Skip to main content

Advertisement

Log in

Investigations on KAl(SO4)2∙12H2O: A Candidate α-Alum Material for Energy Storage Applications

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this work, we have successfully synthesized a pure phase of α-alum KAl(SO4)2∙12H2O, denoted as KAlSD by the slow evaporation method, to be useful as a material in the storage energy domain. XRD analysis and IR spectroscopy confirmed the high pure cubic phase. Thermal dehydration results done by DTA-TG analysis confirmed a complete dehydration process around 520 K. Kinetic analysis using the linear regression analysis indicated that different models can explain each dehydration stage. The conduction mechanism process was followed by complex impedance spectroscopy (CIS). Conductivity within the material is thermally activated and occurs by the migration of mobile cations into the host lattice with activation energy equal to 1.08 eV. KAlSD is an ionic semiconductor that can be selected as good electrode material in the energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The dataset used during this study is available from the corresponding author on resonnable request.

References

  1. Xue L, Yan L, Xu X, Liang Z, Liqiang M (2021) Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: materials and advances. J Energy Chem 61:104–134

    Article  Google Scholar 

  2. Dajian L, Yuan Y, Jiawei L, Maximilian F, Fusheng P (2021) A review on current anode materials for rechargeable Mg batteries. J Magnes Alloy 8:963–979

    Google Scholar 

  3. Liuzhang O, Jianling H, Hui W, Jiangwebg L, Min Z (2017) Progress of hydrogen storage alloys for Ni-MH rechargeable power batteries in electric vehicles: a review. Mater Chem Phys 200:164–178

    Article  Google Scholar 

  4. Wenxu S, Wentao Y, Xu X, Yanyi M, Peng T, Meng N (2021) Unravel the influences of Ni substitution on Co-based electrodes for rechargeable alkaline Zn–Co batterie. J Power Sourc 483:229192

    Article  Google Scholar 

  5. Ivana H, Sathiya M, Damien S, Philipp A, Alexey YK, Christian M, Laurence C, Montse CC (2021) Challenges of today for Na-based batteries of the future: From materials to cell metrics. J Power Sourc 482:228872

    Article  Google Scholar 

  6. Caixia L, Chun CH, Liyu C, Stefan K, Qiang X (2021) Rechargeable Al-ion batteries. Energy Chem 3:100049

    Article  Google Scholar 

  7. Giuseppe AE, Kostiantyn VK, Maksym VK, Joaqin C, Alex H, Richard GAW (2021) An overview and perspective on Al and Al-ion battery technologies. J Power Sourc 481:228870

    Article  Google Scholar 

  8. Yu Z, Lei M, Ruixian T, Xiao Z, Xiaoyo W, Yanru D, Guolong K, Fangfang Z, Liangming W (2021) The host hollow carbon nanospheres as cathode material for nonaqueous room-temperature Al–S batteries. Int J Hydrog Energy 46:4936–4946

    Article  Google Scholar 

  9. Jin TR, Lei C, Hao YW, Zhong YY (2021) Aqueous Al-N2 battery assembled by hollow molybdenum phosphate microspheres for simultaneous NH3 production and power generation. Chem Eng 418:129447

    Article  Google Scholar 

  10. Guanghua L, Deshuang Y, Junnan S, Feng H, Linlin L, Shengjie P (2021) FeNi nanoparticles encapsulated in Nitrogen-doped carbon frame for efficient and stable Al-air batteries. Mater Lett 296:129890

    Article  Google Scholar 

  11. Bo H, Liangxing J, Ketao H, Fangyang L, Xiaoying Y, Haitao X, Jie L, Yexiang L (2014) Al/Pb lightweight grids prepared by molten salt electroless plating for application in lead-acid batteries. J Power Sourc 256:294–300

    Article  Google Scholar 

  12. Li Z, Quanhu M, Gaowei W, Ziqiang L, Li Z (2021) A low cost electrolyte of AlCl3/AcAm ionic liquid analogs for high-performance aluminum ion batteries. J Electroanal Chem 888:115176

    Article  Google Scholar 

  13. Hanyan X, Tianwen B, Hao C, Fan G, Jiabin X, Tieqi H, Shengying C, Xingyan C, Jun L, Weiwei G, Zhen X, Chao G (2019) Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy Storage Mater 17:38–45

    Article  Google Scholar 

  14. Ahmed S, Inocencio RM, Lotfi Z, Antonio DLG, Dalila BHC (2017) Luminescence properties of Pr3+ ion doped Mg-picromerite Tutton salt. J Lumin 188:148–153

    Article  Google Scholar 

  15. Ahmed S, Massoud K, BenMoumammed M, Antonio DLG, Dalila BHC (2017) Synthesis, structural and electrochemical properties of new ytterbium doped langbeinite ceramics. Ceram Int 43:10939–10947

    Article  Google Scholar 

  16. Ahmed S, Antonio DLG, Lotfi Z, Sameh AE, Mohammed A, Emmanuel L, Carla PR, Dalila BHC (2016) Synthesis, characterization and electrical properties of both pure and cobalt-doped picroerite-type hydrated double salt K2Mg1-xCox(SO4)2.6H2O (x = 0, 0.4). J Electron Mater 45:4418–4424

    Article  Google Scholar 

  17. Abir B, Ahmed S, Massoud K, Antonio DLG, Dalila BHC (2018) Synthesis, electrical and dielectrical properties of (LixNa1– x)6Mg(SO4)4 vanthoffite ceramics as new attractive electrode materials for Li- and Na-ion batteries. Mater Sci Eng B 228:224–233

    Article  Google Scholar 

  18. Abir B, Ahmed S, Massoud K, Antonio DLG, Julian MP, Dalila BHC (2019) Synthesis, characterization, thermal analysis and electrical properties of (NH4)2M(SO4)2·6H2O (M=Cu Co, Ni). Mater Sci Eng B 240:97–105

    Article  Google Scholar 

  19. Abir B, Ahmed S, Massoud K, Antonio DLG, Dalila BHC (2019) Spectroscopic investigations on vanthoffite ceramics partially doped with cobalt. Ionics 24:2867–2875

    Google Scholar 

  20. Ahmed S, Massoud K, Ramzi F, Antonio DLG, Dalila BHC (2019) Synthesis, characterization and electrical properties of Na6M(SO4)4 (M=Co, Ni, Cu) vanthoffite materials. Mater Sci Eng B 244:56–64

    Article  Google Scholar 

  21. Ahmed S, Massoud K, Inocencio RM, Antonio DLG, Emmanuel L, Dalila BHC (2019) Synthesis, luminescence, and electrical properties of Na6Mg(SO4)4:xEu vanthoffite ceramics as electrode materials for sodium ion batteries. Mater Sci Eng B 247:114384

    Article  Google Scholar 

  22. Zheng M, Luo JW, Zhang YH, Chen P (2017) Preparation and characterization of composite material Na2SO4·10H2O-KAl(SO4)2·12H2O for thermal storage. Mater Sci Eng 167:012007

    Google Scholar 

  23. Jianfeng D, Runqiang L, Kezhan W (2012) Thermal performance and dehydration kinetics of KAl(SO4)2·12H2O as phase change material. Adv Mater Res 418–420:282–285

    Google Scholar 

  24. Kaminskii AA, Haussuhl E, Haussuhl S, Eichler HJ, Ueda K, Hanuza J, Takaichi K, Rhee H, Gad GMA (2004) α−Alums: K, Rb, Tl and NH4Al(SO4)2.12H2O—a new family of χ3−active crystalline materials for Raman laser converters with large frequency shifts. Laser Phys Lett 1:205–211

    Article  CAS  Google Scholar 

  25. Nyburg SC, Steed JW, Aleksovska S, Petrusevski VM (2000) Structure of the alums. I. On the sulfate group disorder in the α−alums. Acta Cryst B 56:204–209

    Article  Google Scholar 

  26. Gad G, Kaminskii AA, Eichler HJ, Pickardt J (2003) Double sulfate KAl(SO4)2.12H2O single crystals (a-alum)—a new material for Raman laser converters. Phys Stat Sol A 3:R10–R12

    Google Scholar 

  27. Ko JH, Oh SH, Lee KS (2020) Anomalous longitudinal acoustic phonon and elastic constant in potassium alum KAl(SO4)2⋅12H2O single crystal studied by Brillouin spectroscopy. J Phys Chem Solids 140:109364

    Article  CAS  Google Scholar 

  28. Ae RL, Se YJ (2004) A study of the relaxation mechanism of a KAl(SO4)2·12H2O single crystal by observation of its 39K and 27Al spin–lattice relaxation processes. J Phys: Condens Matter 16:4403–4410

    Google Scholar 

  29. Wunchun S, Yan Z, Jinxin F, Xiaoming F, Ziye L, Zhengguo Z (2019) Compounding MgCl2.6H2O with NH4Al(SO4)2.12H2O or KAl(SO4)2.12H2O to obtain binary hydrated salts as high-performance phase change materials. Molecules 24:363

    Article  Google Scholar 

  30. Ae RL (2009) Study on the phase transitions by nuclear magnetic resonance of α-type RbAl(SO4)2.12H2O and β−type CsAl(SO4)2.12H2O single crystals. Solid State Nucl Magn Reson 36:45–51

    Article  Google Scholar 

  31. Paolo B (2015) Thermal behaviour of alum-(K) KAl(SO4)2·12H2O from in situ laboratory high-temperature powder X-ray diffraction data: thermal expansion and modelling of the sulfate orientational disorder. Mineral Mag 79:157–170

    Article  Google Scholar 

  32. Goutam B, Khondekar N, Sanchari B, Mullicka M, Nayana N, Indrajit K, Mandal B (2019) Alum (KAl(SO4)2.12H2O)—an eco-friendly and versatile acid-catalyst in organic transformations: a recent update. Curr Green Chem 6:12–31

    Article  Google Scholar 

  33. Minoo D, Peyman S, Somayeh O, Mostafa BGK, Ali AM (2005) Efficient synthesis of mono- and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2.12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett 46:6123–6126

    Article  Google Scholar 

  34. Majid MH, Hossein AO, Narges K, Hoda H (2011) KAl(SO4)2.12H2O catalyzed efficient synthesis of 3,4,6-trisubstituted 2-pyridone in water. Chin Chem Lett 22:1059–1062

    Article  Google Scholar 

  35. Majid MH, Masoumeh Z, Narges M, Hoda H (2012) KAl(SO4)2.12H2O or KHSO4: efficient and inexpensive catalysts for the one-pot synthesis of β-acetamido ketones by dakin-west reaction. Synth React Inorg M 42:178–182

    Article  Google Scholar 

  36. Kiran FS, Suryakant S, Amol K, Bapu S, Murlidhar S (2009) An efficient and green procedure for the preparation of acylals from aldehydes catalyzed by alum [KAl(SO4)2.12H2O]. S Afr J Chem 62:109–112

    Google Scholar 

  37. Brian HT (2006) R factors in rietveld analysis: how good is good enough? Powder Diff 21:67–70

    Article  Google Scholar 

  38. Marine R, Prabeer B, Gwenaelle R, Jean NC, Brent CM, Nadir R, Jean MT (2012) Synthesis and crystal chemistry of the NaMSO4F family (M=Mg, Fe Co, Cu, Zn). Solid State Sci 14:15–20

    Article  Google Scholar 

  39. Shubham L, Sudhindra MA, Lalit SP (2022) Magnetic structure of fluorophosphate Na2MnPO4F sodium battery material. J Solid State Chem 308:122926

    Article  Google Scholar 

  40. Hamdi BY, Rachid E, Ruhul A, Khalid B, Toyoki O, Ilias B (2018) Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2. J Power Sourc 382:144–151

    Article  Google Scholar 

  41. Reza EK, Mohammed HA (2008) Evaluation of reliability of Coats-Redfern method for Kinetic analysis of non isothermal TGA. Trans Nonferrous Met Soc Chin 18:217–221

    Article  Google Scholar 

  42. Luis APM, Criado JM, Sánchez PE (2006) Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A 110:12456–12462

    Article  Google Scholar 

  43. Sergey V, Alain KB, Jose MC, Luis APM, Crisan P, Nicolas S (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Article  Google Scholar 

  44. Nicolas S (2019) Advanced isoconversional kinetic analysis for the elucidation of complex reaction mechanisms: a new method for the identification of rate-limiting steps. Molecules 24:1683

    Article  Google Scholar 

  45. Ahmed S, Dalila BHC (2021) Effects of Gd2O3 doping on the structure and the conduction mechanism of K2Mg2(SO4)3 langeinite ceramics: a comparative study. Mater Sci Eng B 265:115040

    Article  Google Scholar 

  46. Amor F, Salah K, Hassouna D (2018) BixCe1−xPO4(x = 0.00, 0.02, and 0.08) nanorods: structural, electrical, optical, and electrochemical properties. Ionics 24:429–450

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Jmii Imen the Thermal Analysis Laboratory technician for her help, suggestions, and comments during the experimental procedure. We are also grateful to Mr. Othmani Abdelhak for his help in impedance measurements.

Funding

The authors received no financial support conflict of interest concerning the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Souemti.

Ethics declarations

Conflict of Interest

The authors declared no potential conflict of interest concerning the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souemti, A., Mouhammed, M.B., Lozano-Gorrin, A.D. et al. Investigations on KAl(SO4)2∙12H2O: A Candidate α-Alum Material for Energy Storage Applications. Chemistry Africa 5, 575–587 (2022). https://doi.org/10.1007/s42250-022-00336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00336-1

Keywords

Navigation