Skip to main content
Log in

Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Precise control of value and dispersion characteristics of negative permittivity is still an unsolved problem in the practical application of random metamaterials. In this work, the ternary percolation nanocomposites (CNTs-GR-CCTO) were prepared via a low-temperature sintering process by using graphene (GR), carbon nanotubes (CNTs), and copper calcium titanate (CCTO). As the total carbon contents increased, the three-dimensional carbon network was formed, and negative permittivity is realized, which exhibits the Lorentz-type and Drude-type dispersion behaviors. The synergistic effect between GR and CNTs was studied in detail. While the GR sheets separate the CNTs, the CNTs also act as wires to connect the GR sheets. Controlled conductive paths were created by changing the ratio of CNTs to GR, achieving precise regulation of the negative permittivity, which is further certified by the equivalent circuit analysis. We provide a novel strategy for the precise regulation of negative permittivity of carbon-matrix metamaterials, which will greatly facilitate applications of metamaterials with negative permittivity.

Graphical abstract

Precise regulation of weakly negative permittivity is achieved in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data can be made available on request to the corresponding authors.

References

  1. Cheng H, Pan Y, Chen Q, Che R, Zheng G, Liu C (2021) Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4(3):505–513

    Article  CAS  Google Scholar 

  2. Patil S, Bhat T, Teli A, Beknalkar S, Dhavale S, Faras M (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51

    CAS  Google Scholar 

  3. Xu J, Cao J, Guo M, Yang S, Yao H, Lei M (2021) Metamaterial mechanical antenna for very low frequency wireless communication. Adv Compos Hybrid Mater 4(3):761–767

    Article  Google Scholar 

  4. Li G, Ji Y, Zuo D, Xu J, Zhang H (2019) Carbon electrodes with double conductive networks for high-performance electrical double-layer capacitors. Adv Compos Hybrid Mater 2(3):456–461

    Article  CAS  Google Scholar 

  5. Sun K, Fan R, Zhang X, Zhang Z, Shi Z, Wang N (2018) An overview of metamaterials and their achievements in wireless power transfer. J Mater Chem C 6(12):2925–2943

    Article  CAS  Google Scholar 

  6. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater

  7. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  8. Shi Z, Fan R, Zhang Z, Qian L, Gao M, Zhang M (2012) Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater 24(17):2349–2352

    Article  CAS  Google Scholar 

  9. Chen M, Wang Y, Geng L, Sun K (2021) A weakly negative permittivity of carbonyl iron and La-doped barium ferrite composites at radio frequency. ECS J Solid State Sci Technol 10(8):083001

  10. Sun K, Qin J, Wang Z, An Y, Li X, Dong B (2020) Polyvinyl alcohol/carbon fibers composites with tunable negative permittivity behavior. Surf Interfaces 21:100735

  11. Chen, Y., Wang, Y., Li, Z., Wang, D., Yuan, H., Zhang, H., Tan, Y (2021) A flame retarded polymer-based composite solid electrolyte improved by natural polysaccharides. Compos Commun 26:100774

  12. Yang H, Li Q, Wang Z, Wu H, Wu Y, Hou P (2021) Effect of graphene on microstructure and mechanical properties of Si3N4/SiC ceramics. ES Mater Manuf 12:29–34

    CAS  Google Scholar 

  13. Zhang Y, Zhan L (2020) Preparation and damping properties of Al2O3 hollow spheres/epoxy composites encapsulating Q195 steel pipes. ES Mater Manuf 10:60–66

    CAS  Google Scholar 

  14. Zhang J, Liang Y, Wang X, Zhou H, Li S, Zhang J (2018) Strengthened epoxy resin with hyperbranched polyamine-ester anchored graphene oxide via novel phase transfer approach. Adv Compos Hybrid Mater 1(2):300–309

    Article  CAS  Google Scholar 

  15. Wu H, Yin R, Qian L, Zhang Z (2017) Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater Des 117:18–23

    Article  CAS  Google Scholar 

  16. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4(3):534–542

    Article  CAS  Google Scholar 

  17. Jiang Y, Xie P, Wang Z, Fan G, Qu Y, Sun K (2018) Iron granular percolative composites toward radio-frequency negative permittivity. ECS J Solid State Sci Technol 7(9):N132–N136

    Article  CAS  Google Scholar 

  18. Wang X, Shi Z, Chen M, Fan R, Yan K, Sun K (2014) Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J Am Ceram Soc 97(10):3223–3229

    Article  CAS  Google Scholar 

  19. Liu H, Zeng S, Li R, Jiang Y, Liu Q, Tang X (2021) Multiferroic properties and resistive switching behaviors of Ni0.5Zn0.5Fe2O4 thin films. Adv Compos Hybrid Mater 4(1):1–7

  20. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185

    Article  CAS  Google Scholar 

  21. Yu Z, Bai Y, Wang JH, Li Y (2021) Effects of functional additives on structure and properties of polycarbonate-based composites filled with hybrid chopped carbon fiber/graphene nanoplatelet fillers. ES Energy Environ 12:66–76

    Google Scholar 

  22. Wang J, Shi Z, Mao F, Chen S, Wang X (2017) Bilayer polymer metacomposites containing negative permittivity layer for new high-k materials. ACS Appl Mater Inter 9(2):1793–1800

    Article  CAS  Google Scholar 

  23. Gu J, Cui K, Niu S, Ge Y, Liu Y, Ma Z (2021) Smart configuration of cobalt hexacyanoferrate assembled on carbon fiber cloths for fast aqueous flexible sodium ion pseudocapacitor. J Colloid Interface Sci 594:522–530

    Article  CAS  Google Scholar 

  24. Wu N, Du W, Hu Q, Jiang SVQ (2020) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic Wave Absorption. Eng Sci 13:11–23

    Google Scholar 

  25. Gholipur R, Khorshidi Z, Bahari A (2017) Enhanced absorption performance of carbon nanostructure based metamaterials and tuning impedance matching behavior by an external AC electric field. ACS Appl Mater Inter 9(14):12528–12539

    Article  CAS  Google Scholar 

  26. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4(3):707–715

    Article  CAS  Google Scholar 

  27. Gao X, Jia Z, Wang B, Wu X, Sun T, Liu X (2021) Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber. Chem Eng J 419:130019

  28. Lyu L, Liu J, Liu H, Liu C, Lu Y, Sun K (2018) An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Eng Sci 2:26–42

    Google Scholar 

  29. Zhao B, Park C (2017) Tunable electromagnetic shielding properties of conductive poly(vinylidene fluoride)/Ni chain composite films with negative permittivity. J Mater Chem C 5(28):6954–6961

    Article  CAS  Google Scholar 

  30. Cheng C, Fan R, Ren Y, Ding T, Qian L, Guo J (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9(18):5779–5787

    Article  CAS  Google Scholar 

  31. Chen L, Mao S, Wang P, Yao Z, Du Z, Zhu Z (2021) Visible light driven hot-electron injection by Pd nanoparticles: fast response in metal–semiconductor photodetection. Adv Opt Mater 9(1):2001505

    Article  CAS  Google Scholar 

  32. Xie P, Wang Z, Sun K, Cheng C, Liu Y, Fan R (2017) Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl Phys Lett 111(11):112903

  33. Sun K, Yang P, He Q, Tian J, Duan W, Wu X (2021) Weakly negative permittivity of MWCNT/TiN/CCTO ternary ceramics sintered in argon and nitrogen atmosphere. Ceram Int 47(22):32297–32302

    Article  CAS  Google Scholar 

  34. Liu Y, Ding C, Xie P, Yan X, Feng M, Liu Y (2021) Surface-reconstructed formation of hierarchical TiO2 mesoporous nanosheets with fast lithium-storage capability. Mater Chem Front 5(7):3216–3225

    Article  CAS  Google Scholar 

  35. Bian G, Pan N, Luan Z, Sui X, Fan W, Xia Y (2021) Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew Chem Int Ed 60(37):20294–20300

    Article  CAS  Google Scholar 

  36. Song J, Wang Y, Qiu J (2018) High adsorption performance of methyl blue from aqueous solution using hyper-branched polyethyleneimine grafted MWCNTs as an adsorbent. ES Mater Manuf 3:29–37

    Google Scholar 

  37. Cui K, Wang C, Luo Y, Li L, Gao J, Chen W (2020) Enhanced sodium storage kinetics of nitrogen rich cellulose-derived hierarchical porous carbon via subsequent boron doping. Appl Surf Sci 531:147302

  38. Huang Y, Li X, Xu X, Wei F, Wang Y, Ma M (2021) Green and up-scalable fabrication of superior anodes for lithium storage based on biomass bacterial cellulose. Adv Powder Technol 32(7):2484–2492

    Article  CAS  Google Scholar 

  39. Wu H, Yin R, Zhang Y, Wang Z, Xie P, Qian L (2017) Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites. J Phys Chem C 121(22):12037–12045

    Article  CAS  Google Scholar 

  40. Li Y, Yuan H, Chen Y, Wei X, Sui K, Tan Y (2021) Application and exploration of nanofibrous strategy in electrode design. J Mater Sci Technol 74:189–202

    Article  Google Scholar 

  41. Liu H, Gao J, Huang W, Dai K, Zheng G, Liu C (2016) Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8(26):12977–12989

    Article  CAS  Google Scholar 

  42. Qu Y, Du Y, Fan G, Xin J, Liu Y, Xie P (2019) Low-temperature sintering graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. J Alloy Compd 771:699–710

    Article  CAS  Google Scholar 

  43. Wang Z, Yuan H, Zhang Y, Wang D, Ju J, Tan Y (2022) Recent progress in organic color-tunable phosphorescent materials. J Mater Sci Technol 101:264–284

    Article  Google Scholar 

  44. Ahmadipour M, Ain M, Ahmad Z (2016) A short review on copper calcium titanate (CCTO) electroceramic: synthesis dielectric properties film deposition and sensing application. Nanomicro Lett 8(4):291–311

    Google Scholar 

  45. Cheng C, Wu Y, Qu Y, Ma R, Fan R (2020) Radio-frequency negative permittivity of carbon nanotube/copper calcium titanate ceramic nanocomposites fabricated by spark plasma sintering. Ceram Int 46(2):2261–2267

    Article  CAS  Google Scholar 

  46. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267(5613):673–679

    Article  CAS  Google Scholar 

  47. Dyre JC, Schrøder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72(3):873–892

    Article  Google Scholar 

  48. Guo J, Li X, Liu H, Young DP, Song G, Song K (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4(1):51–64

    Article  CAS  Google Scholar 

  49. Dang Z-M, Zheng M-S, Zha J-W (2016) 1D/2D Carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12(13):1688–1701

    Article  CAS  Google Scholar 

  50. Liu M, Lan X, Zhang H, Xie P, Wu N, Yuan H (2021) Iron/epoxy random metamaterials with adjustable epsilon-near-zero and epsilon-negative property. J Mater Sci Mater Electron 32(12):15995–16007

    Article  CAS  Google Scholar 

  51. Xie P, Wang Z, Zhang Z, Fan R, Cheng C, Liu H (2018) Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J Mater Chem C 6(19):5239–5249

    Article  CAS  Google Scholar 

  52. Dressel M, Gruener G (2002) Electrodynamics of solids: optical properties of electrons in matter. Am J Phys 70(12):1269–1270

    Article  Google Scholar 

  53. Yao X, Kou X, Qiu J (2016) Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability. Carbon 107:261–267

    Article  CAS  Google Scholar 

  54. Shi Z, Fan R, Zhang Z, Yan K, Zhang X, Sun K (2013) Experimental realization of simultaneous negative permittivity and permeability in Ag/Y3Fe5O12 random composites. J Mater Chem C 1(8):1633–1637

    Article  CAS  Google Scholar 

  55. Wu H, Qi Y, Wang Z, Zhao W, Li X, Qian L (2017) Low percolation threshold in flexible graphene/acrylic polyurethane composites with tunable negative permittivity. Compos Sci Technol 151:79–84

    Article  CAS  Google Scholar 

  56. Yan K, Fan R, Chen M, Sun K, Yin L, Li H (2015) Perovskite (La, Sr)MnO3 with tunable electrical properties by the Sr-doping effect. J Alloy Compd 628:429–432

    Article  CAS  Google Scholar 

  57. Tsutaoka T, Massango H, Kasagi T, Yamamoto S, Hatakeyama K (2016) Double negative electromagnetic properties of percolated Fe53Ni47/Cu granular composites. Appl Phys Lett 108(19):191904

  58. Wang Z, Sun K, Xie P, Liu Y, Fan R (2017) Generation mechanism of negative permittivity and Kramers–Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites. J Phys Condens Matter 29(36):365703

  59. Estevez D, Qin F, Luo Y, Quan L, Mai Y, Panina L (2019) Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites. Compos Sci Technol 171:206–217

    Article  CAS  Google Scholar 

  60. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019:1021368

    Article  CAS  Google Scholar 

  61. Engheta N (2013) Pursuing near-zero response. Science 340(6130):286–287

    Article  CAS  Google Scholar 

  62. Xie P, Fan R, Zhang Z, Li B, Chen M, Liu Y (2018) Tunable negative permittivity and permeability of yttrium iron garnet/polyaniline composites in radio frequency region. J Mater Sci Mater Electron 29(7):6119–6124

    Article  CAS  Google Scholar 

  63. Qu Y, Fan G, Liu D, Gao Y, Xu C, Zhong J (2018) Functional nano-units prepared by electrostatic self-assembly for three-dimension carbon networks hosted in CaCu3Ti4O12 ceramics towards radio-frequency negative permittivity. J Alloy Compd 743:618–625

    Article  CAS  Google Scholar 

  64. Qu Y, Li Y, Xu C, Fan G, Xie P, Wang Z (2018) Metacomposites: functional design via titanium nitride/nickel(II) oxide composites towards tailorable negative dielectric properties at radio-frequency range. J Mater Sci Mater Electron 29(7):5853–5861

    Article  CAS  Google Scholar 

  65. Sun Y, Wang J, Qi S, Tian G, Wu D (2015) Permittivity transition from highly positive to negative: polyimide/carbon nanotube composite’s dielectric behavior around percolation threshold. Appl Phys Lett 107(1):012905

  66. Sun K, Fan R, Yin Y, Guo J, Li X, Lei Y (2017) Tunable negative permittivity with Fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J Phys Chem C 121(13):7564–7571

    Article  CAS  Google Scholar 

  67. Sun Z, Zhang L, Dang F, Liu Y, Fei Z, Shao Q (2017) Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19(24):3288–3298

    Article  CAS  Google Scholar 

  68. Xi Y, Bin Y, Chiang C, Matsuo M (2007) Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers. Carbon 45(6):1302–1309

    Article  CAS  Google Scholar 

  69. Xie P, Sun W, Du A, Hou Q, Wu G, Fan R (2021) Epsilon-negative carbon aerogels with state transition from dielectric to degenerate semiconductor. Adv Electron Mater 7(3):2000877

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from the Key Research and Development Project of Shandong Province (grant no. 2019GSF109079), Postdoctoral Applied Research Project of Qingdao, the China Postdoctoral Science Foundation (2020M671992), Postdoctoral Innovation Project of Shandong Province (202003031), Natural Science Foundation of Shandong Province (ZR2020QE006), National Natural Science Foundation of China (grant no. 52101176), and support from State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Biochemical Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Han Wu and Yiming Zhong contributed equally to this work. All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by H. Wu, Y. Zhong, Y. Tang, W. Sun, and P. Xie. H. Wu and P. Xie wrote the manuscript. D. Pan, Z. Guo, and P. Xie gave the meaningful advice in the analysis of the performance of nanocomposites. C. Liu and P. Xie gave financial support for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peitao Xie or Chunzhao Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 304 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhong, Y., Tang, Y. et al. Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5, 419–430 (2022). https://doi.org/10.1007/s42114-021-00378-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00378-y

Keywords

Navigation