Skip to main content

Advertisement

Log in

Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide ‘meta-powder’ for light-weight microwave absorption material design

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this paper, biomorphic porous carbon-based composite powder, in which Fe@Fe3C core–shell nanoparticles embedded periodically, was fabricated by morphology genetic method. The morphology, microstructure, dielectric properties, and the microwave absorption performance of the composite powder were characterized in detail. The results indicate that the coupling effect among the neighboring core–shell nanoparticles will be strengthen in the case of ordered distribution, leading to leading to an unconventional permittivity enhancement phenomenon. This coupling effect will enlarge the energy consumption capacity of the composite powder, which offer a promising prospect for the light-weight microwave absorption materials (MAM) design. According to the experimental results, the effective absorption bandwidth (RL < −10 dB) has been enlarged to 5.6 GHz, and the minimum reflection loss reached up to −50 dB at 8 GHz. Moreover, by using ‘meta-powder’ as the absorbent in MAM, the usage amount of the absorbent can be reduced by half without causing negative effect to the microwave absorption performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dang Z, Yuan J, Zha J, Zhou T, Li S, Hu G (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57:660–723. https://doi.org/10.1016/j.pmatsci.2011.08.001

    Article  CAS  Google Scholar 

  2. Dang Z, Yuan J, Yao S, Liao R (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6334–6365. https://doi.org/10.1002/adma.201301752

    Article  CAS  Google Scholar 

  3. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225. https://doi.org/10.1016/S0009-2614(00)01013-7

    Article  CAS  Google Scholar 

  4. Wong S, Sutherland EM, Uhl FM (2006) Materials processes of graphite nanostructured composites using ball milling. Mater Manuf Process 21:159–166. https://doi.org/10.1081/AMP-200068659

    Article  CAS  Google Scholar 

  5. Azhdar B, Stenberg B, Kari L (2008) Polymer-nanofiller prepared by high-energy ball milling and high velocity cold compaction. Polym Composite 29:252–261. https://doi.org/10.1002/pc.20353

    Article  CAS  Google Scholar 

  6. Dang ZM, Lin YH, Nan CW (2003) Novel ferroelectric polymer composites with high dielectric constants. Adv Mater 15:1625–1629. https://doi.org/10.1002/adma.200304911

    Article  CAS  Google Scholar 

  7. Dang ZM, Shen Y, Nan CW (2002) Dielectric behavior of three-phase percolative Ni-BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett 81:4814–4816. https://doi.org/10.1063/1.1529085

    Article  CAS  Google Scholar 

  8. Qi L, Lee BI, Chen S, Samuels WD, Exarhos GJ (2005) High-dielectric-constant silver-epoxy composites as embedded dielectrics. Adv Mater 17:1777–1781. https://doi.org/10.1002/adma.200401816

    Article  CAS  Google Scholar 

  9. Lu J, Moon K, Xu J, Wong CP (2006) Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications. J Mater Chem 16:1543–1548. https://doi.org/10.1039/b514182f

    Article  CAS  Google Scholar 

  10. Dang Z, Peng B, Xie D, Yao S, Jiang M, Bai J (2008) High dielectric permittivity silver/polyimide composite films with excellent thermal stability. Appl Phys Lett 92:112910. https://doi.org/10.1063/1.2894571

    Article  CAS  Google Scholar 

  11. Dang Z, Zhang Y, Tjong SC (2004) Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synthetic Met 146:79–84. https://doi.org/10.1016/j.synthmet.2004.06.011

    Article  CAS  Google Scholar 

  12. Li Y, Xu M, Feng J, Dang Z (2006) Dielectric behavior of a metal-polymer composite with low percolation threshold. Appl Phys Lett 89:72902. https://doi.org/10.1063/1.2337157

    Article  CAS  Google Scholar 

  13. Rao Y, P WC, (2004) Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J Appl Polym Sci 92:2228–2231. https://doi.org/10.1002/app.13690

    Article  CAS  Google Scholar 

  14. Guo H, Zhang J, Wang Q, Bi K (2020) Ferromagnetic/ferroelectric composites and microwave properties of its metamaterial structure. J Mater Eng 48:43–49. https://doi.org/10.11868/j.issn.1001-4381.2019.000980

  15. Wang L, Ma Z, Zhang Y, Chen L, Cao D, Gu J (2021) Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1:413–431. https://doi.org/10.1002/sus2.21

    Article  Google Scholar 

  16. Liang C, Gu Z, Zhang Y, Ma Z, Qiu H, Gu J (2021) Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett 13:181. https://doi.org/10.1007/s40820-021-00707-2

    Article  CAS  Google Scholar 

  17. Lu X, Zhu D, Li X, Li M, Chen Q, Qing Y (2021) Gelatin-derived N-doped hybrid carbon nanospheres with an adjustable porous structure for enhanced electromagnetic wave absorption. Advanced Composites and Hybrid Materials. https://doi.org/10.1007/s42114-021-00258-5

    Article  Google Scholar 

  18. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z, Fan R (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Advanced Composites and Hybrid Materials 4:173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  19. Zhang QM, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature 419:284–287. https://doi.org/10.1038/nature01021

    Article  CAS  Google Scholar 

  20. Wang W, Deng X, Liu D, Luo F, Cheng H, Cao T, Li Y, Deng Y, Xie W (2021) Broadband radar-absorbing performance of square-hole structure. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00376-0

    Article  Google Scholar 

  21. Luo F, Liu D, Cao T, Cheng H, Kuang J, Deng Y, Xie W (2021) Study on broadband microwave absorbing performance of gradient porous structure. Adv Compos Hybrid Mater 4:591–601. https://doi.org/10.1007/s42114-021-00275-4

    Article  CAS  Google Scholar 

  22. Jiang X, Chen Y, Meng X, Cao W, Liu C, Huang Q, Naik N, Murugadoss V, Huang M, Guo Z (2022) The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review. Carbon 191:448–470. https://doi.org/10.1016/j.carbon.2022.02.011

    Article  CAS  Google Scholar 

  23. Huang C, Zhang QM (2005) Fully functionalized high-dielectric-constant nanophase polymers with high electromechanical response. Adv Mater 17:1153–1158. https://doi.org/10.1002/adma.200401161

    Article  CAS  Google Scholar 

  24. Sun L, Shi Z, He B, Wang H, Liu S, Huang M, Shi J, Dastan D, Wang H (2021) Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: a novel design targeting for advanced energy storage capacitors. Adv Func Mater 2021:2100280. https://doi.org/10.1002/adfm.202100280

    Article  CAS  Google Scholar 

  25. Sun S, Shi Z, Sun L, Liang L, Dastan D, He B, Wang H, Huang M, Fan R (2021) Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer. ACS Appl Mater Interfaces 23:27522–27532. https://doi.org/10.1021/acsami.1c08063

    Article  CAS  Google Scholar 

  26. Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials 13:4622. https://doi.org/10.3390/ma13204622

    Article  CAS  Google Scholar 

  27. Tan L, Wei C, Zhang Y, An Y, Xiong S, Feng J (2021) Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem Eng J 431:134277. https://doi.org/10.1016/j.cej.2021.134277

    Article  CAS  Google Scholar 

  28. Wang Z, Li X, Wang L, Li Y, Qin J, Xie P, Qu Y, Sun K, Fan R (2020) Flexible multi-walled carbon nanotubes/polydimethylsiloxane membranous composites toward high-permittivity performance. Advanced Composites and Hybrid Materials 3:1–7. https://doi.org/10.1007/s42114-020-00144-6

    Article  CAS  Google Scholar 

  29. Wu N, Qiao J, Liu J, Du W, Xu D, Liu W (2018) Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads. Advanced Composites and Hybrid Materials 1:149–159. https://doi.org/10.1007/s42114-017-0008-z

    Article  CAS  Google Scholar 

  30. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu CZ, Guo Z (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Advanced Composites and Hybrid Materials 2021:1–12. https://doi.org/10.1007/s42114-021-00378-y

    Article  CAS  Google Scholar 

  31. Han M, Shi Z, Zhang W, Zhang K, Wang H, Dastan D, Fan R (2021) Significantly enhanced high permittivity and negative permittivity in Ag/Al2O3/3D-BaTiO3/epoxy metacomposites with unique hierarchical heterogeneous microstructures. Compos A Appl Sci Manuf 149:106559. https://doi.org/10.1016/j.compositesa.2021.106559

    Article  CAS  Google Scholar 

  32. Yuan J, Dang Z, Yao S, Zha J, Zhou T, Li S, Bai J (2010) Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density. J Mater Chem 20:2441. https://doi.org/10.1039/b923590f

    Article  CAS  Google Scholar 

  33. Fu X, Shi L, Cui T (2020) Research progress in terahertz metamaterials and their applications in imaging. J Mater Eng 48:12–22. https://doi.org/10.11868/j.issn.1001-4381.2019.000849

  34. Liu X, Ren Z, Chen L, Li G, Wang Q, Zhou J (2020) Infrared stealth metamaterials. J Mater Eng 48:1–11. https://doi.org/10.11868/j.issn.1001-4381.2019.001019

  35. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019:1–11. https://doi.org/10.34133/2019/1021368

  36. Xie P, Wang Z, Zhang Z, Fan R, Cheng C, Liu H, Liu Y, Li T, Yan C, Wang N, Guo Z (2018) Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J Mater Chem C 6:5239–5249. https://doi.org/10.1039/C7TC05911F

    Article  CAS  Google Scholar 

  37. Nan C (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1–116. https://doi.org/10.1016/0079-6425(93)90004-5

    Article  CAS  Google Scholar 

  38. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92:4024–4030. https://doi.org/10.1063/1.1506397

    Article  CAS  Google Scholar 

  39. Song P, Liu B, Qiu H, Shi X, Cao D, Gu J (2021) MXenes for polymer matrix electromagnetic interference shielding composites: a review. Composites Communications 24:100653. https://doi.org/10.1016/j.coco.2021.100653

    Article  Google Scholar 

  40. Wang L, Shi X, Zhang J, Zhang Y, Gu J (2020) Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. J Mater Sci Technol 52:119–126. https://doi.org/10.1016/j.jmst.2020.03.029

    Article  CAS  Google Scholar 

  41. Liang C, Ruan K, Zhang Y, Gu J (2020) Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. Acs Appl Mater Inter 12:18023–18031. https://doi.org/10.1021/acsami.0c04482

    Article  CAS  Google Scholar 

  42. Wang Q, Zhang J, Zhang Z, Hao Y, Bi K (2020) Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Advanced Composites and Hybrid Materials 3:58–65. https://doi.org/10.1007/s42114-020-00138-4

    Article  CAS  Google Scholar 

  43. Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14(9):2511. https://doi.org/10.3390/en14092511

    Article  CAS  Google Scholar 

  44. Gu J, Xu S, Zhuang Q, Tang Y, Kong J (2017) Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity. IEEE T Dielect El In 24:784–790. https://doi.org/10.1109/TDEI.2017.006299

    Article  CAS  Google Scholar 

  45. Yan X, Gu J, Zheng G, Guo J, Galaska AM, Yu J, Khan MA, Sun L, Young DP, Zhang Q, Wei S, Guo Z (2016) Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer 103:315–327. https://doi.org/10.1016/j.polymer.2016.09.056

    Article  CAS  Google Scholar 

  46. Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R (2008) Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos Sci Technol 68:106–112. https://doi.org/10.1016/j.compscitech.2007.05.024

    Article  CAS  Google Scholar 

  47. Zhou W, Li T, Yuan M, Li B, Zhong S, Li Z, Liu X, Zhou J, Wang Y, Cai H, Dang Z (2021) Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Storage Materials 42:1–11. https://doi.org/10.1016/j.ensm.2021.07.014

    Article  CAS  Google Scholar 

  48. Liu C, Huang Q, Zheng K, Qin J, Zhou D, Wang J (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13(20):5373. https://doi.org/10.3390/en13205373

    Article  CAS  Google Scholar 

  49. Bai Y, Qin S, Nie W, Li J, Li J, Wang H, Qiao L, Guo D (2018) Influence of microstructure features on electrocaloric effect in ferroelectric ceramics. Ceram Int 44:8263–8269. https://doi.org/10.1016/j.ceramint.2018.02.008

    Article  CAS  Google Scholar 

  50. Xie P, Wang Z, Sun K, Cheng C, Liu Y, Fan R (2017) Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl Phys Lett 111:112903. https://doi.org/10.1063/1.4994234

    Article  CAS  Google Scholar 

  51. Xu D, Huang G, Guo L, Chen Y, Ding C, Liu C (2021) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00317-x

    Article  Google Scholar 

  52. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Advanced Composites and Hybrid Materials 1:207–230. https://doi.org/10.1007/s42114-018-0031-8

  53. Du HY, Zhang ZD, Tian R, Zhang WJ, Zhang J, Liu XY, Sun K, Fan RH (2020) Research progress in broadband absorber based on artificial electromagnetic medium. J Mater Eng 48:23–33. https://doi.org/10.11868/j.issn.1001-4381.2019.001015

  54. Wu HY, Yang Y, Zhang GL, Bai Y, Zhou J (2020) Research progress in hyperbolic metamaterials and sensors. J Mater Eng 48:34–42. https://doi.org/10.11868/j.issn.1001-4381.2019.001020

  55. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi ZC, Quan B, Zhong Y, Liu CZ, Fan RH, Guo Z (2021) Lightweight Fe3C@ Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Advanced Composites and Hybrid Materials 4(4):1226–1238. https://doi.org/10.1007/s42114-021-00368-0

    Article  CAS  Google Scholar 

  56. Xu J, Cao J, Guo M, Yang S, Yao H, Lei M, Hao Y, Bi K (2021) Metamaterial mechanical antenna for very low frequency wireless communication. Advanced Composites and Hybrid Materials 4:761–767. https://doi.org/10.1007/s42114-021-00278-1

    Article  Google Scholar 

  57. Cui TJ, Liu S, Bai GD, Ma Q (2019) Direct transmission of digital message via programmable coding metasurface. Research 2019:1–12. https://doi.org/10.34133/2019/2584509

  58. Zhang L, Cui TJ (2021) Space-time-coding digital metasurfaces: principles and applications. Research 2021:1–25. https://doi.org/10.34133/2021/9802673

  59. Wen Y, Zhou J (2019) Artificial generation of high harmonics via nonrelativistic Thomson scattering in metamaterial. Research 2019:1–10. https://doi.org/10.34133/2019/8959285

  60. Kang X, Lu Z, Feng W, Wang J, Fang X, Xu Y, Wang Y, Liu B, Ding T, Ma Y, Pan D, Patil RR, Murugadoss V (2021) A novel phosphorous and silicon-containing benzoxazine: highly efficient multifunctional flame-retardant synergist for polyoxymethylene. Adv Compos Hybrid Mater 4:127–137. https://doi.org/10.1007/s42114-020-00198-6

    Article  CAS  Google Scholar 

  61. Tomer V, Randall CA, Polizos G, Kostelnick J, Manias E (2008) High- and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites. J Appl Phys 103:34115. https://doi.org/10.1063/1.2838481

    Article  CAS  Google Scholar 

  62. Tomer V, Randall CA (2008) High field dielectric properties of anisotropic polymer-ceramic composites. J Appl Phys 104:074106. https://doi.org/10.1063/1.2990073

    Article  CAS  Google Scholar 

  63. Danikas M, Tanaka T (2009) Nanocomposites-a review of electrical treeing and breakdown. IEEE Electr Insul Mag 25:19–25. https://doi.org/10.1109/MEI.2009.5191413

    Article  Google Scholar 

  64. Vogelsang R, Farr T, Frohlich K (2006) The effect of barriers on electrical tree propagation in composite insulation materials. Ieee T Dielect El In 13:373–382. https://doi.org/10.1109/TDEI.2006.1624282

    Article  Google Scholar 

  65. Zhang Z, Zhao Y, Li Z, Zhang L, Liu Z, Long Z, Li Y, Liu Y, Fan R, Sun K, Zhang Z (2021) Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00350-w

    Article  Google Scholar 

  66. Tomer V, Polizos G, Randall CA, Manias E (2011) Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage. J Appl Phys 109:74113. https://doi.org/10.1063/1.3569696

    Article  CAS  Google Scholar 

  67. Jiang Y, Fu X, Tian R, Zhang W, Du H, Fu C, Zhang Z, Xie P, Xin J, Fan R (2020) Nitrogen-doped carbon nanofibers with sulfur heteroatoms for improving microwave absorption. J Mater Sci 55:5832–5842. https://doi.org/10.1007/s10853-020-04430-y

    Article  CAS  Google Scholar 

  68. Luo Y, Estevez D, Scarpa F, Panina L, Wang H, Qin F, Peng H (2019) Microwave properties of metacomposites containing carbon fibres and ferromagnetic microwires. Research 2019:1–8. https://doi.org/10.34133/2019/3239879

  69. Zhang Z, Zhao Y, Li Z, Zhang L, Liu Z, Long Z, Li Y, Liu Y, Fan R, Sun K, Zhang Z (2021) Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Advanced Composites and Hybrid Materials. https://doi.org/10.1007/s42114-021-00350-w

    Article  Google Scholar 

  70. Lyu L, Liu J, Liu H, Liu C, Lu Y, Sun K, Fan R, Wang N, Lu N, Wujcik ZGAE (2018) An overview of electrically conductive polymer nanocomposites toward electromagnetic interference shielding. Engineered Science 2:26–42. https://doi.org/10.30919/es8d615

  71. Li G, Wang L, Li W, Xu Y (2015) Mesoporous Fe/C and Core-Shell Fe-Fe3C@C composites as efficient microwave absorbents. Micropor Mesopor Mat 211:97–104. https://doi.org/10.1016/j.micromeso.2015.02.054

    Article  CAS  Google Scholar 

  72. Xiang J, Li J, Zhang X, Ye Q, Xu J, Shen X (2014) Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. Journal of materials chemistry. A, Materials for energy and sustainability 2:16905–16914. https://doi.org/10.1039/C4TA03732D

    Article  CAS  Google Scholar 

  73. Xu Z, Du Y, Liu D, Wang Y, Ma W, Wang Y, Xu P, Han X (2019) Pea-like Fe/Fe3 C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. Acs Appl Mater Inter 11:4268–4277. https://doi.org/10.1021/acsami.8b19201

    Article  CAS  Google Scholar 

  74. Zhang Y, Ruan K, Shi X, Qiu H, Pan Y, Yan Y, Gu J (2021) Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 175:271–280. https://doi.org/10.1016/j.carbon.2020.12.084

    Article  CAS  Google Scholar 

  75. Zhou G, Xiong T, Jiang S, Jian S, Zhou Z, Hou H (2016) Flexible titanium carbide-carbon nanofibers with high modulus and high conductivity by electrospinning. Mater Lett 165:91–94. https://doi.org/10.1016/j.matlet.2015.11.119

    Article  CAS  Google Scholar 

  76. Duan G, Fang H, Huang C, Jiang S, Hou H (2018) Microstructures and mechanical properties of aligned electrospun carbon nanofibers from binary composites of polyacrylonitrile and polyamic acid. J Mater Sci 53:15096–15106. https://doi.org/10.1007/s10853-018-2700-y

    Article  CAS  Google Scholar 

  77. Qi F, Wang L, Zhang Y, Ma Z, Qiu H, Gu J (2021) Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Materials Today Physics 21:100512. https://doi.org/10.1016/j.mtphys.2021.100512

    Article  CAS  Google Scholar 

  78. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Advanced Composites and Hybrid Materials 4:707–715. https://doi.org/10.1007/s42114-021-00307-z

    Article  CAS  Google Scholar 

  79. Zhang Y, Yan Y, Qiu H, Ma Z, Ruan K, Gu J (2022) A mini-review of MXene porous films: preparation, mechanism and application. J Mater Sci Technol 103:42–49. https://doi.org/10.1016/j.jmst.2021.08.001

    Article  Google Scholar 

  80. Zhao J, Zhang J, Wang L, Li J, Feng T, Fan J, Chen L, Gu J (2020) Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Composites Communications 22:100486. https://doi.org/10.1016/j.coco.2020.100486

    Article  Google Scholar 

  81. Liang C, Qiu H, Song P, Shi X, Kong J, Gu J (2020) Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Sci Bull 65:616–622. https://doi.org/10.1016/j.scib.2020.02.009

    Article  CAS  Google Scholar 

  82. Yan H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, Cai H, Gu J (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Advanced Composites and Hybrid Materials 4:36–50. https://doi.org/10.1007/s42114-021-00208-1

    Article  CAS  Google Scholar 

  83. Lottini E, López-Ortega A, Bertoni G, Turner S, Meledina M, Van Tendeloo G, de Julián FC, Sangregorio C (2016) Strongly exchange coupled core|shell nanoparticles with high magnetic anisotropy: a strategy toward rare-earth-free permanent magnets. Chem Mater 28:4214–4222. https://doi.org/10.1021/acs.chemmater.6b00623

    Article  CAS  Google Scholar 

  84. Yuan P, Ma R, Gao N, Garai M, Xu Q (2015) Plasmon coupling-enhanced two-photon photoluminescence of Au@Ag core-shell nanoparticles and applications in the nuclease assay. Nanoscale 7:10233–10239. https://doi.org/10.1039/C5NR01409C

    Article  CAS  Google Scholar 

  85. Cao F, Yan F, Xu J, Zhu C, Qi L, Li C, Chen Y (2021) Tailing size and impedance matching characteristic of nitrogen-doped carbon nanotubes for electromagnetic wave absorption. Carbon 174:79–89. https://doi.org/10.1016/j.carbon.2020.12.013

    Article  CAS  Google Scholar 

  86. Song S, Zhang A, Chen L, Jia Q, Zhou C, Liu J, Wang X (2021) A novel multi-cavity structured MOF derivative/porous graphene hybrid for high performance microwave absorption. Carbon 176:279–289. https://doi.org/10.1016/j.carbon.2021.01.138

    Article  CAS  Google Scholar 

  87. Zhang Y, Ruan K, Gu J (2021) Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17:2101951. https://doi.org/10.1002/smll.202101951

    Article  CAS  Google Scholar 

  88. Wang L, Song P, Lin C, Kong J, Gu J (2020) 3D Shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020:1–12. https://doi.org/10.34133/2020/4093732

  89. Fan G, Jiang Y, Xin J, Zhang Z, Fu X, Xie P, Cheng C, Liu Y, Qu Y, Sun K, Fan R (2019) Facile synthesis of Fe@Fe3C/C nanocomposites derived from bulrush for excellent electromagnetic wave-absorbing properties. Acs Sustain Chem Eng 7:18765–18774. https://doi.org/10.1021/acssuschemeng.9b02913

    Article  CAS  Google Scholar 

  90. Sun JC, He Z, Dong W, Wu W, Tong G (2019) Broadband and strong microwave absorption of Fe/Fe3C/C core-shell spherical chains enhanced by dual dielectric relaxation and dual magnetic resonances. J Alloy Compd 782:193–202. https://doi.org/10.1016/j.jallcom.2018.12.198

    Article  CAS  Google Scholar 

  91. Li W, Qi H, Niu X, Guo F, Chen X, Wang L, Lv B (2016) Fe-Fe3C/C microspheres as a lightweight microwave absorbent. Rsc Adv 6:24820–24826. https://doi.org/10.1039/C6RA02787C

    Article  CAS  Google Scholar 

  92. Su Q, Zhong G, Li J, Du G, Xu B (2012) Fabrication of Fe/Fe3C-functionalized carbon nanotubes and their electromagnetic and microwave absorbing properties. Appl Phys A 106:59–65. https://doi.org/10.1007/s00339-011-6641-4

    Article  CAS  Google Scholar 

  93. Xiao X, Zhu W, Tan Z, Tian W, Guo Y, Wang H, Fu J, Jian X (2018) Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos B Eng 152:316–323. https://doi.org/10.1016/j.compositesb.2018.08.109

    Article  CAS  Google Scholar 

  94. Fan G, Jiang Y, Hou C, Deng X, Liu Z, Zhang L, Zhang Z, Fan R (2020) Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing. J Alloy Compd 835:155345. https://doi.org/10.1016/j.jallcom.2020.155345

    Article  CAS  Google Scholar 

  95. Wang H, Guo H, Dai Y, Geng D, Han Z, Li D, Yang T, Ma S, Liu W, Zhang Z (2012) Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Appl Phys Lett 101:83116. https://doi.org/10.1063/1.4747811

    Article  CAS  Google Scholar 

  96. Li W, Qi H, Du Y (2017) Fe-Fe3C/C fibers as a highly efficient microwave absorbent. J Nanosci Nanotechnol 17:4504–4510. https://doi.org/10.1166/jnn.2017.14192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Guohua Fan, Mr. Rui Tian for the help of constructive discussions.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51601105, No. 51771104, No. 51971119), the Natural Science Foundation of Shandong Province (No. ZR2020YQ32), Young Elite Scientists Sponsorship Program by CAST (Grant No. 2017QNRC001), and Innovation Program of Shanghai Municipal Education Commission (Grant No. 2019–01-07–00-10-E00053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, Z., Zhao, Y. et al. Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv Compos Hybrid Mater 5, 3176–3189 (2022). https://doi.org/10.1007/s42114-022-00445-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00445-y

Keywords

Navigation