Skip to main content

Advertisement

Log in

Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Currently, osteochondral (OC) tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage. However, it is still challenging to ensure the integrity, physiological function and regeneration ability of stratified OC scaffolds in clinical application. Biomimetic OC scaffolds are attractive to overcome the above problems because of their similar biological and mechanical properties with native OC tissue. As a consequence, the researches on biomimetic design to achieve the tissue function of each layer, and additive manufacture (AM) to accomplish composition switch and ultrastructure of personalized OC scaffolds have made a remarkable progress. In this review, the design methods of biomaterial and structure as well as computer-aided design, and performance prediction of biopolymer-based OC scaffolds are presented; then, the characteristics and limitations of AM technologies and the integrated manufacture schemes in OC tissue engineering are summarized; finally, the novel biomaterials and techniques and the inevitable trends of multifunctional bio-manufacturing system are discussed for further optimizing production of tissue engineering OC scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The datasets generated in this review are available in Web of Science, and Elsevier Science Direct.

References

  1. Filardo G, Vannini F, Marcacci M et al (2013) Matrix-assisted autologous chondrocyte transplantation for cartilage regeneration in osteoarthritic knees: results and failures at midterm follow-up. Am J Sports Med 41(1):95–100. https://doi.org/10.1177/0363546512463675

    Article  Google Scholar 

  2. Eldracher M, Orth P, Cucchiarini M et al (2014) Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med 42(11):2741–2750. https://doi.org/10.1177/0363546514547029

    Article  Google Scholar 

  3. Gobbi A, Karnatzikos G, Kumar A (2014) Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc 22(9):1986–1996. https://doi.org/10.1016/j.arthro.2014.04.072

    Article  Google Scholar 

  4. St-Pierre JP, Gan L, Wang J et al (2012) The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate. Acta Biomater 8(4):1603–1615. https://doi.org/10.1016/j.actbio.2011.12.022

    Article  Google Scholar 

  5. Glyn-Jones S, Palmer AJR, Agricola R et al (2015) Osteoarthr Lancet 386:376–387. https://doi.org/10.1016/S0140-6736(14)60802-3

    Article  Google Scholar 

  6. Parisi C, Salvatore L, Veschini L et al (2020) Biomimetic gradient scaffold of collagen-hydroxyapatite for osteochondral regeneration. J Tissue Eng 11:1–13. https://doi.org/10.1177/2041731419896068

    Article  Google Scholar 

  7. Zhang Y, Wang F, Tan H, Chen G, Guo L, Yang L (2012) Analysis of the mineral composition of the human calcified cartilage zone. Int J Med Sci 9(5):353–360. https://doi.org/10.7150/ijms.4276

    Article  Google Scholar 

  8. Doulabi AH, Mequanint K, Mohammadi H (2014) Blends and nano composite biomaterials for articular cartilage tissue engineering. Materials (Basel) 7(7):5327–5355. https://doi.org/10.3390/ma7075327

    Article  Google Scholar 

  9. Horner CB, Maldonado M, Tai Y et al (2019) Spatially regulated multiphenotypic differentiation of stem cells in 3D via engineered mechanical gradient. ACS Appl Mater Interfaces 11(49):45479–45488. https://doi.org/10.1021/acsami.9b17266

    Article  Google Scholar 

  10. Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57. https://doi.org/10.1615/CritRevBiomedEng.v37.i1-2.10

    Article  Google Scholar 

  11. Korpayev S, Toprak Ö, Kaygusuz G et al (2020) Regulation of chondrocyte hypertrophy in an osteochondral interface mimicking gel matrix. Colloids Surf B 193:111111. https://doi.org/10.1016/j.colsurfb.2020.111111

    Article  Google Scholar 

  12. Cai H, Yao Y, Xu Y et al (2019) A Col I and BCP ceramic bi-layer scaffold implant promotes regeneration in osteochondral defects. RSC Adv 9(7):3740–3748. https://doi.org/10.1039/C8RA09171D

    Article  Google Scholar 

  13. Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res 391:26–33. https://doi.org/10.1097/00003086-200110001-00004

    Article  Google Scholar 

  14. She H, Xiao X, Liu R (2007) Preparation and characterization of polycaprolactone-chitosan composites for tissue engineering applications. J Mater Sci 42(19):8113–8119. https://doi.org/10.1007/s10853-007-1706-7

    Article  Google Scholar 

  15. Xiao H, Huang W, Xiong K et al (2019) Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Int J Nanomed 14:2011–2027. https://doi.org/10.2147/IJN.S191627

    Article  Google Scholar 

  16. Barr AJ, Dube B, Hensor EMA et al (2016) The relationship between three-dimensional knee MRI bone shape and total knee replacement—a case control study: data from the Osteoarthritis Initiative. Rheumatology 55(9):1585–1593. https://doi.org/10.1093/rheumatology/kew191

    Article  Google Scholar 

  17. Stocco TD, Antonioli E, Elias CMV et al (2019) Cell viability of porous poly (d, l-lactic acid)/vertically aligned carbon nanotubes/nanohydroxyapatite scaffolds for osteochondral tissue engineering. Materials 12(6):849. https://doi.org/10.3390/ma12060849

    Article  Google Scholar 

  18. Yujiao X, Xiaofeng L, Zhuang H et al (2018) Synthesis, self-assembly, and drug-release properties of new amphipathic liquid crystal polycarbonates. Nanomaterials 8(4):195. https://doi.org/10.3390/nano8040195

    Article  Google Scholar 

  19. Liu W, Lipner J, Xie J et al (2014) Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis. ACS Appl Mater Interfaces 6(4):2842–2849. https://doi.org/10.1021/am405418g

    Article  Google Scholar 

  20. Lin X, Chen J, Qiu P et al (2018) Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthr Cartil 26(3):433–444. https://doi.org/10.1016/j.joca.2017.12.001

    Article  Google Scholar 

  21. Oegema TR, Carpenter RJ, Hofmeister F et al (1997) The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech 37(4):324–332. https://doi.org/10.1002/(SICI)1097-0029(19970515)37:4%3C324::AID-JEMT7%3E3.0.CO;2-K

    Article  Google Scholar 

  22. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492. https://doi.org/10.1038/nature02388

    Article  Google Scholar 

  23. Zhang S, Chen L, Jiang Y et al (2013) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9(7):7236–7247. https://doi.org/10.1016/j.actbio.2013.04.003

    Article  Google Scholar 

  24. Rene ON, Lee EM, Kathryn S et al (2017) Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PLoS ONE 12(1):e0170312. https://doi.org/10.1371/journal.pone.0170312

    Article  Google Scholar 

  25. Maheshwari SU et al (2014) Fabrication and evaluation of (PVA/HAp/PCL) bilayer composites as potential scaffolds for bone tissue regeneration application. Ceram Int 40(6):8469–847. https://doi.org/10.1016/j.ceramint.2014.01.0587

    Article  Google Scholar 

  26. Schaefer D, Martin I, Jundt G et al (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheumatol 46(9):2524–2534. https://doi.org/10.1002/art.10493

    Article  Google Scholar 

  27. Erickson AE, Sun J, Lan Levengood SK et al (2019) Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model. Biomed Microdevice 21(2):21–34. https://doi.org/10.1007/s10544-019-0373-1

    Article  Google Scholar 

  28. Chaudhuri O, Gu L, Klumpers D et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15(3):326–334. https://doi.org/10.1038/nmat4489

    Article  Google Scholar 

  29. Chen J, Chin A, Almarza A et al (2019) Hydrogel to guide chondrogenesis versus osteogenesis of mesenchymal stem cells for fabrication of cartilaginous tissues. Biomed Mater 15(4):045006. https://doi.org/10.1088/1748-605X/ab401f

    Article  Google Scholar 

  30. Lake GJ, Thomas AG (1967) The strength of highly elastic materials. Proceedings A 300(1460):108–119. https://doi.org/10.1098/rspa.1967.0160

    Article  Google Scholar 

  31. Dai W, Kawazoe N, Lin X et al (2010) The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials 31(8):2141–2152. https://doi.org/10.1016/j.biomaterials.2009.11.070

    Article  Google Scholar 

  32. Okumura Y, Ito K et al (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13(7):485–487. https://doi.org/10.1002/1521-4095(200104)13:7%3C485::aid-adma485%3E3.0.co;2-t

    Article  Google Scholar 

  33. Laurenti M, Al Subaie AE, Abdallah MN et al (2016) 2D magnesium phosphate nanosheets form highly thixotropic gels that up-regulate bone formation. Nano Lett 16:4779–4787. https://doi.org/10.1021/acs.nanolett.6b00636

    Article  Google Scholar 

  34. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/deswelling properties. Adv Mater 14(16):1120–1124. https://doi.org/10.1002/1521-4095(20020816)14:16%3C1120::AID-ADMA1120%3E3.0.CO;2-9

    Article  Google Scholar 

  35. Santis RD, Gloria A, Russo T et al (2013) Advanced composites for hard-tissue engineering based on PCL/organic–inorganic hybrid fillers: from the design of 2D substrates to 3D rapid prototyped scaffolds. Polym Compos 34(9):1413–1417. https://doi.org/10.1002/pc.22446

    Article  Google Scholar 

  36. Stocco TD, Antonioli E, Elias CDV et al (2019) Cell viability of porous poly (d, l-lactic acid)/vertically aligned carbon nanotubes/nanohydroxyapatite scaffolds for osteochondral tissue engineering. Materials 12:1944–1996. https://doi.org/10.3390/ma12060849

    Article  Google Scholar 

  37. Liu JY, Li L, Suo HR et al (2019) 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater Des 171:107708. https://doi.org/10.1016/j.matdes.2019.107708

    Article  Google Scholar 

  38. Zhang K, He S, Yan S et al (2016) Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(l-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells. J Mater Chem B 15(4):2628–2645. https://doi.org/10.1039/c5tb02113h

    Article  Google Scholar 

  39. Zhou X, Esworthy T et al (2019) 3D printed scaffolds with hierarchical biomimetic structure for osteochondral regeneration. Nanomed Nanotechnol Biol Med 19:58–70. https://doi.org/10.1016/j.nano.2019.04.002

    Article  Google Scholar 

  40. Zhou M, Lozano N, Wychowaniec JK et al (2019) Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater 96:271–280. https://doi.org/10.1016/j.actbio.2019.07.027

    Article  Google Scholar 

  41. Korpayev S, Kaygusuz G, Şen M et al (2020) Chitosan/collagen based biomimetic osteochondral tissue constructs: a growth factor-free approach. Int J Biol Macromol 156:681–690. https://doi.org/10.1016/j.ijbiomac.2020.04.109

    Article  Google Scholar 

  42. Levingstone TJ, Thompson E, Matsiko A et al (2015) Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater 32:149–160. https://doi.org/10.1016/j.actbio.2015.12.034

    Article  Google Scholar 

  43. Zhu Y, Kong L, Farhadi F et al (2018) An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Biomaterials 192:149–158. https://doi.org/10.1016/j.biomaterials.2018.11.017

    Article  Google Scholar 

  44. Dong Y, Sun X, Zhang Z et al (2020) Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects. Appl Mater Today 19:100548. https://doi.org/10.1016/j.apmt.2019.100548

    Article  Google Scholar 

  45. Chen T, Bai J, Tian J et al (2018) A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure. Colloids Surf B 167:354–363. https://doi.org/10.1016/j.colsurfb.2018.04.029

    Article  Google Scholar 

  46. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721. https://doi.org/10.1016/j.biotechadv.2012.11.004

    Article  Google Scholar 

  47. Kosik-Kozioł A, Costantini M, Mróz A et al (2019) 3D bioprinted hydrogel model incorporating β-tricalcium phosphate for calcified cartilage tissue engineering. Biofabrication 11(3):035016. https://doi.org/10.1088/1758-5090/ab15cb

    Article  Google Scholar 

  48. Lin R, Deng C, Li X et al (2019) Copper-incorporated bioactive glass-ceramics inducing anti-inflammatory phenotype and regeneration of cartilage/bone interface. Theranostics 9(21):6300–6313. https://doi.org/10.7150/thno.36120

    Article  Google Scholar 

  49. Ghosal K, Bhattacharjee U, Sarkar K (2020) Facile green synthesis of bioresorbable polyester from soybean oil and recycled plastic waste for osteochondral tissue regeneration. Eur Polym J 122:109338. https://doi.org/10.1016/j.eurpolymj.2019.109338

    Article  Google Scholar 

  50. Bailey BM, Nail LN, Grunlan MA (2013) Continuous gradient scaffolds for rapid screening of cell–material interactions and interfacial tissue regeneration. Acta Biomater 9(9):8254–8261. https://doi.org/10.1016/j.actbio.2013.05.012

    Article  Google Scholar 

  51. Guo J, Li C, Ling S et al (2017) Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials 145:44–55. https://doi.org/10.1016/j.biomaterials.2017.08.025

    Article  Google Scholar 

  52. Presley G, Shanna Y, Jeffrey H et al (2017) Spatial regulation of bone morphogenetic proteins (BMPs) in postnatal articular and growth plate cartilage. PLoS ONE 12(5):e0176752. https://doi.org/10.1371/journal.pone.0176752

    Article  Google Scholar 

  53. Li C, Armstrong JP, Pence IJ et al (2018) Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering. Biomaterials 176:24–33. https://doi.org/10.1016/j.biomaterials.2018.05.029

    Article  Google Scholar 

  54. Levingstone TJ, Matsiko A, Dickson GR et al (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004. https://doi.org/10.1016/j.actbio.2014.01.005

    Article  Google Scholar 

  55. Lantada AD, Iniesta HA (2016) Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization. Mater Sci Eng C Mater Biol Appl 59:218–227. https://doi.org/10.1016/j.msec.2015.10.015

    Article  Google Scholar 

  56. Annabi N, Nichol JW, Zhong X et al (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B 16(4):371–383. https://doi.org/10.1089/ten.TEB.2009.0639

    Article  Google Scholar 

  57. Sobral JM, Caridade SG, Sousa RA et al (2011) Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater 7(3):1009–1018. https://doi.org/10.1016/j.actbio.2010.11.003

    Article  Google Scholar 

  58. Duan P, Pan Z, Cao L et al (2019) Restoration of osteochondral defects by implanting bilayered poly(lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Transl 19:68–80. https://doi.org/10.1016/j.jot.2019.04.006

    Article  Google Scholar 

  59. Artel A, Mehdizadeh H, Chiu YC et al (2011) An agent-based model for the investigation of neovascularization within porous scaffolds. Tissue Eng Part A 17(17–18):2133–2141. https://doi.org/10.1089/ten.TEA.2010.0571

    Article  Google Scholar 

  60. Van der Stok J, Van der Jagt OP, Amin Yavari S et al (2013) Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J Orthop Res 31(5):792–799. https://doi.org/10.1002/jor.22293

    Article  Google Scholar 

  61. Huang L, Huang J, Shao H et al (2019) Silk scaffolds with gradient pore structure and improved cell infiltration performance. Mater Sci Eng C 94:179–189. https://doi.org/10.1016/j.msec.2018.09.034

    Article  Google Scholar 

  62. Maciulaitis J, Rekštytė S, Bratchikov M et al (2019) Customization of direct laser lithography-based 3D scaffolds for optimized in vivo outcome. Appl Surf Sci 487:692–702. https://doi.org/10.1016/j.apsusc.2019.05.065

    Article  Google Scholar 

  63. Yang S, Leong KF, Du Z et al (2004) The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 7(6):679–689. https://doi.org/10.1089/107632701753337645

    Article  Google Scholar 

  64. Di Luca A, Lorenzo-Moldero I, Mota C et al (2016) Tuning cell differentiation into a 3d scaffold presenting a pore shape gradient for osteochondral regeneration. Adv Healthc Mater 5(14):1753–1763. https://doi.org/10.1002/adhm.201670074

    Article  Google Scholar 

  65. Mahapatra C, Kim JJ, Lee JH et al (2019) Differential chondro- and osteo-stimulation in three-dimensional porous scaffolds with different topological surfaces provides a design strategy for biphasic osteochondral engineering. J Tissue Eng 10:1–13. https://doi.org/10.1177/2041731419826433

    Article  Google Scholar 

  66. Sophia Fox AJ, Asheesh B, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468. https://doi.org/10.1016/j.csm.2004.08.007

    Article  Google Scholar 

  67. Nowicki M, Zhu W, Sarkar K et al (2019) 3D printing multiphasic osteochondral tissue constructs with nano to micro features via pcl based bioink. Bioprinting 17:e00066. https://doi.org/10.1016/j.bprint.2019.e00066

    Article  Google Scholar 

  68. Gonzalez Diaz EC, Shih YR et al (2018) Mineralized biomaterials mediated repair of bone defects through endogenous cells. Tissue Eng Part A 24(13–14):1148–1156. https://doi.org/10.1089/ten.TEA.2017.0297

    Article  Google Scholar 

  69. Heemin K, Yuze Z, Shyni V (2018) Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering. Acta Biomater 78:365–377. https://doi.org/10.1016/j.actbio.2018.07.039

    Article  Google Scholar 

  70. Chan EF, Liu I, Semler EJ et al (2012) Association of 3-dimensional cartilage and bone structure with articular cartilage properties in and adjacent to autologous osteochondral grafts after 6 and 12 months in a goat model. Cartilage 3(3):255–266. https://doi.org/10.1177/1947603511435272

    Article  Google Scholar 

  71. Subramony SD, Dargis BR, Castillo M et al (2013) The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 34(8):1942–1953. https://doi.org/10.1016/j.biomaterials.2012.11.012

    Article  Google Scholar 

  72. Shuaijun J, Jing W, Ting Z et al (2018) Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl Mater Interfaces 10(24):20296–20305. https://doi.org/10.1021/acsami.8b03445

    Article  Google Scholar 

  73. Zhang W, Lian Q, Li D et al (2015) The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. Mater Sci Eng C 46:10–15. https://doi.org/10.1016/j.msec.2014.09.042

    Article  Google Scholar 

  74. Nowicki MA, Castro NJ, Plesniak MW et al (2016) 3D printing of novel osteochondral scaffolds with graded microstructure. Nanotechnology 27(41):414001. https://doi.org/10.1088/0957-4484/27/41/414001

    Article  Google Scholar 

  75. Zhang B, Guo L, Chen H et al (2020) Finite element evaluations of the mechanical properties of polycaprolactone/hydroxyapatite scaffolds by direct ink writing: effects of pore geometry. J Mech Behav Biomed Mater 104:103665. https://doi.org/10.1016/j.jmbbm.2020.103665

    Article  Google Scholar 

  76. Bittner SM, Smith BT, Diaz-Gomez L et al (2019) Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater 90:37–48. https://doi.org/10.1016/j.actbio.2019.03.041

    Article  Google Scholar 

  77. Liu F, Mao Z, Zhang P et al (2018) Functionally graded porous scaffolds in multiple patterns: new design method, physical and mechanical properties. Mater Des 160:849–860. https://doi.org/10.1016/j.matdes.2018.09.053

    Article  Google Scholar 

  78. Fei L, David Z, Peng Z et al (2018) Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting. Materials 11(3):374. https://doi.org/10.3390/ma11030374

    Article  Google Scholar 

  79. Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos Trans Math Phys Eng Sci 367(1895):1993–2000. https://doi.org/10.1098/rsta.2009.0024

    Article  MATH  Google Scholar 

  80. Cahill S, Lohfeld S, Mchugh PE (2009) Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J Mater Sci Mater Med 20:1255–1262. https://doi.org/10.1007/s10856-009-3693-5

    Article  Google Scholar 

  81. Vahdati A, Zhao Y, Ovaert TC et al (2012) Computational investigation of fibrin mechanical and damage properties at the interface between native cartilage and implant. J Biomech Eng 134(11):111004. https://doi.org/10.1115/1.4007748

    Article  Google Scholar 

  82. Kinneberg KRC, Nelson A, Stender ME et al (2015) Reinforcement of mono- and bi-layer poly (ethylene glycol) hydrogels with a fibrous collagen scaffold. Ann Biomed Eng 43(11):2618–2629. https://doi.org/10.1007/s10439-015-1337-0

    Article  Google Scholar 

  83. Afshar M, Anaraki AP, Montazerian H (2018) Compressive characteristics of radially graded porosity scaffolds architectured with minimal surfaces. J Books 92:254–267. https://doi.org/10.1016/j.msec.2018.06.051

    Article  Google Scholar 

  84. San Cheong V, Fromme P, Mumith A et al (2018) Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. J Mech Behav Biomed Mater 87:230–239. https://doi.org/10.1016/j.jmbbm.2018.07.019

    Article  Google Scholar 

  85. Hendrikson WJ, Deegan AJ, Ying Y et al (2017) Influence of additive manufactured scaffold architecture on the distribution of surface strains and fluid flow shear stresses and expected osteochondral cell differentiation. Front Bioeng Biotechnol 5:00006. https://doi.org/10.3389/fbioe.2017.00006

    Article  Google Scholar 

  86. Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822. https://doi.org/10.1016/j.polymer.2012.03.013

    Article  Google Scholar 

  87. Zhang P, Liu J, To AC (2016) Role of anisotropic properties on topology optimization of additive manufactured load bearing structures. Scripta Mater 135:148–152. https://doi.org/10.1016/j.scriptamat.2016.10.021

    Article  Google Scholar 

  88. Byrne DP, Lacroix D, Planell J et al (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials 28:5544–5554. https://doi.org/10.1016/j.biomaterials.2007.09.003

    Article  Google Scholar 

  89. Checa S, Prendergast PJ (2010) Effect of cell seeding and mechanical loading on vascularization and tissue formation inside a scaffold: a mechano-biological model using a lattice approach to simulate cell activity. J Biomech 43(5):961–968. https://doi.org/10.1016/j.jbiomech.2009.10.044

    Article  Google Scholar 

  90. Sen S, Engler AJ, Discher DE (2009) Matrix strains induced by cells: computing how far cells can feel. Cell Mol Bioeng 2(1):39–48. https://doi.org/10.1007/s12195-009-0052-z

    Article  Google Scholar 

  91. Olivares AL, Marsal È, Planell JA et al (2009) Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30(30):6142–6149. https://doi.org/10.1016/j.biomaterials.2009.07.041

    Article  Google Scholar 

  92. Sandino C, Lacroix D (2011) A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models. Biomech Model Mechanobiol 10(4):565–576. https://doi.org/10.1007/s10237-010-0256-0

    Article  Google Scholar 

  93. Kandel RA, Grynpas M, Pilliar R et al (2006) Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a Sheep model. Biomaterials 27(22):4120–4131. https://doi.org/10.1016/j.biomaterials.2006.03.005

    Article  Google Scholar 

  94. Liverani L, Roether JA, Nooeaid P et al (2012) Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. Mater Sci Eng A 557:54–58. https://doi.org/10.1016/j.msea.2012.05.104

    Article  Google Scholar 

  95. Li Z, Jia S, Xiong Z et al (2018) 3D-printed scaffolds with calcified layer for osteochondral tissue engineering. J Biosci Bioeng 126:389–396. https://doi.org/10.1016/j.jbiosc.2018.03.014

    Article  Google Scholar 

  96. Harley BA, Lynn AK, Wissner-Gross Z et al (2010) Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res Part A 92(3):1078–1093. https://doi.org/10.1002/jbm.a.32387

    Article  Google Scholar 

  97. Phillips JE, Burns KL, Doux JML et al (2008) Engineering graded tissue interfaces. Proc Natl Acad Sci USA 105(34):12170–12175. https://doi.org/10.1073/pnas.0801988105

    Article  Google Scholar 

  98. Pratap SY, Christakiran MJ, Bhunia BK et al (2018) Hierarchically structured seamless silk scaffolds for osteochondral interface tissue engineering. J Mater Chem B 6(36):5671–5688. https://doi.org/10.1039/C8TB01344F

    Article  Google Scholar 

  99. Olubamiji AD, Izadifar Z, Si JL et al (2016) Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry. Biofabrication 8(2):025020. https://doi.org/10.1088/1758-5090/8/2/025020

    Article  Google Scholar 

  100. Nakano T, Ishimoto T (2015) Powder-based additive manufacturing for development of tailor-made implants for orthopedic applications. Powder Part 32:75–84. https://doi.org/10.14356/kona.2015015

    Article  Google Scholar 

  101. Du Y, Liu H, Yang Q et al (2017) Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 137:37–48. https://doi.org/10.1016/j.biomaterials.2017.05.021

    Article  Google Scholar 

  102. Hu XY, Man Y, Li WF et al (2019) 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers 11(10):1601. https://doi.org/10.3390/polym11101601

    Article  Google Scholar 

  103. Hong S, Sycks D, Chan HF et al (2015) 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Adv Mater 27:4035–4040. https://doi.org/10.1002/adma.201570182

    Article  Google Scholar 

  104. Zhai X, Ma Y, Hou C et al (2017) 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration. ACS Biomater Sci Eng 3(6):1109–1118. https://doi.org/10.1021/acsbiomaterials.7b00224

    Article  Google Scholar 

  105. Li Z, Jia S et al (2018) 3D-printed scaffolds with calcified layer for osteochondral tissue engineering. J Biosci Bioeng 126(3):389–396. https://doi.org/10.1016/j.jbiosc.2018.03.014

    Article  Google Scholar 

  106. Gao F, Xu Z, Liang Q et al (2018) Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect. Adv Funct Mater 28(13):1706644. https://doi.org/10.1002/adfm.201706644

    Article  Google Scholar 

  107. Idaszek J, Costantini M, Karlsen TA et al (2019) 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defect using a microfluidic printing head. Biofabrication 11(4):044101. https://doi.org/10.1088/1758-5090/ab2622

    Article  Google Scholar 

  108. Duarte Campos DF, Blaeser A, Weber M et al (2013) Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 5(1):015003. https://doi.org/10.1088/1758-5082/5/1/015003

    Article  Google Scholar 

  109. Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27(34):5075–5079. https://doi.org/10.1002/adma.201501234

    Article  Google Scholar 

  110. Bhattacharjee T, Zehnder SM, Rowe KG et al (2015) Writing in the granular gel medium. Sci Adv 1(8):e1500655. https://doi.org/10.1126/sciadv.1500655

    Article  Google Scholar 

  111. Senior JJ, Cooke ME, Grover LM et al (2019) Fabrication of complex hydrogel structures using suspended layer additive manufacturing (SLAM). Adv Mater 29(49):1904845. https://doi.org/10.1002/adfm.201904845

    Article  Google Scholar 

  112. Zhou X, Nowicki M, Cui H et al (2017) 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon 116:615–624. https://doi.org/10.1016/j.carbon.2017.02.049

    Article  Google Scholar 

  113. Zhou X, Cui H, Nowicki M, Miao S, Lee SJ, Masood F et al (2018) Three dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Appl Mater Interfaces 10:8993–9001. https://doi.org/10.1021/acsami.7b18197

    Article  Google Scholar 

  114. Wu X, Lian Q, Li D et al (2019) Biphasic osteochondral scaffold fabrication using multi-material mask projection stereolithography. Rapid Prototyp J 25(2):277–288. https://doi.org/10.1108/RPJ-07-2017-0144

    Article  Google Scholar 

  115. Gao F, Xu Z, Liang Q et al (2019) Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv Sci 6(15):1900867. https://doi.org/10.1002/advs.201900867

    Article  Google Scholar 

  116. Li L, Li J, Guo J et al (2019) 3D molecularly functionalized cell-free biomimetic scaffolds for osteochondral regeneration. Adv Funct Mater 29(6):1807356. https://doi.org/10.1002/adfm.201807356

    Article  Google Scholar 

  117. Daly AC, Kelly DJ (2019) Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers. Biomaterials 197:194–206. https://doi.org/10.1016/j.biomaterials.2018.12.028

    Article  Google Scholar 

  118. Di Luca A, Van Blitterswijk C, Moroni L (2015) The osteochondral interface as a gradient tissue: from development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res C Embryo Today Rev 105(1):34–52. https://doi.org/10.1002/bdrc.21092

    Article  Google Scholar 

  119. Scotti C, Wirz D, Wolf F et al (2010) Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds. Biomaterials 31(8):2252–2259. https://doi.org/10.1016/j.biomaterials.2009.11.110

    Article  Google Scholar 

  120. Kuang L, Ma X, Ma Y et al (2019) Self-assembled injectable nanocomposite hydrogels coordinated by in situ generated CaP nanoparticles for bone regeneration. ACS Appl Mater Interfaces 11(19):17234–17246. https://doi.org/10.1021/acsami.9b03173

    Article  Google Scholar 

  121. Shao L, Gao Q, Xie C et al (2020) Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks. Bio Des Manuf 3(1):30–39. https://doi.org/10.1007/s42242-020-00062-y

    Article  Google Scholar 

  122. Shao L, Gao Q, Xie CQ et al (2019) Synchronous 3D bioprinting of large-scale cell-laden constructs with nutrient networks. Adv Healthc Mater 9(15):1901142. https://doi.org/10.1002/adhm.201901142

    Article  Google Scholar 

Download references

Acknowledgements

Funding was supported by the Key Research and Development Program of Shaanxi Province (Grant No. 2020ZDLSF04-07), the National Key Research and Development Program of China (Grant No. 2019QY(Y)0502), the National Natural Science Foundation of China (Grant No. 51905438), the Innovation Platform of Biofabrication (Grant No. 17SF0002) and the Fundamental Research Funds for the Central Universities (Grant No. 31020190502009).

Author information

Authors and Affiliations

Authors

Contributions

YW was involved in conception, supervision and modification; YG helped in preparation, analysis and accomplishment; QW and XL contributed to analysis and modification; KJ and KZ were involved in data category and graph editing.

Corresponding author

Correspondence to Yanen Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, Y., Wei, Q. et al. Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds. Bio-des. Manuf. 4, 541–567 (2021). https://doi.org/10.1007/s42242-020-00119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00119-y

Keywords

Navigation