Skip to main content
Log in

Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the rapid development of flexible wearable strain sensor systems, electronic textiles with comfort and controllable strain/pressure-sensing capabilities have attracted great interest. However, it is still a great challenge to prepare multifunctional wearable strain/pressure sensor with an ultra-low detection limit through a facile and cost-effective method. Here, conductive carbon nanotubes modified silk nonwoven fabric (CNTs/SNWF) composite was successfully prepared by the surface micro-dissolution and adhesion technology (SD&AT). Micromorphology analysis showed that CNTs were adhered firmly on the surface of silk fiber to form an effective conductive network. The conductive CNTs/SNWF-based strain/pressure sensor can detect a strain as low as 0.05% and an ultralow pressure of 10 Pa, showing an ultrahigh discernibility. Besides, it also exhibited excellent sensing stability and reproductivity under different conditions, making it applicable in the field of real-time human movement monitoring. Moreover, electronic skin was also established based on the conductive CNTs/SNWF to recognize different tactile stimulus. Interestingly, the prepared conductive CNTs/SNWF also displayed great applicability for optical and thermal sensing, endowing it with more functionality for next-generation wearable electronics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang H, Han L, Wang Y, Yang Z, Xu M (2020) Tunable thermal-response shape memory bio-polymer hydrogels as body motion sensors. Eng Sci 9:60–67

    CAS  Google Scholar 

  2. Gao SL, Zhao XH, Fu Q, Zhang TC, Zhu J, Hou FH, Ni J, Zhu CJ, Li TT, Wang YL, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang MN, Guo ZH (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160

    Article  Google Scholar 

  3. Pan D, Yang G, Abo-Dief H, Dong J, Su F, Liu C, Li Y, Xu B, Murugadoss V, Naik N, El-Bahy S, El-Bahy Z, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118

    Article  CAS  Google Scholar 

  4. He Y, Wu D, Zhou M, Zheng Y, Wang T, Lu C, Zhang L, Liu H, Liu CT (2021) Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene. ACS Appl Mater Interfaces 13(13):15572–15583

    Article  CAS  Google Scholar 

  5. Yan X, Liu J, Khan MA, Sheriff S, Guo Z (2020) Efficient solvent-free microwave irradiation synthesis of highly conductive polypropylene nanocomposites with Lowly loaded carbon nanotubes. ES Mater Manuf 9:21–33

    CAS  Google Scholar 

  6. Zhao ZY, Zhao RX, Bai PK, Du WB, Guan RG, Tie D, Naik NH, Huang MN, Guo ZH (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: phases distribution, interfacial microstructure, and property analysis. J Alloys Compd 902:163484

    Article  CAS  Google Scholar 

  7. Jing C, Zhang YF, Zheng JJ, Ge SS, Lin J, Pan D, Naik N, Guo ZH (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122

    Article  CAS  Google Scholar 

  8. Zhao YH, Liu KX, Hou H, Chen LQ (2022) Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: a phase field study. Mater Des 216:110555

    Article  CAS  Google Scholar 

  9. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal G, El-Bahy Z, Li Y, Huang M, Guo Z (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875

    Article  CAS  Google Scholar 

  10. Liu H, Chen X, Zheng Y, Zhang D, Zhao Y, Wang C, Pan C, Liu C, Shen C (2021) Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Funct Mater 31(13):2008006

    Article  CAS  Google Scholar 

  11. Chen Y, Lin J, Mersal GAM, Zuo JL, Li JL, WangQY FYH, Liu JW, Liu ZL, Wang B, Xu BB, Guo ZH (2022) Several birds with one stone? strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil. J Mater Sci Technol 128:82–97

    Article  Google Scholar 

  12. He Y, Chen Q, Wu D, Zhou M, Wang T, Lu C, Zhang L, Liu H, Liu C (2021) Effect of multiscale reinforcement by fiber surface treatment with polyvinyl alcohol/graphene oxide/oxidized carbon nanotubes on the mechanical properties of reinforced hybrid fiber composites. Compos Sci Technol 204:108634

    Article  CAS  Google Scholar 

  13. Zhang C, Li H, Huang A, Zhang Q, Rui K, Lin H, Sun G, Zhu J, Peng H, Huang W (2019) Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small 15:1805493

    Article  Google Scholar 

  14. Nie B, Huang R, Yao T, Zhang Y, Miao Y, Liu C, Liu J, Chen X (2019) Textile-based wireless pressure sensor array for human-interactive sensing. Adv Funct Mater 29(22):1808786

    Article  Google Scholar 

  15. He Y, Chen Q, Liu H, Zhang L, Wu D, Lu C, OuYang W, Jiang D, Wu M, Zhang J (2019) Friction and wear of MoO3/graphene oxide modified glass fiber reinforced epoxy nanocomposites. Macromol Mater Eng 304:1900166

    Article  Google Scholar 

  16. Zahid M, Zych A, Dussoni S, Spallanzani G, Donno R, MaggFiali M, Athanassiou A (2021) Wearable and self-healable textile-based strain sensors to monitor human muscular activities. Compos B Eng 220:108969

    Article  CAS  Google Scholar 

  17. Cheng T, Li X, Li S, Yan X, Zhang X, Wang F (2020) Surface plasmon resonance temperature sensor based on a photonic crystal fiber filled with silver nanowires. Appl Opt 59(17):5108–5113

    Article  CAS  Google Scholar 

  18. Liu H, Li Q, Zhang S, Yin R, Liu X, He Y, Dai K, Shan C, Guo J, Liu C, Shen C, Wang X, Wang N, Wang Z, Wei R, Guo Z (2018) Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J Mater Chem C 6(45):12121–12141

    Article  CAS  Google Scholar 

  19. Zhang D, Yin R, Zheng Y, Li Q, Liu H, Liu C, Sheng C (2022) Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem Eng J 438:135587

    Article  CAS  Google Scholar 

  20. Gan L, Shang SM, Yuen CWM, Jiang SX (2015) Graphene nanoribbon coated flexible and conductive cotton fabric. Compos Sci Technol 117:208–214

    Article  CAS  Google Scholar 

  21. Xu X, Wu S, Cui J, Yang L, Wu K, Chen X, Sun D (2021) Highly stretchable and sensitive strain sensor based on polypyrrole coated bacterial cellulose fibrous network for human motion detection. Compos B Eng 211:108665

    Article  CAS  Google Scholar 

  22. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sust Energ Rev 41:402–412

    Article  CAS  Google Scholar 

  23. Bu Y, Shen T, Yang W, Yang S, Zhao Y, Liu H, Zheng Y, Liu C, Shen C (2021) Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human-motion monitoring and E-skin. Sci Bull 68(18):1849–1857

    Article  Google Scholar 

  24. Li Q, Liu H, Zhang S, Zhang D, Liu X, He Y, Mi L, Zhang J, Liu C, Shen C, Guo Z (2019) Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property. ACS Appl Mater Interfaces 11:21904–21914

    Article  CAS  Google Scholar 

  25. Correia DM, Ribeiro S, da Costa A, Ribeiro C, Casal M, Lanceros-Mendez S, Machado R (2019) Development of bio-hybrid piezoresistive nanocomposites using silk-elastin protein copolymers. Compos Sci Technol 172:134–142

    Article  CAS  Google Scholar 

  26. Sun L, Liang L, Shi Z, Wang H, Fan R (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng Sci 12:95–105

    CAS  Google Scholar 

  27. Chen X, Liu H, Zheng Y, Zhai Y, Liu X, Liu C, Liu L, Guo Z, Shen C (2019) Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl Mater Interfaces 11:42594–42606

    Article  CAS  Google Scholar 

  28. Zheng Y, Li Y, Zhou Y, Dai K, Zheng G, Zhang B, Liu C, Shen C (2020) High-performance wearable strain sensor based on graphene/cotton fabric with high durability and low detection limit. ACS Appl Mater Interfaces 12(1):1474–1485

    Article  CAS  Google Scholar 

  29. Zhu M, Yu H-y, Tang F, Li Y, Liu Y, Yao J-m (2020) Robust natural biomaterial based flexible artificial skin sensor with high transparency and multiple signals capture. Chem Eng J 394:124855

    Article  CAS  Google Scholar 

  30. He F, You X, Gong H, Yang Y, Bai T, Wang W, Guo W, Liu X, Ye M (2020) Stretchable, biocompatible, and multifunctional silk fibroin-based hydrogels toward wearable strain/pressure sensors and triboelectric nanogenerators. ACS Appl Mater Interfaces 12(5):6442–6450

    Article  CAS  Google Scholar 

  31. Wang Q, Yan S, Han G, Li X, You R, Zhang Q, Li M, Kaplan D (2020) Facile production of natural silk nanofibers for electronic device applications. Compos Sci Technol 187:107950

    Article  CAS  Google Scholar 

  32. Wang D, Zhou X, Song R, Fang C, Wang Z, Wang C, HuangY, (2021) Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chem Eng J 404:126940

    Article  CAS  Google Scholar 

  33. Li D, Fan Y, Han G, Guo Z (2020) Superomniphobic Silk Fibroin/Ag nanowires membrane for flexible and transparent electronic sensor. ACS Appl Mater Interfaces 12(8):10039–10049

    Article  CAS  Google Scholar 

  34. Zhou J, Zhao Z, Hu R, Yang J, Xiao H, Liu Y, Lu M (2020) Multi-walled carbon nanotubes functionalized silk fabrics for mechanical sensors and heating materials. Mater Des 191:108636

    Article  CAS  Google Scholar 

  35. Ouyang Z, Xu D, Yu H, Li S, Song Y, Tam K (2022) Novel ultrasonic-coating technology to design robust, highly sensitive and wearable textile sensors with conductive nanocelluloses. Chem Eng J 428:131289

    Article  CAS  Google Scholar 

  36. Dai Z, Wang G, Liu L, Hou Y, Wei Y, Zhang Z (2016) Mechanical behavior and properties of hydrogen bonded graphene/polymer nano-interfaces. Compos Sci Technol 136:1–9

    Article  CAS  Google Scholar 

  37. Kim Y, Choi H, Baek I, Na S (2020) Spider silk with weaker bonding resulting in higher strength and toughness through progressive unfolding and load transfer. J Mech Behav Biomed 108:103773

    Article  CAS  Google Scholar 

  38. Costa CM, Reizabal A, Serra RSI, Balado AA, Perez-Alvarez L, Ribelles JLG, Vilas-Vilela JL, Lanceros-Mendez S (2021) Broadband dielectric response of silk Fibroin/BaTiO3 composites: influence of nanoparticle size and concentration. Compos Sci Technol 213:108927

    Article  CAS  Google Scholar 

  39. Wantanasiri P, Ratanavaraporn J, Yamdech R, Aramwit P (2014) Fabrication of silk sericin/alginate microparticles by electrohydrodynamic spraying technique for the controlled release of silk sericin. J Electrostat 72(1):22–27

    Article  CAS  Google Scholar 

  40. Meng L, Fu Q, Hao S, Xu F, Yang J (2022) Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological monitoring. Chem Eng J 427:131999

    Article  CAS  Google Scholar 

  41. Zhu B, Wang H, Leow W, Cai Y, Loh X, Han M, Chen X (2016) Silk fibroin for flexible electronic devices. Adv Mater 28(22):4250–4265

    Article  CAS  Google Scholar 

  42. Liu Y, Tao L, Wang D, Zhang T, Yang Y, Ren T (2017) Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure. Appl Phys Lett 110(12):123508

    Article  Google Scholar 

  43. Wang S, Ning H, Hu N, Liu Y, Liu F, Zou R, Huang K, Wu X, Weng S, Alamusi, (2020) Environmentally-friendly and multifunctional graphene-silk fabric strain sensor for human-motion detection. Adv Mater Interfaces 7(1):1901507

    Article  Google Scholar 

  44. Yin R, Yang S, Li Q, Zhang S, Liu H, Han J, Liu C, Shen C (2020) Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci Bull 65(11):899–908

    Article  CAS  Google Scholar 

  45. Zhang W, Zhang X, Wu Z, Abdurahman K, Cao Y, Duan H, Jia D (2020) Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites. Compos Sci Technol 188:107966

    Article  CAS  Google Scholar 

  46. Zhang D, Sun J, Lee LJ, Castro JM (2020) Overview of ultrasonic assisted manufacturing multifunctional carbon nanotube nanopaper based polymer nanocomposites. Eng Sci 10:35–50

    CAS  Google Scholar 

  47. Ma ZL, Wei AJ, Li YT, Shao L, Zhang HM, Xiang XL, Wang JP, Ren QB, Kang SL, Dong DD, Ma JZ, Zhang GC (2021) Lightweight, flexible and highly sensitive segregated microcellular nanocomposite piezoresistive sensors for human motion detection. Compos Sci Technol 203:108571

    Article  CAS  Google Scholar 

  48. Jang G, Hong S, Park H, Lee YH, Park H, Lee H, Jeong YR, Jin S, Keum K, Ha JS (2021) Highly sensitive pressure and temperature sensors fabricated with poly (3-hexylthiophene-2,5-diyl)-coated elastic carbon foam for bio-signal monitoring. Chem Eng J 423:130197

    Article  CAS  Google Scholar 

  49. Lin K, Li Y, Sun J, Zhou D, Zhang Q (2020) Multi-sensor fusion for body sensor network in medical human-robot interaction scenario. Inf Fusion 57:15–26

    Article  Google Scholar 

  50. Zhang Y, Xie S, Zhang D, Ren B, Zheng J (2019) Thermo-responsive and shape-adaptive hydrogel actuators from fundamentals to applications. Eng Sci 6:1–11

    Google Scholar 

  51. Enaganti P, Dwivedi P, Srivastava A, Goel S (2020) Analysis of submerged amorphous, mono-and poly-crystalline silicon solar cells using halogen lamp and comparison with xenon solar simulator. Sol Energy 211:744–752

    Article  CAS  Google Scholar 

  52. Ji X, Wang H, Chen T, Zhang T, Chu J, Du A (2020) Intrinsic negative TCR of superblack carbon aerogel films and their ultrabroad band response from UV to microwave. Carbon 161:590–598

    Article  CAS  Google Scholar 

  53. Ji X, Zhong Y, Li C, Chun J, Wang H, Xing Z, Niu T, Zhang Z, Du A (2021) Nanoporous carbon aerogels for laser-printed wearable sensors. ACS Appl Nano Mater 4(7):6796–6804

    Article  CAS  Google Scholar 

Download references

Funding

The research was financially supported by the National Natural Science Foundation of China (NO: U1604253, NO: 51803191), Key Scientific and Technological Project of Henan Province—China (202102210038, 202102210043), the Student Research Training Plan of Henan University of Science and Technology—China (2021144), and Taif University Researchers Supporting Project (TURSP-2020/158), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxin He or Hu Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2 (DOCX 3584 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhou, M., Mahmoud, M.H.H. et al. Multifunctional wearable strain/pressure sensor based on conductive carbon nanotubes/silk nonwoven fabric with high durability and low detection limit. Adv Compos Hybrid Mater 5, 1939–1950 (2022). https://doi.org/10.1007/s42114-022-00525-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00525-z

Keywords

Navigation