymer composites. Carbon 163:333–340

    CAS  Google Scholar 

  164. Sun J et al (2019) Development and application of hot embossing in polymer processing: a review. ES Mater Manuf 6(4):3–17

    Google Scholar 

  165. Mei H et al (2019) Tailoring strength and modulus by 3D printing different continuous fibers and filled structures into composites. Adv Compos Hybrid Mater 2(2):312–319

    CAS  Google Scholar 

  166. Feng CP et al (2018) A facile route to fabricate highly anisotropic thermally conductive elastomeric POE/NG composites for thermal management. Adv Mater Interface 5(2):1700946

    Google Scholar 

  167. Ou X et al (2020) Enhancement of thermal conductivity and dimensional stability of polyimide/boron nitride films through mechanochemistry. Compos Commun 23:100549

  168. Feng CP et al (2017) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1(1):160–167

    Google Scholar 

  169. Ren Y et al (2019) A trade-off study toward highly thermally conductive and mechanically robust thermoplastic composites by injection moulding. Compos Sci Technol 183:107787

  170. Rudresh BM, Ravi Kumar BN, Madhu D (2019) Combined effect of micro- and nano-fillers on mechanical thermal and morphological behavior of glass–carbon PA66/PTFE hybrid nano-composites. Adv Compos Hybrid Mater 2(1):176–188

    CAS  Google Scholar 

  171. Fu H et al (2020) Overview of injection molding technology for processing polymers and their composites. ES Mater Manuf 8:3–23

    CAS  Google Scholar 

  172. Lule ZC, Oh H, Kim J (2020) Enhanced directional thermal conductivity of polylactic acid/polybutylene adipate terephthalate ternary composite filled with oriented and surface treated boron nitride. Polym Test 86:106495

  173. Yan H et al (2015) Thermal conductivity of magnetically aligned graphene–polymer composites with Fe3O4-decorated graphene nanosheets. J Electron Mater 44(2):658–666

    CAS  Google Scholar 

  174. Kim K, Kim J (2016) Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field. Int J Therm Sci 100:29–36

    CAS  Google Scholar 

  175. Yuan J et al (2019) Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation. ACS Appl Mater Interface 11(19):17915–17924

    CAS  Google Scholar 

  176. Su Z et al (2018) Fabrication of thermal conductivity enhanced polymer composites by constructing an oriented three-dimensional staggered interconnected network of boron nitride platelets and carbon nanotubes. ACS Appl Mater Interface 10(42):36342–36351

    CAS  Google Scholar 

  177. Yuan F et al (2017) Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites. RSC Adv 7(69):43380–43389

    CAS  Google Scholar 

  178. Kim K, Ju H, Kim J (2016) Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceram Int 42(7):8657–8663

    CAS  Google Scholar 

  179. Liu Z et al (2018) Electric-field-induced out-of-plane alignment of clay in poly(dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties. Compos Sci Technol 165:39–47

    Google Scholar 

Download references

Funding

The resent work was supported by a PhD research start-up foundation of Xiangtan University (20QDZ19) and the Opening Project of State Key Laboratory of Molecular Engineering of Polymers (Fudan University) (No. k2021-14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ma or Jingyao Sun.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Ou, D., Wu, S. et al. A mini review on factors affecting network in thermally enhanced polymer composites: filler content, shape, size, and tailoring methods. Adv Compos Hybrid Mater 5, 21–38 (2022). https://doi.org/10.1007/s42114-021-00321-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00321-1

Keywords

Navigation