Skip to main content

Advertisement

Log in

Physiological Roles of Nickel on Antioxidant and Nitrogen Metabolism Increasing the Yield of Sugarcane Plants

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum officinarum) is one of the main sources of sugar, energy renewable, and ethanol worldwide. Nitrogen (N) plays a plethora of structural and functional roles on sugarcane growth and development. Nickel (Ni) is a cofactor of urease enzyme, acting in N metabolism and antioxidant system in plants, potentially leading to enhanced use of absorbed N. This study aimed to evaluate Ni application on N metabolism, antioxidant system, and yield of two sugarcane cultivars (RB86 7515 RB96 6928). The experiment was composed by six Ni application rates (0; 0.25; 0.5; 1; 3; 9 mg kg−1) and two sugarcane cultivars. Application of Ni via soil increased photosynthetic pigments concentration, urease, and nitrate reductase activity, leading to an enhanced N metabolism in sugarcane plants. Fertilization with Ni also improved antioxidant system by increasing superoxide dismutase, ascorbate peroxidase, and catalase activity alleviating the stress caused by reactive oxygen species. The increased photosynthetic pigments and antioxidant systems led to a higher concentration of free amino acids and total sugars. The enhanced N metabolism and increased sugar accumulation were followed by an increase in leaf, root, stems dry weights, and tiller number. The application rate of 0.5 mg Ni kg−1 led to a higher yield in sugarcane cultivars. This study presents fundamental new insights regarding Ni effect on N metabolism and sugar concentration that can be helpful to increase the crop tolerance to abiotic stress, and this could potentially lead to increase sugarcane yield under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Rodrigues dos Reis.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rampazzo, M.V., Cunha, M.L.O., de Oliveira, L.C.A. et al. Physiological Roles of Nickel on Antioxidant and Nitrogen Metabolism Increasing the Yield of Sugarcane Plants. J Soil Sci Plant Nutr 22, 4438–4448 (2022). https://doi.org/10.1007/s42729-022-01045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-022-01045-x

Keywords

Navigation