Skip to main content

Advertisement

Log in

Progress on Medical Implant: A Review and Prospects

  • Review Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Medical implant from different materials such as metals, ceramics, polymers and composites have gained a lot of research attraction due to wide applications in medical industry for treatment, surgical operations and preparing artificial body parts. In this work, we highlight a comprehensive review of medical implant mechanism, various types of implant materials, factors affecting the performance of implant and different characterization techniques. This review provides an overall summary of the state-of-the-art progress on various interesting and promising material-based medical implant. Finally, few new prospects are explained from the established theoretical and experimental results for real-life applications. This study is expected to promote extended interest of scientists and engineers in recent trend of modern biomaterials based medical implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Dang, Z. M., Tian, C. Y., Zha, J. W., Yao, S. H., Xia, Y. J., Li, J. Y., Shi, C. Y., & Bai, J. (2009). Potential bioelectroactive bone regeneration polymer nanocomposites with high dielectric permittivity. Advanced Engineering Materials, 11(10), 144–147.

    Article  Google Scholar 

  2. Basova, T. V., Vikulova, E. S., Dorovskikh, S. I., Hassan, A., & Morozova, N. B. (2021). The use of noble metal coatings and nanoparticles for the modification of medical implant materials. Materials & Design, 204, 109672.

    Article  Google Scholar 

  3. Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: an introduction to materials in medicine. California: San Diego.

    Google Scholar 

  4. Crawford, L., Wyatt, M., Bryers, J., & Ratner, B. (2021). Biocompatibility evolves: phenomenology to toxicology to regeneration. Advanced Healthcare Materials, 10(11), 2002153.

    Article  Google Scholar 

  5. Sharkeev, Y., Eroshenko, A., Legostaeva, E., Kovalevskaya, Z., Belyavskaya, O., Khimich, M., Epple, M., Prymak, O., Sokolova, V., Zhu, Q., & Sun, Z. (2022). Development of Ultrafine-Grained and Nanostructured Bioinert Alloys Based on Titanium, Zirconium and Niobium and Their Microstructure. Mechanical and Biological Properties. Metals, 12(7), 1136.

    Google Scholar 

  6. Riester, O., Borgolte, M., Csuk, R., & Deigner, H. P. (2020). Challenges in bone tissue regeneration: stem cell therapy, biofunctionality and antimicrobial properties of novel materials and its evolution. International Journal of Molecular Sciences, 22(1), 192.

    Article  Google Scholar 

  7. Prakasam, M., Locs, J., Salma-Ancane, K., Loca, D., Largeteau, A., & Berzina-Cimdina, L. (2017). Biodegradable materials and metallic implants-a review. Journal of functional biomaterials, 8(4), 44.

    Article  Google Scholar 

  8. Walley, K. C., Bajraliu, M., Gonzalez, T., Nazarian, A., & Goulet, J. A. (2016). The chronicle of a stainless steel orthopaedic implant. The Orthopaedic Journal at Harvard Medical School, 17, 68–74.

    Google Scholar 

  9. Hanawa, T. (2019). Titanium-tissue interface reaction and its control with surface treatment. Frontiers in bioengineering and biotechnology, 7, 170.

    Article  Google Scholar 

  10. Hryniewicz, T., & Rokicki, R. (2018). Modification of nitinol biomaterial for medical applications. World Scientific News, 96, 35–58.

    Google Scholar 

  11. Kirilova, I. A., Sadovoi, M. A., & Podorozhnaya, V. T. (2013). Ceramic and bone-ceramic implants: promising directions. Khirurgiya Pozvonochnnika, 4, 52–62.

    Google Scholar 

  12. Andreiotelli, M., Wenz, H. J., & Kohal, R. J. (2009). Are ceramic implants a viable alternative to titanium implants? a systematic literature review. Clinical Oral Implants Research, 20, 32–47.

    Article  Google Scholar 

  13. Lawton, K., Le, H., Tredwin, C., & Handy, R. D. (2019). Carbon nanotube reinforced hydroxyapatite nanocomposites as bone implants: Nanostructure, mechanical strength and biocompatibility. International Journal of Nanomedicine, 14, 7947.

    Article  Google Scholar 

  14. Nazerali, R., Rogers, J., Canter, R., Hinchcliff, K. M., & Stevenson, T. R. (2015). The use of polypropylene mesh in chest wall reconstruction; a novel approach. Journal of Plastic, Reconstructive & Aesthetic Surgery, 68(2), 275–276.

    Article  Google Scholar 

  15. Mahabir, R. C., & Butler, C. E. (2011). Stabilization of the chest wall: autologous and alloplastic reconstructions. In Seminars in Plastic Surgery, 25(01), 034–042.

    Article  Google Scholar 

  16. Scholz, M. S., Blanchfield, J. P., Bloom, L. D., Coburn, B. H., Elkington, M., Fuller, J. D., Gilbert, M. E., Muflahi, S. A., Pernice, M. F., Rae, S. I., & Trevarthen, J. A. (2011). The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Composites Science and Technology, 71(16), 1791–1803.

    Article  Google Scholar 

  17. Li, C. S., Vannabouathong, C., Sprague, S., & Bhandari, M. (2015). The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: a systematic review. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 8, 20354.

    Google Scholar 

  18. Magnani, G., Fabbri, P., Leoni, E., Salernitano, E., & Mazzanti, F. (2021). New perspectives on zirconia composites as biomaterials. Journal of Composites Science, 5(9), 244.

    Article  Google Scholar 

  19. Petersen, R. (2016). Carbon fiber biocompatibility for implants. Fibers, 4(1), 1.

    Article  Google Scholar 

  20. Gerasimenko, A. Y., Kurilova, U. E., Savelyev, M. S., Murashko, D. T., & Glukhova, O. E. (2021). Laser fabrication of composite layers from biopolymers with branched 3D networks of single-walled carbon nanotubes for cardiovascular implants. Composite Structures, 260, 113517.

    Article  Google Scholar 

  21. Tang, Z. B., Niu, J. L., Huang, H., Zhang, H., Pei, J., Ou, J. M., & Yuan, G. Y. (2017). Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 72, 182–191.

    Article  Google Scholar 

  22. Jung, F., Wischke, C., & Lendlein, A. (2010). Degradable, multifunctional cardiovascular implants: challenges and hurdles. MRS Bulletin, 35(8), 607–613.

    Article  Google Scholar 

  23. Holman, H., Kavarana, M. N., & Rajab, T. K. (2021). Smart materials in cardiovascular implants: shape memory alloys and shape memory polymers. Artificial Organs, 45(5), 454–463.

    Article  Google Scholar 

  24. Godbole, N., Yadav, S., Ramachandran, M., & Belemkar, S. (2016). A review on surface treatment of stainless steel orthopedic implants. International Journal of Pharmaceutical Sciences and Research, 36(1), 190–4.

    Google Scholar 

  25. Wawrzynski, J., Gil, J. A., Goodman, A. D., & Waryasz, G. R. (2017). Hypersensitivity to orthopedic implants: a review of the literature. Rheumatology and Therapy, 4(1), 45–56.

    Article  Google Scholar 

  26. Zeng, F. G., Rebscher, S., Harrison, W., Sun, X., & Feng, H. (2008). Cochlear implants: system design, integration, and evaluation. IEEE Reviews in Biomedical Engineering, 1, 115–142.

    Article  Google Scholar 

  27. Gan, R. Z., Dai, C., Wang, X., Nakmali, D., & Wood, M. W. (2010). A totally implantable hearing system-design and function characterization in 3D computational model and temporal bones. Hearing Research, 263(1–2), 138–144.

    Article  Google Scholar 

  28. Rajak, D. K., Pagar, D. D., Kumar, R., & Pruncu, C. I. (2019). Recent progress of reinforcement materials: a comprehensive overview of composite materials. Journal of Materials Research and Technology, 8(6), 6354–6374.

    Article  Google Scholar 

  29. Mercuri, L. G., Miloro, M., Skipor, A. K., Bijukumar, D., Sukotjo, C., & Mathew, M. T. (2018). Serum metal levels in maxillofacial reconstructive surgery patients: a pilot study. Journal of Oral and Maxillofacial Surgery, 76(10), 2074–2080.

    Article  Google Scholar 

  30. Huang, Q. W., Wang, L. P., & Wang, J. Y. (2014). Mechanical properties of artificial materials for bone repair. Journal of Shanghai Jiaotong University (Science), 19(6), 675–680.

    Article  Google Scholar 

  31. Abbasi, N., Hamlet, S., Love, R. M., & Nguyen, N. T. (2020). Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5(1), 1–9.

    Google Scholar 

  32. Gode, C., Attarilar, S., Eghbali, B., & Ebrahimi, M. (2015). Electrochemical behavior of equal channel angular pressed titanium for biomedical application. In AIP Conference Proceedings, 1653(1), 020041.

    Article  Google Scholar 

  33. Liang, S. X., Feng, X. J., Yin, L. X., Liu, X. Y., Ma, M. Z., & Liu, R. P. (2016). Development of a new \(\beta\) Ti alloy with low modulus and favorable plasticity for implant material. Materials Science and Engineering: C, 61, 338–343.

    Article  Google Scholar 

  34. Zeller, A., Musyanovych, A., Kappl, M., Ethirajan, A., Dass, M., Markova, D., Klapper, M., & Landfester, K. (2010). Nanostructured coatings by adhesion of phosphonated polystyrene particles onto titanium surface for implant material applications. ACS Applied Materials & Interfaces, 2(8), 2421–2428.

    Article  Google Scholar 

  35. Callioglu, S., & Acar, P. (2020). Design of \(\beta\)-Titanium microstructures for implant materials. Materials Science and Engineering: C, 110, 110715.

    Article  Google Scholar 

  36. Mohammed, M. T., Khan, Z. A., & Siddiquee, A. N. (2014). Beta titanium alloys: the lowest elastic modulus for biomedical applications: a review. International Journal of Research in Chemical, Metallurgical and Civil Engineering, 8(8), 726.

    Google Scholar 

  37. Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33(3), 477–486.

    Article  Google Scholar 

  38. Liang, S. (2020). Review of the design of titanium alloys with low elastic modulus as implant materials. Advanced Engineering Materials, 22(11), 2000555.

    Article  Google Scholar 

  39. Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87, 1–57.

    Article  Google Scholar 

  40. Anene, F. A., Aiza Jaafar, C. N., Zainol, I., Azmah Hanim, M. A., & Suraya, M. T. (2021). Biomedical materials: A review of titanium based alloys. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(19), 3792–3805.

    Google Scholar 

  41. Renganathan, G., Tanneru, N., & Madurai, S. L. (2018). Orthopedical and biomedical applications of titanium and zirconium metals (pp. 211–241). Fundamental Biomaterials: Metals.

    Google Scholar 

  42. Song, G. L. (2007). Control of degradation of biocompatible magnesium in a pseudo-physiological environment by a ceramic like anodized coating. Advanced Materials Research, 29, 95–98.

    Article  Google Scholar 

  43. Zhou, H., Liang, B., Jiang, H., Deng, Z., & Yu, K. (2021). Magnesium-based biomaterials as emerging agents for bone repair and regeneration: from mechanism to application. Journal of Magnesium and Alloys, 9(3), 779–804.

    Article  Google Scholar 

  44. Song, G., & Song, S. (2007). A possible biodegradable magnesium implant material. Advanced Engineering Materials, 9(4), 298–302.

    Article  Google Scholar 

  45. Kuhlmann, J., Bartsch, I., Willbold, E., Schuchardt, S., Holz, O., Hort, N., Höche, D., Heineman, W. R., & Witte, F. (2013). Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomaterialia, 9(10), 8714–8721.

    Article  Google Scholar 

  46. Milošev, I. (2012). CoCrMo alloy for biomedical applications. Biomedical Applications, 2, 1–72.

    Google Scholar 

  47. Huynh, V., Ngo, N. K., & Golden, T. D. (2019). Surface activation and pretreatments for biocompatible metals and alloys used in biomedical applications. International Journal of Biomaterials, 2, 2.

    Google Scholar 

  48. Hart, A. J., Quinn, P. D., Sampson, B., Sandison, A., Atkinson, K. D., Skinner, J. A., Powell, J. J., & Mosselmans, J. F. W. (2010). The chemical form of metallic debris in tissues surrounding metal-on-metal hips with unexplained failure. Acta Biomaterialia, 6(11), 4439–4446.

    Article  Google Scholar 

  49. Kop, A. M., & Swarts, E. (2009). Corrosion of a hip stem with a modular neck taper junction: a retrieval study of 16 cases. The Journal of Arthroplasty, 24(7), 1019–1023.

    Article  Google Scholar 

  50. Tekdir, H., & Yetim, A. F. (2021). Additive manufacturing of multiple layered materials (Ti6Al4V/316L) and improving their tribological properties with glow discharge surface modification. Vacuum, 184, 109893.

    Article  Google Scholar 

  51. Turalioglu, K., Taftali, M., Tekdir, H., Comakli, O., Yazici, M., Yetim, T., & Yetim, A. F. (2021). The tribological and corrosion properties of anodized Ti6Al4V/316L bimetallic structures manufactured by additive manufacturing. Surface and Coatings Technology, 405, 126635.

    Article  Google Scholar 

  52. Tekdir, H., Yetim, T., & Yetim, A. F. (2021). Corrosion properties of ceramic-based TiO2 films on plasma oxidized Ti6Al4V/316L layered implant structured manufactured by selective laser melting. Journal of Bionic Engineering, 18(4), 944–957.

    Article  Google Scholar 

  53. Vallet-Regi, M. (2001). Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2, 97–108.

    Article  Google Scholar 

  54. McEntire, B. J., Bal, B. S., Rahaman, M. N., Chevalier, J., & Pezzotti, G. (2015). Ceramics and ceramic coatings in orthopaedics. Journal of the European Ceramic Society, 35(16), 4327–4369.

    Article  Google Scholar 

  55. Gallusi, G., Campanella, V., Montemurro, E., Di Taranto, V., & Libonati, A. (2020). Antibacterial activity of first and latest generation bioceramic sealers on the elimination of enterococcus faecalis: An in vitro study. Journal of Biological Regulators and Homeostatic Agents, 34, 73–79.

    Google Scholar 

  56. Kumar, P., Dehiya, B. S., & Sindhu, A. (2018). Bioceramics for hard tissue engineering applications: A review. International Journal of Applied Engineering Research, 13(5), 2744–2752.

    Google Scholar 

  57. Khanna, R., Ong, J. L., Oral, E., & Narayan, R. J. (2017). Progress in wear resistant materials for total hip arthroplasty. Coatings, 7(7), 99.

    Article  Google Scholar 

  58. Huang, J., & Best, S. M. (2022). Ceramic biomaterials for tissue engineering. Tissue Engineering Using Ceramics and Polymers, 2, 3–40.

    Article  Google Scholar 

  59. Chai, J., Chu, F., Chow, T. W., & Liang, B. M. (2007). Chemical solubility and flexural strength of zirconia-based ceramics. International Journal of Prosthodontics, 20, 6.

    Google Scholar 

  60. Grech, J., & Antunes, E. (2019). Zirconia in dental prosthetics: A literature review. Journal of Materials Research and Technology, 8(5), 4956–4964.

    Article  Google Scholar 

  61. von Wilmowsky, C., Moest, T., Nkenke, E., Stelzle, F., & Schlegel, K. A. (2014). Implants in bone: Part I. A current overview about tissue response, surface modifications and future perspectives. Oral and Maxillofacial Surgery, 18(3), 243–257.

    Article  Google Scholar 

  62. Monzavi, M., Noumbissi, S., & Nowzari, H. (2017). The Impact of in vitro accelerated aging, approximating 30 and 60 years in vivo, on commercially available zirconia dental implants. Clinical Implant Dentistry and Related Research, 19(2), 245–252.

    Article  Google Scholar 

  63. Chevalier, J., Gremillard, L., & Deville, S. (2007). Low-temperature degradation of zirconia and implications for biomedical implants. Annual Review of Materials Research, 37, 1–32.

    Article  Google Scholar 

  64. Benzaid, R., Chevalier, J., Saâdaoui, M., Fantozzi, G., Nawa, M., Diaz, L. A., & Torrecillas, R. (2008). Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications. Biomaterials, 29(27), 3636–3641.

    Article  Google Scholar 

  65. Tang, D., Lim, H. B., Lee, K. J., Lee, C. H., & Cho, W. S. (2012). Evaluation of mechanical reliability of zirconia-toughened alumina composites for dental implants. Ceramics International, 38(3), 2429–2436.

    Article  Google Scholar 

  66. Gautam, G., Kumar, S., & Kumar, K. (2021). Processing of biomaterials for bone tissue engineering: state of the art. Materials Today: Proceedings.

  67. Hamdy, T. M. (2018). Polymers and ceramics biomaterials in orthopedics and dentistry: A review article. Egyptian Journal of Chemistry, 61(4), 723–730.

    MathSciNet  Google Scholar 

  68. Camilleri, J. (2017). Will bioceramics be the future root canal filling materials? Current Oral Health Reports, 4(3), 228–238.

    Article  Google Scholar 

  69. Dorozhkin, S. V. (2018). Current state of bioceramics. Journal of Ceramic Science and Technology, 9(4), 353–370.

    Google Scholar 

  70. Brie, J., Chartier, T., Chaput, C., Delage, C., Pradeau, B., Caire, F., Boncoeur, M. P., & Moreau, J. J. (2013). A new custom made bioceramic implant for the repair of large and complex craniofacial bone defects. Journal of Cranio-Maxillofacial Surgery, 41(5), 403–407.

    Article  Google Scholar 

  71. Vallet-Regi, M., & Salinas, A. J. (2019). Ceramics as bone repair materials. Bone Repair Biomaterials, 2, 141–178.

    Google Scholar 

  72. Piconi, C., & Sprio, S. (2021). Oxide bioceramic composites in orthopedics and dentistry. Journal of Composites Science, 5(8), 206.

    Article  Google Scholar 

  73. Dorozhkin, S. V. (2018). Current state of bioceramics. Journal of Ceramic Science and Technology, 9(4), 353–370.

    Google Scholar 

  74. Mbarki, M., Sharrock, P., Fiallo, M., & ElFeki, H. (2017). Hydroxyapatite bioceramic with large porosity. Materials Science and Engineering: C, 76, 985–990.

    Article  Google Scholar 

  75. Vallet-Regi, M., Salinas, A. J., & Arcos, D. (2006). From the bioactive glasses to the star gels. Journal of Materials Science: Materials in Medicine, 17(11), 1011–1017.

    Google Scholar 

  76. Chen, J., Zhang, X., Li, B., & Yang, Y. (2020). Flexible organic-inorganic hybrid bioceramic for bone tissue regeneration. Journal of Advanced Dielectrics, 10(04), 2050013.

    Article  Google Scholar 

  77. Vallet-Regi, M., Ruiz-Gonzalez, L., Izquierdo-Barba, I., & Gonzalez-Calbet, J. M. (2006). Revisiting silica based ordered mesoporous materials: medical applications. Journal of Materials Chemistry, 16(1), 26–31.

    Article  Google Scholar 

  78. Garcia, A., Cabanas, M. V., Pena, J., & Sanchez-Salcedo, S. (2021). Design of 3d scaffolds for hard tissue engineering: From apatites to silicon mesoporous materials. Pharmaceutics, 13(11), 1981.

    Article  Google Scholar 

  79. Baino, F., Novajra, G., & Vitale-Brovarone, C. (2015). Bioceramics and scaffolds: a winning combination for tissue engineering. Frontiers in Bioengineering and Biotechnology, 3, 202.

    Article  Google Scholar 

  80. Bari, A., Bloise, N., Fiorilli, S., Novajra, G., Vallet-Regi, M., Bruni, G., Torres-Pardo, A., Gonzalez-Calbet, J. M., Visai, L., & Vitale-Brovarone, C. (2017). Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomaterialia, 55, 493–504.

    Article  Google Scholar 

  81. Shi, Q. H., Wang, J. F., Zhang, J. P., Fan, J., & Stucky, G. D. (2006). Rapid setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatite formation. Advanced Materials, 18(8), 1038–1042.

    Article  Google Scholar 

  82. Shekhawat, D., Singh, A., Bhardwaj, A., & Patnaik, A. (2021). A short review on polymer, metal and ceramic based implant materials. In IOP Conference Series: Materials Science and Engineering, 1017(1), 012038.

    Article  Google Scholar 

  83. Park, J. B., & Lakes, R. S. (2007). Polymeric implant materials. Biomaterials, 2, 173–205.

    Google Scholar 

  84. Wiesli, M. G., & Ozcan, M. (2015). High-performance polymers and their potential application as medical and oral implant materials: a review. Implant Dentistry, 24(4), 448–457.

    Google Scholar 

  85. Guo, B., & Ma, P. X. (2018). Conducting polymers for tissue engineering. Biomacromolecules, 19(6), 1764–1782.

    Article  Google Scholar 

  86. Rikhari, B., Mani, S. P., & Rajendran, N. (2020). Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications. Journal of Materials Science, 55(12), 5211–5229.

    Article  Google Scholar 

  87. Fonseca, A. C., Serra, A. C., & Coelho, J. F. (2015). Bioabsorbable polymers in cancer therapy: latest developments. Epma Journal, 6(1), 1–18.

    Article  Google Scholar 

  88. Basak, S. (2021). Redesigning the modern applied medical sciences and engineering with shape memory polymers. Advanced Composites and Hybrid Materials, 4(2), 223–234.

    Article  Google Scholar 

  89. Kazimierczak, P., & Przekora, A. (2020). Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: A concise review. Coatings, 10(10), 971.

    Article  Google Scholar 

  90. Han, X., Yang, D., Yang, C., Spintzyk, S., Scheideler, L., Li, P., Li, D., Geis-Gerstorfer, J., & Rupp, F. (2019). Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. Journal of Clinical Medicine, 8(2), 240.

    Article  Google Scholar 

  91. Amani, H., Arzaghi, H., Bayandori, M., Dezfuli, A. S., Pazok-Toroudi, H., Shafiee, A., & Moradi, L. (2019). Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques. Advanced Materials Interfaces, 6(13), 1900572.

    Article  Google Scholar 

  92. Mahajan, A., & Sidhu, S. S. (2018). Surface modification of metallic biomaterials for enhanced functionality: a review. Materials Technology, 33(2), 93–105.

    Article  Google Scholar 

  93. Kulkarni, M., Mazare, A., Schmuki, P., Iglič, A., & Seifalian, A. (2014). Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine, 111(615), 111.

    Google Scholar 

  94. Mercuri, L. G., Urban, R. M., Hall, D. J., & Mathew, M. T. (2017). Adverse local tissue responses to failed temporomandibular joint implants. Journal of Oral and Maxillofacial Surgery, 75(10), 2076–2084.

    Article  Google Scholar 

  95. Manam, N. S., Harun, W. S. W., Shri, D. N. A., Ghani, S. A. C., Kurniawan, T., Ismail, M. H., & Ibrahim, M. H. I. (2017). Study of corrosion in biocompatible metals for implants: A review. Journal of Alloys and Compounds, 701, 698–715.

    Article  Google Scholar 

  96. Manivasagam, G., Dhinasekaran, D., & Rajamanickam, A. (2010). Biomedical implants: corrosion and its prevention-a review. Recent Patents on Corrosion Science, 2, 1.

    Article  Google Scholar 

  97. Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87, 1–57.

    Article  Google Scholar 

  98. Beltran, M. J., Collinge, C. A., & Gardner, M. J. (2016). Stress modulation of fracture fixation implants. Journal of the American Academy of Orthopaedic Surgeons, 24(10), 711–719.

    Article  Google Scholar 

  99. Antunes, R. A., & de Oliveira, M. C. L. (2012). Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomaterialia, 8(3), 937–962.

    Article  Google Scholar 

  100. Hashemi, R. (2020). Failure Analysis of Biometals. Metals, 10(5), 662.

    Article  Google Scholar 

  101. Wang, J. W., Yang, H., Wang, C. T., Jin, Z. M., & Dai, K. R. (2019). Wear and Diagnostic Analysis of Clinical Failures of Artificial Hip Joints. In UHMWPE Biomaterials for Joint Implants, 317–339.

  102. Ramsden, J. J., Allen, D. M., Stephenson, D. J., Alcock, J. R., Peggs, G. N., Fuller, G., & Goch, G. (2007). The design and manufacture of biomedical surfaces. CIRP Annals, 56(2), 687–711.

    Article  Google Scholar 

  103. Papageorgiou, I., Shadrick, V., Davis, S., Hails, L., Schins, R., Newson, R., Fisher, J., Ingham, E., & Case, C. P. (2008). Macrophages detoxify the genotoxic and cytotoxic effects of surgical cobalt chrome alloy particles but not quartz particles on human cells in vitro. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 643(1–2), 11–19.

    Article  Google Scholar 

  104. Terkawi, M. A., Hamasaki, M., Takahashi, D., Ota, M., Kadoya, K., Yutani, T., Uetsuki, K., Asano, T., Irie, T., Arai, R., & Onodera, T. (2018). Transcriptional profile of human macrophages stimulated by ultra-high molecular weight polyethylene particulate debris of orthopedic implants uncovers a common gene expression signature of rheumatoid arthritis. Acta Biomaterialia, 65, 417–425.

    Article  Google Scholar 

  105. Bose, S., Robertson, S. F., & Bandyopadhyay, A. (2018). Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomaterialia, 66, 6–22.

    Article  Google Scholar 

  106. Qiu, Z. Y., Chen, C., Wang, X. M., & Lee, I. S. (2014). Advances in the surface modification techniques of bone-related implants for last 10 years. Regenerative Biomaterials, 1(1), 67–79.

    Article  Google Scholar 

  107. Zhang, B. G., Myers, D. E., Wallace, G. G., Brandt, M., & Choong, P. F. (2014). Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. International Journal of Molecular Sciences, 15(7), 11878–11921.

    Article  Google Scholar 

  108. Kumar, M., Kumar, R., & Kumar, S. (2021). Coatings on orthopedic implants to overcome present problems and challenges: A focused review. Materials Today: Proceedings, 45, 5269–5276.

    Google Scholar 

  109. Bronzino, J. D. (2000). Biomedical Engineering Handbook 2. Springer Science & Business Media.

    Google Scholar 

  110. Dumitrescu, L. N., Neacsu, P., Necula, M. G., Bonciu, A., Marascu, V., Cimpean, A., Moldovan, A., Rotaru, A., Dinca, V., & Dinescu, M. (2020). Induced hydrophilicity and in vitro preliminary osteoblast response of polyvinylidene fluoride (PVDF) coatings obtained via maple deposition and subsequent thermal treatment. Molecules, 25(3), 582.

    Article  Google Scholar 

  111. Wang, Y., Jeong, H., Chowdhury, M., Arnold, C. B., & Priestley, R. D. (2018). Exploiting physical vapor deposition for morphological control in semi-crystalline polymer films. Polymer Crystallization, 1(4), 10021.

    Article  Google Scholar 

  112. Singh, J., Chatha, S. S., & Singh, H. (2021). Synthesis and characterization of plasma sprayed functional gradient bioceramic coating for medical implant applications. Ceramics International, 47(7), 9143–9155.

    Article  Google Scholar 

  113. Harun, W. S. W., Asri, R. I. M., Alias, J., Zulkifli, F. H., Kadirgama, K., Ghani, S. A. C., & Shariffuddin, J. H. M. (2018). A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceramics International, 44(2), 1250–1268.

    Article  Google Scholar 

  114. Mucalo, M. R. (2015). Animal-bone derived hydroxyapatite in biomedical applications. In Hydroxyapatite (HAp) for Biomedical Applications, 307-342.

  115. Sun, L., Berndt, C. C., & Grey, C. P. (2003). Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Materials Science and Engineering: A, 360(1–2), 70–84.

    Article  Google Scholar 

  116. Singh, G., Singh, S., & Prakash, S. (2011). Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy. Surface and Coatings Technology, 205(20), 4814–4820.

    Article  Google Scholar 

  117. Bulloch, J. H., & Callagy, A. G. (1999). An in situ wear-corrosion study on a series of protective coatings in large induced draft fans. Wear, 233, 284–292.

    Article  Google Scholar 

  118. Knuuttila, J., Ahmaniemi, S., & Mäntylä, T. (1999). Wet abrasion and slurry erosion resistance of thermally sprayed oxide coatings. Wear, 232(2), 207–212.

    Article  Google Scholar 

  119. Moore, B., Asadi, E., & Lewis, G. (2016). Deposition methods for microstructured and nanostructured coatings on metallic bone implants: a review. Advances in Materials Science and Engineering, 2, 2.

    Google Scholar 

  120. Schou, J. (2009). Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film. Applied Surface Science, 255(10), 5191–5198.

    Article  Google Scholar 

  121. Kurella, A., & Dahotre, N. B. (2005). Surface modification for bioimplants: the role of laser surface engineering. Journal of Biomaterials Applications, 20(1), 5–50.

    Article  Google Scholar 

  122. Mohseni, E., Zalnezhad, E., & Bushroa, A. R. (2014). Comparative investigation on the adhesion of hydroxyapatite coating on Ti-6Al-4V implant: A review paper. International Journal of Adhesion and Adhesives, 48, 238–257.

    Article  Google Scholar 

  123. Boidin, R., Halenkovic, T., Nazabal, V., Benes, L., & Nemec, P. (2016). Pulsed laser deposited alumina thin films. Ceramics International, 42(1), 1177–1182.

    Article  Google Scholar 

  124. Popescu-Pelin, G., Sima, F., Sima, L. E., Mihailescu, C. N., Luculescu, C., Iordache, I., Socol, M., Socol, G., & Mihailescu, I. N. (2017). Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study. Applied Surface Science, 418, 580–588.

    Article  Google Scholar 

  125. Kuppuswamy, H., & Ganesan, A. (2016). Structural, mechanical and in vitro studies on pulsed laser deposition of hydroxyapatite on additive manufactured polyamide substrate. International Journal of Bioprinting, 2, 2.

    Article  Google Scholar 

  126. Nasar, A. (2019). Hydroxyapatite and its coatings in dental implants. In Applications of Nanocomposite Materials in Dentistry, 145-160.

  127. Bao, Q., Chen, C., Wang, D., Ji, Q., & Lei, T. (2005). Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Applied Surface Science, 252(5), 1538–1544.

    Article  Google Scholar 

  128. Shi, J. Z., Chen, C. Z., Yu, H. J., & Zhang, S. J. (2008). Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials. Bulletin of Materials Science, 31(6), 877–884.

    Article  Google Scholar 

  129. Nelea, V., Morosanu, C., Iliescu, M., & Mihailescu, I. N. (2004). Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: comparative study. Applied Surface Science, 228(1–4), 346–356.

    Article  Google Scholar 

  130. Hamdi, D. A., Jiang, Z. T., No, K., Rahman, M. M., Lee, P. C., Truc, L. N. T., Kim, J., Altarawneh, M., Thair, L., Jumaa, T. A. J., & Dlugogorski, B. Z. (2019). Biocompatibility study of multi-layered hydroxyapatite coatings synthesized on Ti-6Al-4V alloys by RF magnetron sputtering for prosthetic-orthopaedic implant applications. Applied Surface Science, 463, 292–299.

    Article  Google Scholar 

  131. Xu, S., Long, J., Sim, L., Diong, C. H., & Ostrikov, K. (2005). RF plasma sputtering deposition of hydroxyapatite bioceramics: synthesis, performance, and biocompatibility. Plasma Processes and Polymers, 2(5), 373–390.

    Article  Google Scholar 

  132. Nathanael, A. J., Yuvakkumar, R., Hong, S. I., & Oh, T. H. (2014). Novel zirconium nitride and hydroxyapatite nanocomposite coating: detailed analysis and functional properties. ACS Applied Materials & Interfaces, 6(12), 9850–9857.

    Article  Google Scholar 

  133. Socol, G., Macovei, A. M., Miroiu, F., Stefan, N., Duta, L., Dorcioman, G., Mihailescu, I. N., Petrescu, S. M., Stan, G. E., Marcov, D. A., & Chiriac, A. (2010). Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications. Materials Science and Engineering: B, 169(1–3), 159–168.

    Article  Google Scholar 

  134. Annavarapu, R. K., Kim, S., Wang, M., Hart, A. J., & Sojoudi, H. (2019). Explaining evaporation-triggered wetting transition using local force balance model and contact line-fraction. Scientific Reports, 9(1), 1–17.

    Article  Google Scholar 

  135. Sojoudi, H., Kim, S., Zhao, H., Annavarapu, R. K., Mariappan, D., Hart, A. J., McKinley, G. H., & Gleason, K. K. (2017). Stable wettability control of nanoporous microstructures by iCVD coating of carbon nanotubes. ACS Applied Materials & Interfaces, 9(49), 43287–43299.

    Article  Google Scholar 

  136. Tang, X., & Yan, X. (2017). Dip-coating for fibrous materials: Mechanism, methods and applications. Journal of Sol-Gel Science and Technology, 81(2), 378–404.

    Article  Google Scholar 

  137. Grosso, D. (2011). How to exploit the full potential of the dip-coating process to better control film formation. Journal of Materials Chemistry, 21(43), 17033–17038.

    Article  Google Scholar 

  138. Ritwik, A., Saju, K. K., Vengellur, A., & Saipriya, P. P. (2022). Development of thin-film hydroxyapatite coatings with an intermediate shellac layer produced by dip-coating process on Ti6Al4V implant materials. Journal of Coatings Technology and Research, 19(2), 597–605.

    Article  Google Scholar 

  139. Su, H. Y., Chen, P. L., & Lin, C. S. (2016). Sol-gel coatings doped with organosilane and cerium to improve the properties of hot-dip galvanized steel. Corrosion Science, 102, 63–71.

    Article  Google Scholar 

  140. Dario, A. F., Macia, H. B., & Petri, D. F. (2012). Nanostructures on spin-coated polymer films controlled by solvent composition and polymer molecular weight. Thin Solid Films, 524, 185–190.

    Article  Google Scholar 

  141. Tyona, M. D. (2013). A theoritical study on spin coating technique. Advances in Materials Research, 2(4), 195.

    Article  Google Scholar 

  142. Raphel, J., Karlsson, J., Galli, S., Wennerberg, A., Lindsay, C., Haugh, M. G., Pajarinen, J., Goodman, S. B., Jimbo, R., Andersson, M., & Heilshorn, S. C. (2016). Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials, 83, 269–282.

    Article  Google Scholar 

  143. Soule, L. D., Pajares Chomorro, N., Chuong, K., Mellott, N., Hammer, N., Hankenson, K. D., & Chatzistavrou, X. (2020). Sol-gel-derived bioactive and antibacterial multi-component thin films by the spin-coating technique. ACS Biomaterials Science & Engineering, 6(10), 5549–5562.

    Article  Google Scholar 

  144. Sichert, J. A., Tong, Y., Mutz, N., Vollmer, M., Fischer, S., Milowska, K. Z., García Cortadella, R., Nickel, B., Cardenas-Daw, C., Stolarczyk, J. K., & Urban, A. S. (2015). Quantum size effect in organometal halide perovskite nanoplatelets. Nano Letters, 15(10), 6521–6527.

    Article  Google Scholar 

  145. Shrivastava, S., & Dash, D. (2009). Applying nanotechnology to human health: revolution in biomedical sciences. Journal of Nanotechnology, 2009.

  146. Yarlagadda, T., Sharma, S., Yarlagadda, P. K., & Sharma, J. (2019). Recent developments in the Field of nanotechnology for development of medical implants. Procedia Manufacturing, 30, 544–551.

    Article  Google Scholar 

  147. Gupta, S., Noumbissi, S., & Kunrath, M. F. (2020). Nano modified zirconia dental implants: Advances and the frontiers for rapid osseointegration. Medical Devices & Sensors, 3(3), 10076.

    Article  Google Scholar 

  148. Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., & Kim, K. H. (2020). Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. Materials Science and Engineering: C, 106, 110154.

    Article  Google Scholar 

  149. Arumugam, S., & Ju, Y. (2021). Carbon nanotubes reinforced with natural/synthetic polymers to mimic the extracellular matrices of bone-a review. Materials Today Chemistry, 20, 100420.

    Article  Google Scholar 

  150. Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization using Nondestructive Evaluation (NDE) Methods, 81–124.

  151. Nayak, B., & Misra, P. K. (2020). Exploration of the structural and dielectric characteristics of a potent hydroxyapatite coated gallium bioceramics for the forthcoming biomedical and orthopedic applications. Materials Chemistry and Physics, 239, 121967.

    Article  Google Scholar 

  152. Inkson, B. J. (2016). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization. In Materials Characterization using Nondestructive Evaluation (NDE) methods, 17-43.

  153. Reem, A. W., Jafer, R., Yahia, I. S., Al-Ghamdi, A. A., Al-ghamdi, M. A., & El-Naggar, A. M. (2017). Fast and easy synthesis of novel Strontium apatite nanostructured phase: Structure, spectroscopy, and dielectric analysis. Ceramics International, 43(18), 17153–17159.

    Article  Google Scholar 

  154. Nehring, J., Schütz, M., Dietz, M., Nasr, I., Aufinger, K., Weigel, R., & Kissinger, D. (2016). Highly integrated 4–32-GHz two-port vector network analyzers for instrumentation and biomedical applications. IEEE Transactions on Microwave Theory and Techniques, 65(1), 229–244.

    Article  Google Scholar 

  155. Kaygili, O., Dorozhkin, S. V., Ates, T., Gursoy, N. C., Keser, S., Yakuphanoglu, F., & Selcuk, A. B. (2015). Structural and dielectric properties of yttrium-substituted hydroxyapatites. Materials Science and Engineering: C, 47, 333–338.

    Article  Google Scholar 

  156. Aal, N. A., Bououdina, M., Hajry, A., Chaudhry, A. A., Darr, J. A., Al-Ghamdi, A. A., El-Mossalamy, E. H., Al-Ghamdi, A. A., Sung, Y. K., & El-Tantawy, F. (2011). Synthesis, characterization and electrical properties of hydroxyapatite nanoparticles from utilization of biowaste eggshells. Biomaterials Research, 15(2), 52–9.

    Google Scholar 

  157. Kobayashi, T., Nakamura, S., & Yamashita, K. (2001). Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 57(4), 477–484.

    Article  Google Scholar 

  158. Kaygili, O., Dorozhkin, S. V., & Keser, S. (2014). Synthesis and characterization of Ce-substituted hydroxyapatite by sol-gel method. Materials Science and Engineering: C, 42, 78–82.

    Article  Google Scholar 

  159. Kato, R., Nakamura, S., Katayama, K., & Yamashita, K. (2005). Electrical polarization of plasma-spray-hydroxyapatite coatings for improvement of osteoconduction of implants. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 74(4), 652–658.

    Article  Google Scholar 

  160. Sarin, N., Singh, K. J., Singh, D., Arora, S., Singh, A. P., & Mahajan, H. (2020). Preliminary studies of strontium and selenium binary doped CaO-SiO2-P2O5-MgO bioceramics for faster growth of hydroxyapatite and bone regeneration applications. Materials Chemistry and Physics, 253, 123329.

    Article  Google Scholar 

  161. Uribe, R., Rojas, I., Riofrio, M. C., Lascano, L., & González, G. (2022). Polarization and biomineralization of hydroxyapatite-barium titanate composites. In Journal of Physics: Conference Series, 2238(1), 012007.

    Google Scholar 

  162. Ratha, I., Datta, P., Balla, V. K., Nandi, S. K., & Kundu, B. (2021). Effect of doping in hydroxyapatite as coating material on biomedical implants by plasma spraying method: A review. Ceramics International, 47(4), 4426–4445.

    Article  Google Scholar 

  163. Salem, R., Thurston, K. G., Carr, B. I., Goin, J. E., & Geschwind, J. F. H. (2002). Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. Journal of Vascular and Interventional Radiology, 13(9), 223–229.

    Article  Google Scholar 

  164. Geschwind, J. F. H., Salem, R., Carr, B. I., Soulen, M. C., Thurston, K. G., Goin, K. A., Van Buskirk, M., Roberts, C. A., & Goin, J. E. (2004). Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterology, 127(5), 194–205.

    Article  Google Scholar 

  165. Liu, Y., Zhou, R. J., Mo, A. C., Chen, Z. Q., & Wu, H. K. (2007). Synthesis and characterization of yttrium/hydroxyapatite nanoparticles. In Key Engineering Materials, 330, 295–298.

    Article  Google Scholar 

  166. Webster, T. J., Ergun, C., Doremus, R. H., & Bizios, R. (2002). Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 59(2), 312–317.

    Article  Google Scholar 

  167. Kaygili, O., Ates, T., Keser, S., Al-Ghamdi, A. A., & Yakuphanoglu, F. (2014). Controlling of dielectrical properties of hydroxyapatite by ethylenediamine tetraacetic acid (EDTA) for bone healing applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 268–273.

    Article  Google Scholar 

  168. Singh, B., Dubey, A. K., Kumar, S., Saha, N., Basu, B., & Gupta, R. (2011). In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10- xAgx (PO4) 6 (OH) 2 (0.0\(\le\) x\(\le\) 0.5) hydroxyapatites. Materials Science and Engineering: C, 31(7), 1320–1329.

    Article  Google Scholar 

  169. Shahbazi, M. A., Faghfouri, L., Ferreira, M. P., Figueiredo, P., Maleki, H., Sefat, F., Hirvonen, J., & Santos, H. A. (2020). The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 49(4), 1253–1321.

    Article  Google Scholar 

  170. Al-Hazmi, F. E. (2016). Synthesis and electrical properties of Bi doped hydroxyapatite ceramics. Journal of Alloys and Compounds, 665, 119–123.

    Article  Google Scholar 

  171. Sato, M., Sambito, M. A., Aslani, A., Kalkhoran, N. M., Slamovich, E. B., & Webster, T. J. (2006). Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium. Biomaterials, 27(11), 2358–2369.

    Article  Google Scholar 

  172. Dubey, A. K., Mallik, P. K., Kundu, S., & Basu, B. (2013). Dielectric and electrical conductivity properties of multi-stage spark plasma sintered HA-CaTiO3 composites and comparison with conventionally sintered materials. Journal of the European Ceramic Society, 33(15–16), 3445–3453.

    Article  Google Scholar 

  173. Ahmed, M. K., Mansour, S. F., Al-Wafi, R., & Abdel-Fattah, E. (2021). Nanofibers scaffolds of co-doped Bi/Sr-hydroxyapatite encapsulated into polycaprolactone for biomedical applications. Journal of Materials Research and Technology, 13, 2297–2309.

    Article  Google Scholar 

  174. Gentleman, E., Fredholm, Y. C., Jell, G., Lotfibakhshaiesh, N., O’Donnell, M. D., Hill, R. G., & Stevens, M. M. (2010). The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials, 31(14), 3949–3956.

    Article  Google Scholar 

  175. Li, Y., Li, Q., Zhu, S., Luo, E., Li, J., Feng, G., Liao, Y., & Hu, J. (2010). The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. Biomaterials, 31(34), 9006–9014.

    Article  Google Scholar 

  176. Bamzai, K. K., Suri, S., & Singh, V. (2012). Synthesis, characterization, thermal and dielectric properties of pure and cadmium doped calcium hydrogen phosphate. Materials Chemistry and Physics, 135(1), 158–167.

    Article  Google Scholar 

  177. Tank, K. P., Jogiya, B. V., Kanchan, D. K., & Joshi, M. J. (2014). Dielectric properties of pure and strontium doped nano-hydroxyapatite. In Solid State Phenomena, 209, 151–155.

    Article  Google Scholar 

  178. Bowen, C. R., Gittings, J., Turner, I. G., Baxter, F., & Chaudhuri, J. B. (2006). Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites. Applied Physics Letters, 89(13), 132906.

    Article  Google Scholar 

  179. Mahabole, M. P., Aiyer, R. C., Ramakrishna, C. V., Sreedhar, B., & Khairnar, R. S. (2005). Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bulletin of Materials Science, 28(6), 535–545.

    Article  Google Scholar 

  180. Almond, D. P., & Bowen, C. R. (2004). Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks. Physical Review Letters, 92(15), 157601.

    Article  Google Scholar 

  181. Dang, Z. M., Yao, S. H., & Xu, H. P. (2007). Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites. Applied Physics Letters, 90(1), 012907.

    Article  Google Scholar 

  182. Leyland-Jones, B. (2003). Treatment of cancer-related hypercalcemia: the role of gallium nitrate. In Seminars in Oncology, 30(2), 13–19.

    Article  Google Scholar 

  183. Valappil, S. P., Ready, D., Neel, E. A. A., Pickup, D. M., Chrzanowski, W., O’Dell, L. A., Newport, R. J., Smith, M. E., Wilson, M., & Knowles, J. C. (2008). Antimicrobial gallium-doped phosphate-based glasses. Advanced Functional Materials, 18(5), 732–741.

    Article  Google Scholar 

  184. Xie, W., Allioux, F. M., Ou, J. Z., Miyako, E., Tang, S. Y., & Kalantar-Zadeh, K. (2021). Gallium-based liquid metal particles for therapeutics. Trends in Biotechnology, 39(6), 624–640.

    Article  Google Scholar 

  185. Kurtjak, M., Vukomanović, M., Krajnc, A., Kramer, L., Turk, B., & Suvorov, D. (2016). Designing Ga (iii)-containing hydroxyapatite with antibacterial activity. RSC Advances, 6(114), 112839–112852.

    Article  Google Scholar 

  186. Panseri, S., Cunha, C., D’Alessandro, T., Sandri, M., Giavaresi, G., Marcacci, M., Hung, C. T., & Tampieri, A. (2012). Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. Journal of Nanobiotechnology, 10(1), 1–10.

    Article  Google Scholar 

  187. Kaygili, O., Dorozhkin, S. V., Ates, T., Al-Ghamdi, A. A., & Yakuphanoglu, F. (2014). Dielectric properties of Fe doped hydroxyapatite prepared by sol-gel method. Ceramics International, 40(7), 9395–9402.

    Article  Google Scholar 

  188. Mene, R. U., Mahabole, M. P., Mohite, K. C., & Khairnar, R. S. (2014). Improved gas sensing and dielectric properties of Fe doped hydroxyapatite thick films: Effect of molar concentrations. Materials Research Bulletin, 50, 227–234.

    Article  Google Scholar 

  189. Kaygili, O., Tatar, C., & Yakuphanoglu, F. (2012). Structural and dielectrical properties of Mg3-Ca3 (PO4) 2 bioceramics obtained from hydroxyapatite by sol-gel method. Ceramics International, 38(7), 5713–5722.

    Article  Google Scholar 

  190. Ibrahim, M., & Dawood, A. (2020). Influence of doping chromium ions on the electrical properties of hydroxyapatite. Egyptian Journal of Basic and Applied Sciences, 7(1), 35–46.

    Article  Google Scholar 

  191. Hu, S., Li, Y. F., Yang, R., Yang, Z., & Wang, L. (2018). Structure and ionic conductivity of Li7La3Zr2- xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceramics International, 44(6), 6614–6618.

    Article  Google Scholar 

  192. Zhao, H., Xia, Y. J., Dang, Z. M., Zha, J. W., & Hu, G. H. (2013). Composition dependence of dielectric properties, elastic modulus, and electroactivity in (carbon black-BaTiO3)/silicone rubber nanocomposites. Journal of Applied Polymer Science, 127(6), 4440–4445.

    Article  Google Scholar 

  193. Katzir, S. (2006). The discovery of the piezoelectric effect. In The beginnings of piezoelectricity, 15-64.

  194. Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Piezoelectric materials. In Dynamic fracture of piezoelectric materials, 7-32.

  195. Xu, S., Hansen, B. J., & Wang, Z. L. (2010). Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 1(1), 1–5.

    Article  Google Scholar 

  196. Tandon, B., Blaker, J. J., & Cartmell, S. H. (2018). Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomaterialia, 73, 1–20.

    Article  Google Scholar 

  197. Khare, D., Basu, B., & Dubey, A. K. (2020). Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 258, 120280.

    Google Scholar 

  198. Kapat, K., Shubhra, Q. T., Zhou, M., & Leeuwenburgh, S. (2020). Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Advanced Functional Materials, 30(44), 1909045.

    Article  Google Scholar 

  199. Halperin, C., Mutchnik, S., Agronin, A., Molotskii, M., Urenski, P., Salai, M., & Rosenman, G. (2004). Piezoelectric effect in human bones studied in nanometer scale. Nano Letters, 4(7), 1253–1256.

    Article  Google Scholar 

  200. Sun, Q., Qian, B., Uto, K., Chen, J., Liu, X., & Minari, T. (2018). Functional biomaterials towards flexible electronics and sensors. Biosensors and Bioelectronics, 119, 237–251.

    Article  Google Scholar 

  201. Dutta, P. K., Dutta, J., & Tripathi, V. S. (2004). Chitin and chitosan: chemistry, roperties and applications.

  202. Aguilar, A., Zein, N., Harmouch, E., Hafdi, B., Bornert, F., Offner, D., Clauss, F., Fioretti, F., Huck, O., Benkirane-Jessel, N., & Hua, G. (2019). Application of chitosan in bone and dental engineering. Molecules, 24(16), 3009.

    Article  Google Scholar 

  203. Petrov, I., Kalinkevich, O., Pogorielov, M., Kalinkevich, A., Stanislavov, A., Sklyar, A., Danilchenko, S., & Yovcheva, T. (2016). Dielectric and electric properties of new chitosan-hydroxyapatite materials for biomedical application: Dielectric spectroscopy and corona treatment. Carbohydrate Polymers, 151, 770–778.

    Article  Google Scholar 

  204. Venkatesan, J., & Kim, S. K. (2010). Chitosan composites for bone tissue engineering-an overview. Marine Drugs, 8(8), 2252–2266.

    Article  Google Scholar 

  205. Jiao, H., Song, S., Zhao, K., Zhang, X., & Tang, Y. (2020). Synthesis and properties of porous piezoelectric BT/PHBV composite scaffold. Journal of Biomaterials Science, Polymer Edition, 31(12), 1552–1565.

    Article  Google Scholar 

  206. Nahanmoghadam, A., Asemani, M., Goodarzi, V., & Ebrahimi-Barough, S. (2021). In vivo investigation of PCL/PHBV/Hydroxyapatite Nanocomposite Scaffold in Regeneration of Critical-sized Bone Defects. Fibers and Polymers, 22(9), 2507–2516.

    Article  Google Scholar 

  207. Wu, J., Xue, K., Li, H., Sun, J., & Liu, K. (2013). Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PloS One, 8(8), 71563.

    Article  Google Scholar 

  208. Numata, K., Abe, H., & Doi, Y. (2008). Enzymatic processes for biodegradation of poly (hydroxyalkanoate) s crystals. Canadian Journal of Chemistry, 86(6), 471–483.

    Article  Google Scholar 

  209. Rajabi, A. H., Jaffe, M., & Arinzeh, T. L. (2015). Piezoelectric materials for tissue regeneration: A review. Acta Biomaterialia, 24, 12–23.

    Article  Google Scholar 

  210. Fernandez-Yague, M. A., Vallejo-Giraldo, C., Aceret, G. O., Pandit, A., & Biggs, M. J. (2016). Biological activity on piezoelectric PVDF. In Electrically Active Materials for Medical Devices, 2, 167–176.

    Article  Google Scholar 

  211. Pereira, J. D., Camargo, R. C., Jose Filho, C. S. C., Alves, N., Rodriguez-Perez, M. A., & Constantino, C. J. (2014). Biomaterials from blends of fluoropolymers and corn starch-implant and structural aspects. Materials Science and Engineering: C, 36, 226–236.

    Article  Google Scholar 

  212. Gimenes, R., Zaghete, M. A., Bertolini, M., Varela, J. A., Coelho, L. O., & Silva Jr, N. F. (2004). Composites PVDF-TrFE/BT used as bioactive membranes for enhancing bone regeneration. In Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), 5385, 539-547.

  213. Ross, G. J., Watts, J. F., Hill, M. P., & Morrissey, P. (2000). Surface modification of poly (vinylidene fluoride) by alkaline treatment. The degradation mechanism. Polymer, 41(5), 1685–1696.

    Article  Google Scholar 

  214. Neuss, S., Apel, C., Buttler, P., Denecke, B., Dhanasingh, A., Ding, X., Grafahrend, D., Groger, A., Hemmrich, K., Herr, A., & Jahnen-Dechent, W. (2008). Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials, 29(3), 302–313.

    Article  Google Scholar 

  215. Aoki, K., & Saito, N. (2020). Biodegradable polymers as drug delivery systems for bone regeneration. Pharmaceutics, 12(2), 95.

    Article  Google Scholar 

  216. Chorsi, M. T., Curry, E. J., Chorsi, H. T., Das, R., Baroody, J., Purohit, P. K., Ilies, H., & Nguyen, T. D. (2019). Piezoelectric biomaterials for sensors and actuators. Advanced Materials, 31(1), 1802084.

    Article  Google Scholar 

  217. Prabhakaran, M. P., Venugopal, J., & Ramakrishna, S. (2009). Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 5(8), 2884–2893.

    Article  Google Scholar 

  218. Pawar, P. R., Tekale, U. S., Shisodia, U. S., Totre, T. J., & Domb, J. A. (2014). Biomedical applications of poly (lactic acid). Recent Patents on Regenerative Medicine, 4(1), 40–51.

    Article  Google Scholar 

  219. Cheung, H. Y., Lau, K. T., Lu, T. P., & Hui, D. (2007). A critical review on polymer-based bio-engineered materials for scaffold development. Composites Part B: Engineering, 38(3), 291–300.

    Article  Google Scholar 

  220. Sharma, G., Thakur, B., Naushad, M., Kumar, A., Stadler, F. J., Alfadul, S. M., & Mola, G. T. (2018). Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environmental Chemistry Letters, 16(1), 113–146.

    Article  Google Scholar 

  221. Bhatia, S. (2016). Natural polymers vs synthetic polymer. In Natural Polymer Drug Delivery Systems, 95–118.

  222. Wang, X., Fang, J., Zhu, W., Zhong, C., Ye, D., Zhu, M., & Ren, F. (2021). Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair. Advanced Functional Materials, 31(20), 2010068.

    Article  Google Scholar 

  223. Li, Z., Lv, X., Chen, S., Wang, B., Feng, C., Xu, Y., & Wang, H. (2016). Improved cell infiltration and vascularization of three-dimensional bacterial cellulose nanofibrous scaffolds by template biosynthesis. RSC Advances, 6(48), 42229–42239.

    Article  Google Scholar 

  224. Daugela, P., Pranskunas, M., Juodzbalys, G., Liesiene, J., Baniukaitiene, O., Afonso, A., & Sousa Gomes, P. (2018). Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study. Journal of Tissue Engineering and Regenerative Medicine, 12(5), 1195–1208.

    Article  Google Scholar 

  225. Eftekhari, S., El Sawi, I., Bagheri, Z. S., Turcotte, G., & Bougherara, H. (2014). Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications. Materials Science and Engineering: C, 39, 120–125.

    Article  Google Scholar 

  226. Liu, X., Zheng, C., Luo, X., Wang, X., & Jiang, H. (2019). Recent advances of collagen-based biomaterials: multi-hierarchical structure, modification and biomedical applications. Materials Science and Engineering: C, 99, 1509–1522.

    Article  Google Scholar 

  227. Chen, L., Wu, Z., Zhou, Y., Li, L., Wang, Y., Wang, Z., Chen, Y., & Zhang, P. (2017). Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. Journal of Applied Polymer Science, 134(37), 45271.

    Article  Google Scholar 

  228. Yilmaz, E., Cakiroglu, B., Gokce, A., Findik, F., Gulsoy, H. O., Gulsoy, N., Mutlu, O., & Ozacar, M. (2019). Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition. Materials Science and Engineering: C, 101, 292–305.

    Article  Google Scholar 

  229. Chang, C., Peng, N., He, M., Teramoto, Y., Nishio, Y., & Zhang, L. (2013). Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydrate Polymers, 91(1), 7–13.

    Article  Google Scholar 

  230. Chakravarty, J., Rabbi, M. F., Chalivendra, V., Ferreira, T., & Brigham, C. J. (2020). Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. International Journal of Biological Macromolecules, 151, 1213–1223.

    Article  Google Scholar 

  231. Bedian, L., Villalba-Rodríguez, A. M., Hernández-Vargas, G., Parra-Saldivar, R., & Iqbal, H. M. (2017). Bio-based materials with novel characteristics for tissue engineering applications-A review. International Journal of Biological Macromolecules, 98, 837–846.

    Article  Google Scholar 

  232. Ciofani, G., Danti, S., D’Alessandro, D., Ricotti, L., Moscato, S., Bertoni, G., Falqui, A., Berrettini, S., Petrini, M., Mattoli, V., & Menciassi, A. (2010). Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano, 4(10), 6267–6277.

    Article  Google Scholar 

  233. Lahiri, D., Rouzaud, F., Richard, T., Keshri, A. K., Bakshi, S. R., Kos, L., & Agarwal, A. (2010). Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomaterialia, 6(9), 3524–3533.

    Article  Google Scholar 

  234. Tayel, A. A., EL-TRAS, W. F., Moussa, S., EL-BAZ, A. F., Mahrous, H., Salem, M. F., & Brimer, L. (2011). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. Journal of Food Safety, 31(2), 211–218.

    Article  Google Scholar 

  235. Ito, A., Kawamura, H., Otsuka, M., Ikeuchi, M., Ohgushi, H., Ishikawa, K., Onuma, K., Kanzaki, N., Sogo, Y., & Ichinose, N. (2002). Zinc-releasing calcium phosphate for stimulating bone formation. Materials Science and Engineering: C, 22(1), 21–25.

    Article  Google Scholar 

  236. Moradpoor, H., Safaei, M., Mozaffari, H. R., Sharifi, R., Imani, M. M., Golshah, A., & Bashardoust, N. (2021). An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Advances, 11(34), 21189–21206.

    Article  Google Scholar 

  237. Jarkov, V., Allan, S. J., Bowen, C., & Khanbareh, H. (2021). Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applications. International Materials Reviews, 2, 1–51.

    Google Scholar 

  238. Mantripragada, V. P., Lecka-Czernik, B., Ebraheim, N. A., & Jayasuriya, A. C. (2013). An overview of recent advances in designing orthopedic and craniofacial implants. Journal of Biomedical Materials Research Part A, 101(11), 3349–3364.

    Google Scholar 

  239. Ross, R. B. (2013). Metallic Materials Specification Handbook. Springer Science & Business Media.

    Google Scholar 

  240. Tishin, A. M., Nikitin, S. A., & Bodriakov, V. Y. (1995). Young’s modulus and internal friction of yttrium. Journal de Physique I, 5(4), 525–532.

    Article  Google Scholar 

  241. Frerichs, A. E., & Russell, A. M. (2022). Tensile properties of strontium metal. Young, 10(3), 1.

    Google Scholar 

  242. Haynes, R. (1991). Effects of porosity on the tensile strengths of sintered irons. Metal Powder Report, 46(2), 49–51.

    Article  Google Scholar 

  243. Jiansirisomboon, S., & Watcharapasorn, A. (2008). Effects of alumina nano-particulates addition on mechanical and electrical properties of barium titanate ceramics. Current Applied Physics, 8(1), 48–52.

    Article  Google Scholar 

  244. Wang, S. F., Shen, L., Zhang, W. D., & Tong, Y. J. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6(6), 3067–3072.

    Article  Google Scholar 

  245. Lin, J., Shi, Y., Men, Y., Wang, X., Ye, J., & Zhang, C. (2020). Mechanical roles in formation of oriented collagen fibers. Tissue Engineering Part B: Reviews, 26(2), 116–128.

    Article  Google Scholar 

  246. Ashoorirad, M., Saviz, M., & Fallah, A. (2020). On the electrical properties of collagen macromolecule solutions: Role of collagen-water interactions. Journal of Molecular Liquids, 300, 112344.

    Article  Google Scholar 

  247. Prakash, P. S., Pawar, S. J., & Tewari, R. P. (2019). Synthesis, characterization, and coating of forsterite (Mg2SiO4) based material over medical implants: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(6), 1227–1240.

    Article  Google Scholar 

  248. Cygan, R. T., & Lasaga, A. C. (1986). Dielectric and polarization behavior of forsterite at elevated temperatures. American Mineralogist, 71(5–6), 758–766.

    Google Scholar 

  249. Jin, W., & Chu, P. K. (2019). Orthopedic implants. Encyclopedia of. Biomedical Engineering, 1, 3.

    Google Scholar 

  250. Chen, L. Y. (2014). Dielectric performance of a high purity HTCC alumina at high temperatures-a comparison study with other polycrystalline alumina. Additional Papers and presentations, 271-277.

  251. Yan, Y., & Han, Y. (2007). Structure and bioactivity of micro-arc oxidized zirconia films. Surface and Coatings Technology, 201(9–11), 5692–5695.

    Article  Google Scholar 

  252. Kondo, R., Nomura, N., Tsutsumi, Y., Doi, H., & Hanawa, T. (2011). Microstructure and mechanical properties of as-cast Zr-Nb alloys. Acta Biomaterialia, 7(12), 4278–4284.

    Article  Google Scholar 

  253. Babu, C. R., Reddy, N. R. M., & Reddy, K. (2015). Synthesis and characterization of high dielectric nano zirconium oxide. Ceramics International, 41(9), 10675–10679.

    Article  Google Scholar 

  254. Dewidar, M. M., Yoon, H. C., & Lim, J. K. (2006). Mechanical properties of metals for biomedical applications using powder metallurgy process: a review. Metals and Materials International, 12(3), 193–206.

    Article  Google Scholar 

  255. Capek, J., Machova, M., Fousova, M., Kubasek, J., Vojtech, D., Fojt, J., Jablonska, E., Lipov, J., & Ruml, T. (2016). Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Materials Science and Engineering: C, 69, 631–639.

    Article  Google Scholar 

  256. Zaman, H. A., Sharif, S., Idris, M. H., & Kamarudin, A. (2015). Metallic biomaterials for medical implant applications: a review. Applied Mechanics and Materials, 735, 19–25.

    Article  Google Scholar 

  257. Teo, A. J., Mishra, A., Park, I., Kim, Y. J., Park, W. T., & Yoon, Y. J. (2016). Polymeric biomaterials for medical implants and devices. ACS Biomaterials Science & Engineering, 2(4), 454–472.

    Article  Google Scholar 

  258. Tamboli, M. S., Palei, P. K., Patil, S. S., Kulkarni, M. V., Maldar, N. N., & Kale, B. B. (2014). Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties. Dalton Transactions, 43(35), 13232–13241.

    Article  Google Scholar 

  259. Li, W., Song, Z., Zhong, J., Qian, J., Tan, Z., Wu, X., & Ran, X. (2019). Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. Journal of Materials Chemistry C, 7(33), 10371–10378.

    Article  Google Scholar 

  260. Li, S. T., Arenholz, E., Heitz, J., & Bäuerle, D. (1998). Pulsed-laser deposition of crystalline Teflon (PTFE) films. Applied Surface Science, 125(1), 17–22.

    Article  Google Scholar 

  261. Nayak, S., & Khastgir, D. (2019). Polydimethylsiloxane-PbZr0. 52Ti0. 48O3 nanocomposites with high permittivity: Effect of poling and temperature on dielectric properties. Journal of Applied Polymer Science, 136(14), 47307.

    Article  Google Scholar 

  262. Renouf-Glauser, A. C., Rose, J., Farrar, D. F., & Cameron, R. E. (2005). The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Biomaterials, 26(29), 5771–5782.

    Article  Google Scholar 

  263. Rebelo, R., Fernandes, M., & Fangueiro, R. (2017). Biopolymers in medical implants: a brief review. Procedia Engineering, 200, 236–243.

    Article  Google Scholar 

  264. Jayamani, E., Nair, G. A., & Soon, K. (2020). Investigation of the dielectric properties of natural fibre and conductive filler reinforced polymer composites. Materials Today: Proceedings, 22, 162–171.

    Google Scholar 

  265. Huang, Y., Zhang, X., Qiao, H., Hao, M., Zhang, H., Xu, Z., Zhang, X., Pang, X., & Lin, H. (2016). Corrosion resistance and cytocompatibility studies of zinc-doped fluorohydroxyapatite nanocomposite coatings on titanium implant. Ceramics International, 42(1), 1903–1915.

    Article  Google Scholar 

  266. Zhang, S., Xianting, Z., Yongsheng, W., Kui, C., & Wenjian, W. (2006). Adhesion strength of sol-gel derived fluoridated hydroxyapatite coatings. Surface and Coatings Technology, 200(22–23), 6350–6354.

    Article  Google Scholar 

  267. Xie, Y., Zhai, W., Chen, L., Chang, J., Zheng, X., & Ding, C. (2009). Preparation and in vitro evaluation of plasma-sprayed Mg2SiO4 coating on titanium alloy. Acta Biomaterialia, 5(6), 2331–2337.

    Article  Google Scholar 

  268. Sebdani, M. M., & Fathi, M. H. (2011). Novel hydroxyapatite-forsterite-bioglass nanocomposite coatings with improved mechanical properties. Journal of Alloys and Compounds, 509(5), 2273–2276.

    Article  Google Scholar 

  269. Kazakos, A., Komarneni, S., & Roy, R. (1990). Preparation and densification of forsterite (Mg2SiO4) by nanocomposite sol-gel processing. Materials Letters, 9(10), 405–409.

    Article  Google Scholar 

  270. Seitz, J. M., Eifler, R., Bach, F. W., & Maier, H. J. (2014). Magnesium degradation products: effects on tissue and human metabolism. Journal of Biomedical Materials Research Part A, 102(10), 3744–3753.

    Article  Google Scholar 

  271. Henstock, J. R., Canham, L. T., & Anderson, S. I. (2015). Silicon: the evolution of its use in biomaterials. Acta Biomaterialia, 11, 17–26.

    Article  Google Scholar 

  272. Ni, S., Chou, L., & Chang, J. (2007). Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceramics International, 33(1), 83–88.

    Article  Google Scholar 

  273. Kichi, M. K., Torkaman, R., Mohammadi, H., Toutounchi, A., Kharaziha, M., & Alihosseini, F. (2020). Electrochemical and in vitro bioactivity behavior of poly (\(\varepsilon\)-caprolactone)(PCL)-gelatin-forsterite nano coating on titanium for biomedical application. Materials Today Communications, 24, 101326.

    Article  Google Scholar 

  274. Bakhsheshi-Rad, H. R., Hamzah, E., Kasiri-Asgarani, M., Jabbarzare, S., Iqbal, N., & Kadir, M. A. (2016). Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications. Materials Science and Engineering: C, 60, 526–537.

    Article  Google Scholar 

  275. Zomorodian, A., Santos, C., Carmezim, M. J., e Silva, T. M., Fernandes, J. C. S., & Montemor, M. D. F. (2015). “In-vitro’’ corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin. Electrochimica Acta, 179, 431–440.

    Article  Google Scholar 

  276. Suarasan, S., Focsan, M., Maniu, D., & Astilean, S. (2013). Gelatin-nanogold bioconjugates as effective plasmonic platforms for SERS detection and tagging. Colloids and Surfaces B: Biointerfaces, 103, 475–481.

    Article  Google Scholar 

  277. Nieto-Suarez, M., Lopez-Quintela, M. A., & Lazzari, M. (2016). Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydrate Polymers, 141, 175–183.

    Article  Google Scholar 

  278. Jeffrey, C. K. L., Kumanan, A., Pang, M. M., Yong, L. C., & Sivakumar, S. (2015). Sintering behavior of forsterite with manganese oxide as doping agent. Journal of Engineering Science and Technology, 1, 1–7.

    Google Scholar 

  279. Naga, S. M., Hassan, A. M., Awaad, M., Killinger, A., Gadow, R., Bernstein, A., & Sayed, M. (2020). Forsterite/nano-biogenic hydroxyapatite composites for biomedical applications. Journal of Asian Ceramic Societies, 8(2), 373–386.

    Article  Google Scholar 

  280. Valaskova, M., Zdralkova, J., Tokarsky, J., Martynkova, G. S., Ritz, M., & Studentova, S. (2014). Structural characteristics of cordierite/steatite ceramics sintered from mixtures containing pore-forming organovermiculite. Ceramics International, 40(10), 15717–15725.

    Article  Google Scholar 

  281. Terzic, A., Obradovic, N., Stojanovic, J., Pavlovic, V., Andric, L., Olcan, D., & Dorđevic, A. (2017). Influence of different bonding and fluxing agents on the sintering behavior and dielectric properties of steatite ceramic materials. Ceramics International, 43(16), 13264–13275.

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagatadeb Sahoo.

Ethics declarations

Conflict of Interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A., Sahoo, S. Progress on Medical Implant: A Review and Prospects. J Bionic Eng 20, 470–494 (2023). https://doi.org/10.1007/s42235-022-00284-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00284-z

Keywords

Navigation