Skip to main content
Log in

Analysis of Structural and Electronic Properties of Novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2, PMMA/ZrO2-Ag, PMMA-Ag) Nanocomposites for Low Cost Electronics and Optics Applications

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the effect of (Al2O3, ZrO2, Ag, Al2O3-Ag, ZrO2-Ag) nanoparticles on the optimized geometrical parameters and electronic properties of poly-methylmethacrylate has been investigated for first time. The optimization parameters included both bonds angles and bonds length. The electronic properties included the (lower unoccupied molecular orbital energy (ELUMO), high occupied molecular orbital energy (EHOMO), energy gap (Eg), ionization potential (IE), electron affinity (EA), electronegativity (χ), electrochemical hardness H, electronic softness S total energy, total dipole moment and Average polarizability). The results showed that the addition of nanoparticles has a direct impact on all the properties of the molecules studied. The increase in the number of atoms leads to decreased energy gap from 7.0329 to 2.7689 eV. The ionization potential and electron affinity decrease with increasing of atoms number for structures. The produced nanocomposites have different applications in many fields such as: gas sensors, solar cells, diodes, UV shielding, lasers, optoelectronics, medical application, dental filling…etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. F.S. Ishizaki, K. Horie, Photocurrent in and miscibility ofpoly (N-vinylcarbazole)/poly (methyl methacrylate) blends. Polym. Bull. 46(2–3), 197–204 (2001)

    Article  CAS  Google Scholar 

  2. K. Zhao, Z. Cheng, Z. Zhang, J. Zhu, X. Zhu, Synthesis of fluorescentpoly (methyl methacrylate) via AGET ATRP. Polym. Bull. 63(3), 355–364 (2009)

    Article  CAS  Google Scholar 

  3. L.-B. Zhong, J. Yin, Y.-M. Zheng, Q. Liu, X.-X. Cheng, F.-H. Luo, Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal. Chem. 86(13), 6262–6267 (2014)

    Article  CAS  Google Scholar 

  4. J. Theerthagiri, R.A. Senthil, M.H. Buraidah, J. Madhavan, A.K. Arof, Effect of tetrabutylammonium iodide content on PVDF-PMMApolymer blend electrolytes for dye-sensitized solar cells. Ionics 21(10), 2889–2896 (2015)

    Article  CAS  Google Scholar 

  5. W.-M. Kang, X.-M. Ma, M. Hu, Z.-X. Jia, H. Liu, B.-W. Cheng, Selftemplatingsynthesis of a fluorescent porphyrin doped poly(methyl methacrylate) nano-array and its HCl gas sensing properties. Anal. Methods 8(35), 6489–6493 (2016)

    Article  CAS  Google Scholar 

  6. J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, D.R. Bloch, Hand Book of Polymers, 4th edn. (Wiley, New York, 1999)

    Google Scholar 

  7. J. Maitra, V.K. Shukla, Cross-linking in hydrogels-a review. Am. J. Polym. Sci. 4(2), 25–31 (2014)

    CAS  Google Scholar 

  8. M.A. Hussein, R.M. El-Shishtawy, B.M. Abu-Zied, A.M. Asiri, Theimpact of cross-linking degree on the thermal and texturebehavior of poly (methyl methacrylate). J. Therm. Anal. Calorim. 124(2), 709–717 (2016)

    Article  CAS  Google Scholar 

  9. G.E. Zsoldos, M. Kollár, Structural analysis of polyolefin-poly(-methyl methacrylate) blends. J. Therm. Anal. Calorim. 119(1), 63–72 (2015)

    Article  CAS  Google Scholar 

  10. G. Demirci, B. Podkościelna, A. Bartnicki, P. Mergo, M. Gil, O. Cetinkaya, B. Gawdzik, Copolymerization and thermal study ofthe newmethacrylate derivative of 2,4,6-trichlorophenol. J. Therm. Anal. Calorim. 127(3), 2263–2271 (2017)

    Article  CAS  Google Scholar 

  11. X. Qiu, L. Lu, P. Han, G. Tang, G. Song, Fabrication, thermalpropertyand thermal reliability of microencapsulated paraffinwith ethyl methacrylate-based copolymer shell. J. Therm. Anal. Calorim. 124(3), 1291–1299 (2016)

    Article  CAS  Google Scholar 

  12. R. Shen, L.C. Hatanaka, L. Ahmed, R.J. Agnew, M.S. Mannan, Q. Wang, Cone calorimeter analysis of flame retardant poly (methylmethacrylate)-silica nanocomposites. J. Therm. Anal. Calorim. 128(3), 1443–1451 (2017)

    Article  CAS  Google Scholar 

  13. P.V. Kulkarni, J. Keshavayya, Chitosan Sodium alginatebiodegradable interpenetrating polymer network (IPN) beads fordelivery of ofloxacin hydrochloride. Int. J. Pharm. Pharm. Sci. 2(2), 77–82 (2010)

    CAS  Google Scholar 

  14. M. Zhang, R. Wang, T. Xiang, W.-F. Zhao, S.-C. Zhao, Preparation, characterization and application of poly (sodium p-styrenesulfonate)/poly (methyl methacrylate) particles. J. Ind. Eng. Chem. 34, 415–421 (2016)

    Article  CAS  Google Scholar 

  15. S.H. Khalid, M.I. Qadir, A. Massud, M. Ali, M.H. Rasool, Effect ofdegree of cross-linking on swelling and drug release behaviour ofpoly (methyl methacrylate-co-itaconic acid)[P (MMA/IA)]hydrogels for site specific drug delivery. J. Drug Deliv. Sci. Technol. 19(6), 413–418 (2009)

    Article  CAS  Google Scholar 

  16. Z. Wang, H. Liu, H. Cui, M. Zhang, Z. Zhang, A cross-linked andswelling polymer as an effective solid acid catalyst. Ind. Eng. Chem. Res. 54(29), 7219–7225 (2015)

    Article  CAS  Google Scholar 

  17. C.K. Kuo, P.X. Ma, Ionicallycrosslinked alginate hydrogels asscaffolds for tissue engineering: part 1. Structure, gelation rateand mechanical properties. Biomaterials 22(6), 511–521 (2001)

    Article  CAS  Google Scholar 

  18. Z.H. Huang, K.Y. Oiu, Polym. Bull. 35, 607 (1995)

    Article  CAS  Google Scholar 

  19. H.T. Wang, P. Xu, W. Zhong, L. Shen, Q. Du, Polym. Degrad. Stabil. 87, 319 (2005)

    Article  CAS  Google Scholar 

  20. G. Wang, J. Yu, J.M. Elvain, A. Heeger, Adv. Mater. 10, 1431 (1998)

    Article  Google Scholar 

  21. O. Takeshi, C. Yoshiki, Polym. J. 42, 58 (2010)

    Article  CAS  Google Scholar 

  22. A. Hirvonen, R. Nowak, Y. Yamamoto, T. Sekino, K. Niihara, Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J. Eur. Ceram. Soc. 26(8), 1497–1505 (2006)

    Article  CAS  Google Scholar 

  23. A. Hashim, N. Hamid, Fabrication and properties of biopolymer-ceramics nanocomposites as UV-shielding for bionanoscience application. J. Bionanosci. 12(6), 788–791 (2018). https://doi.org/10.1166/jbns.2018.1591

    Article  CAS  Google Scholar 

  24. A. Hashim, Z.S. Hamad, Novel of (niobium carbide-biopolymer blend) nanocomposites: characterization for bioenvironmental applications. J. Bionanosci. 12(4), 488–493 (2018). https://doi.org/10.1166/jbns.2018.1551

    Article  CAS  Google Scholar 

  25. D. Hassan, A. Hashim, Preparation and studying the structural and optical properties of (poly-methyl methacrylate-lead oxide) nanocomposites for bioenvironmental applications. J. Bionanosci. 12(3), 346–349 (2018). https://doi.org/10.1166/jbns.2018.1537

    Article  CAS  Google Scholar 

  26. A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low-cost nuclear radiation shielding. Ukr. J. Phys. 64(2), 157 (2019). https://doi.org/10.15407/ujpe64.2.157

    Article  Google Scholar 

  27. D. Hassan, A. Hashim, Structural and optical properties of (polystyrene–copper oxide) nanocomposites for biological applications. J. Bionanosci. 12(3), 341–345 (2018). https://doi.org/10.1166/jbns.2018.1533

    Article  CAS  Google Scholar 

  28. K.H. Al-Attiyah, A. Hashim, S.F. Obaid, Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int. J. Plast. Technol. (2019). https://doi.org/10.1007/s12588-019-09228-5

    Article  Google Scholar 

  29. A. Hashim, Z.S. Hamad, Synthesis, characterization and nanobiological application of (biodegradable polymers-titanium nitride) nanocomposites. J. Bionanosci. 12(4), 504–507 (2018). https://doi.org/10.1166/jbns.2018.1561

    Article  CAS  Google Scholar 

  30. A. Basim, H. Ahmed, Novel X-rays attenuation by (PMMA-PS-WC) new nanocompsites: fabrication, structural, optical characterizations and X-ray shielding application. Int. J. Emerg. Trends Eng. Res. (2019). https://doi.org/10.30534/ijeter/2019/06782019

    Article  Google Scholar 

  31. A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukr. J. Phys. 62(11), 978 (2017). https://doi.org/10.15407/ujpe62.11.0978

    Article  Google Scholar 

  32. K.H. Al-Attiyah, A. Hashim, S.F. Obaid, Synthesis of new nanocomposites: carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol/lead oxide nanoparticles: structural and electrical properties as gamma ray sensor for bioenvironmental applications. J. Bionanosci. 12(2), 200–205 (2018). https://doi.org/10.1166/jbns.2018.1526

    Article  CAS  Google Scholar 

  33. A. Hashim, A. Hadi, Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application. Sens. Lett. 15(10), 858–861 (2017). https://doi.org/10.1166/sl.2017.3900

    Article  Google Scholar 

  34. H. Ahmed, J. Ali, Novel of (PVA–ST–PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3915

    Article  Google Scholar 

  35. A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym. Mater. 28(4), 1394–1401 (2018). https://doi.org/10.1007/s10904-018-0837-4

    Article  CAS  Google Scholar 

  36. H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00111-z

    Article  Google Scholar 

  37. H. Ahmed, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00100-2

    Article  Google Scholar 

  38. Ahmed Hashim and Majeed Ali Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-018-0081-1

    Article  Google Scholar 

  39. A. Hashim, Y. Al-Khafaji, A. Hadi, Synthesis and characterization of flexible resistive humidity sensors based on PVA/PEO/CuO nanocomposites. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00145-3

    Article  Google Scholar 

  40. A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci. Mater. Electron. 29, 11598–11604 (2018). https://doi.org/10.1007/s10854-018-9257-z

    Article  CAS  Google Scholar 

  41. A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 12, 1 (2018). https://doi.org/10.1166/jbns.2018.1518

    Article  CAS  Google Scholar 

  42. A. Hashim, M.A. Habeeb, A. Hadi, Synthesis of novel polyvinyl alcohol–starch-copper oxide nanocomposites for humidity sensors applications with different temperatures. Sens. Lett. 15(9), 758–761 (2017). https://doi.org/10.1166/sl.2017.3876

    Article  Google Scholar 

  43. A. Hadi, A. Hashim, Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukr. J. Phys. 62(12), 17 (2017). https://doi.org/10.15407/ujpe62.12.1044

    Article  Google Scholar 

  44. I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. (2017). https://doi.org/10.1007/s12588-017-9192-5

    Article  Google Scholar 

  45. H. Ahmed, A. Hashim, H.M. Abduljalil, Analysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial application, Egypt. J. Chem. 62(4), 1167–1176 (2019). https://doi.org/10.21608/EJCHEM.2019.6241.1522

    Article  Google Scholar 

  46. A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (Polymer Blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci. Mater. Electron. 29(12), 10369–10394 (2018). https://doi.org/10.1007/s10854-018-9095-z

    Article  CAS  Google Scholar 

  47. A. Hashim, I.R. Agool, K.J. Kadhim, Modern developments in polymer nanocomposites for antibacterial and antimicrobial applications: a review. J. Bionanosci. 12(5), 608–613 (2018). https://doi.org/10.1166/jbns.2018.1580

    Article  CAS  Google Scholar 

  48. N.H. Al-Garah, F.L. Rashid, A. Hadi, A. Hashim, Synthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. J. Bionanosci. 12(3), 336–340 (2018). https://doi.org/10.1166/jbns.2018.1538

    Article  CAS  Google Scholar 

  49. K.J. Kadhim, I.R. Agool, A. Hashim, Synthesis of (PVA–PEG–PVP–TiO2) nanocomposites for antibacterial application. Mater. Focus 5(5), 436–439 (2016). https://doi.org/10.1166/mat.2016.1371

    Article  CAS  Google Scholar 

  50. K.J. Kadhim, I.R. Agool, A. Hashim, Effect of zirconium oxide nanoparticles on dielectric properties of (PVA–PEG–PVP) blend for medical application. J. Adv. Phys. 6(2), 187–190 (2017). https://doi.org/10.1166/jap.2017.1313

    Article  Google Scholar 

  51. H. Angham, H. Ahmed, M.A. Hayder, Novel (PMMA–ZrO2–Ag) nanocomposites: structural, electronic, optical properties as antibacterial for dental industries. Int. J. Emerg. Trends Eng. Res. (2019). https://doi.org/10.30534/ijeter/2019/01782019

    Article  Google Scholar 

  52. H. Angham, M.A. Hayder, H. Ahmed, Structural, electronic, optical properties and antibacterial application of novel (PMMA-Al2O3-Ag) nanocomposites for dental industries applications. Int. J. Emerg. Trends Eng.Res. (2019). https://doi.org/10.30534/ijeter/2019/04782019

    Article  Google Scholar 

  53. L.R. Farhan, M.T. Shahid, H. Aseel, H. Ahmed, Novel of thermal energy storage and release: water/(SnO2–TaC) and water/(SnO2–SiC) nanofluids for environmental applications. IOP Conf. Seri. Mater. Sci. Eng. 454, 012113 (2018). https://doi.org/10.1088/1757-899x/454/1/012113

    Article  CAS  Google Scholar 

  54. A. Hadi, F.L. Rashid, H.Q. Hussein, A. Hashim, Novel of water with (CeO2–WC) and (SiC–WC) nanoparticles systems for energy storage and release applications. IOP Conf. Seri. Mater. Sci. Eng. (2019). https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  55. F.L. Rashid, A. Hadi, N.H. Al-Garah, A. Hashim, Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int. J. Pharm. Phytopharmacol. Res. 8, 46–56 (2018)

    CAS  Google Scholar 

  56. I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA–PEG–PVP–ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. (2017). https://doi.org/10.1007/s12588-017-9196-1

    Article  Google Scholar 

  57. W. Brostow, M. Dutta, J. Ricardo de Souza, P. Rusek, A. Marcos de Medeiros, E.N. Ito, Nanocomposites of poly(methyl methacrylate) (PMMA) and montmorillonite (MMT) Brazilian clay: a tribological study. eXPRESS Polym. Lett. 4(9), 570–575 (2010)

    Article  CAS  Google Scholar 

  58. H. Abduljalil, A. Hashim, A. Jewad, The effect of addition titanium dioxide on electrical properties of poly-methyl methacrylate. Eur. J. Sci. Res. 63(2), 231–235 (2011)

    Google Scholar 

  59. Z. Al-Ramadhan, A. Hashim, A.J.K. Algidsawi, The D.C electrical properties of (PVC–Al2O3) composites. AIP Conf. Proc. (2011). https://doi.org/10.1063/1.3663109

    Article  Google Scholar 

  60. A. Hashim, A. Hadi, synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. (2017). https://doi.org/10.15407/ujpe62.12.1050

    Article  Google Scholar 

  61. A. Hashim, A. Hadi, A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3910

    Article  Google Scholar 

  62. A. Hashim, A. Hadi, Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukr. J. Phys. (2018). https://doi.org/10.15407/ujpe63.8.754

    Article  Google Scholar 

  63. A. Hashim, Q. Hadi, Novel of (niobium carbide/polymer blend) nanocomposites: fabrication and characterization for pressure sensor. Sens. Lett. (2017). https://doi.org/10.1166/sl.2017.3892

    Article  Google Scholar 

  64. A. Hashim, M.A. Habeeb, A. Hadi, Q.M. Jebur, W. Hadi, Fabrication of novel (PVA–PEG–CMC–Fe3O4) magnetic nanocomposites for piezoelectric applications. Sens. Lett. (2017). https://doi.org/10.1166/sl.2018.3935

    Article  Google Scholar 

  65. A. Hashim, HaZ Hamad, Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J. Nanostruct. 9(2), 340–348 (2019). https://doi.org/10.22052/JNS.2019.02.016

    Article  CAS  Google Scholar 

  66. D. Hassan, A.H. Ah-Yasari, Fabrication and studying the dielectric properties of (polystyrene-copper oxide) nanocomposites for piezoelectric application. Bull. Electr. Eng. Inf. (2019). https://doi.org/10.11591/eei.v8i1.1019

    Article  Google Scholar 

  67. M.A. Habbeb, A. Hashim, A.-R.K. AbidAli, The dielectric properties for (PMMA–LiF) composites. Eur. J. Sci. Res. 61(3), 367–371 (2011)

    Google Scholar 

  68. F.A. Jasim, A. Hashim, A.G. Hadi, F. Lafta, S.R. Salman, H. Ahmed, Preparation of (pomegranate peel-polystyrene) composites and study their optical properties. Res. J. Appl. Sci. 8(9), 439–441 (2013)

    CAS  Google Scholar 

  69. F.A. Jasim, F. Lafta, A. Hashim, M. Ali, A.G. Hadi, Characterization of palm fronds-polystyrene composites. J. Eng. Appl. Sci. 8(5), 140–142 (2013)

    CAS  Google Scholar 

  70. I.R. Agool, F.S. Mohammed, A. Hashim, The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA–PAA–PVP) blend. Adv. Environ. Biol. 9(11), 1–1 (2015)

    CAS  Google Scholar 

  71. F.L. Rashid, A. Hashim, M.A. Habeeb, S.R. Salman, H. Ahmed, Preparation of PS-PMMA copolymer and study the effect of sodium fluoride on its optical properties. J. Eng. Appl. Sci. 8(5), 137–139 (2013)

    CAS  Google Scholar 

  72. A. Hashim, H. Abduljalil, H. Ahmed, Analysis of optical, electronic and spectroscopic properties of (Biopolymer-SiC) nanocomposites for electronics applications, Egypt. J. Chem. (2019). https://doi.org/10.21608/EJCHEM.2019.7154.1590

    Article  Google Scholar 

  73. A. Hashim, M.A. Habeeb, A. Khalaf, A. Hadi, Fabrication of (PVA–PAA) blend-extracts of plants bio-composites and studying their structural, electrical and optical properties for humidity sensors applications. Sens. Lett. 15, 589–596 (2017). https://doi.org/10.1166/sl.2017.3856

    Article  Google Scholar 

  74. S. Hadi, A. Hashim, A. Jewad, Optical properties of (PVA-LiF) composites. Aust. J. Basic Appl. Sci. 5(9), 2192–2195 (2011)

    CAS  Google Scholar 

  75. Q.M. Jebur, A. Hashim, M.A. Habeeb, Structural, electrical and optical properties for (polyvinyl alcohol-polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans. Electr. Electron. Mater. (2019). https://doi.org/10.1007/s42341-019-00121-x

    Article  Google Scholar 

  76. J. Enkovaara, C. Rostgaard, J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. Hansen, J. Phys. Condens. Matter 22, 25 (2010)

    Article  CAS  Google Scholar 

  77. K. Xia, M. Zwierzycki, M. Talanana, P.J. Kelly, G. Bauer, J. Phys. Rev. B 73, 1–6 (2006)

    Article  CAS  Google Scholar 

  78. P. Hohenberg, W. Kohn, J. Phys. Rev. 136, 864–871 (1964)

    Article  Google Scholar 

  79. C. Zhan, J. Nichols, D. Dixon, J. Phys. Chem. A 107, 4184 (2003)

    Article  CAS  Google Scholar 

  80. K. Sadasivam, R. Kumareaan, J. Comput. Theor. Chem. 963, 227 (2011)

    Article  CAS  Google Scholar 

  81. I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Wiley, New York, 1976)

    Google Scholar 

  82. B. Kim, Mercury–Containing Species and Carbon Dioxide Adsorption Studies on Inorganic Compounds Using Density Functional Theory, Ph.D. thesis, University of Arizona, 2010

  83. M. Mueller, Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations (Kluwer Academic/Plenum Publishers, New York, 2001)

    Google Scholar 

  84. S. Naghavi, Theoretical Study of Correlated Systems Using Hybrid Functionals, Ph.D. thesis, Mainz University, 2010

  85. A. Satar A, A Spectral and Structural Studies of Cobalt-phthalocyanine (CoPc), Ph.D. thesis, Al-Mustansiriyah University, 2010

  86. M. Mueller, Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations (Kluwer Academic/Plenum Publishers, New York, 2001)

    Google Scholar 

  87. X. Andrade, S. Botti, M.A.L. Marques, A. Rubio, Time-dependent density functional theory scheme for efficient calculations of dynamic(hyper)polarizabilities. J. Chem. Phys. 126, 1–8 (2007)

    Article  CAS  Google Scholar 

  88. Schlipf M, Heyd-Scuseria-Ernzerh of Screened-Exchange Hybrid Functional for Complex Materials: All-Electron Implementation and Application, ReiheSchlüsseltechnologien, Key Technologies Band, vol. 58, 2013

  89. I.N. Levine, Quantum Chemistry, 5th edn. (University of New York, Brooklyn, 2003)

    Google Scholar 

  90. S. Kumar, N. Vijay, K. Amarendra, P. Onkar, S. Leena, J. Res. Recent Sci. 1, 11 (2012)

    Article  CAS  Google Scholar 

  91. M. Oftadeh, S. Naseh, M. Hamadanian, J. Comput. Theor. Chem. 966, 20 (2011)

    Article  CAS  Google Scholar 

  92. F. Proft, P. Geerlings, J. Phys. Chem. 106, 2370 (1997)

    Article  Google Scholar 

  93. N. Egbedi, I. Obot, M. Khaiary, S. Umoren, E. Ebenso, J. Int. Electrochem. Sci. 6, 5649 (2011)

    Google Scholar 

  94. T. Forbes, Engineering System Dynamics, 2nd edn. (Taylor and Francis Group, France, 2007)

    Google Scholar 

  95. A. Peter, F. Ronald, Molecular Quantum Mechanics, 4th edn. (Oxford University Prees, Oxford, 2005)

    Google Scholar 

  96. V.S. Esha, M.P. Chetna, R.R. Debesh, Structure, Electronic, Optical and Thermodynamic behavior on the Polymerization of PMMA: DFT Investigation, Department of Applied physics, S. V. National Institute of Technology, Surat 395007, INDIA, 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hashim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazim, A., Abduljalil, H.M. & Hashim, A. Analysis of Structural and Electronic Properties of Novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2, PMMA/ZrO2-Ag, PMMA-Ag) Nanocomposites for Low Cost Electronics and Optics Applications. Trans. Electr. Electron. Mater. 21, 48–67 (2020). https://doi.org/10.1007/s42341-019-00148-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00148-0

Keywords

Navigation