Skip to main content

Advertisement

Log in

Green and economical synthesis of graphene–silver nanocomposite exhibiting excellent photocatalytic efficiency

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The emergence of green methods for the synthesis of graphene-based composites became the gateway for the solution of pollution and economic synthetic methods. Herein, we reported a single step in situ synthesis of reduced graphene oxide sheets decorated with silver nanoparticles (CRG–Ag nanocomposite) using custard apple leaf extract as an effective reducing and stabilizing agent. The ultraviolet–visible, Fourier transform infrared and Raman techniques revealed a primary confirmation about the formation of the said nanocomposite. The X-ray diffraction studies confirmed the face-centred cubic crystal structure of silver nanoparticles (Ag NPs) of 30 nm in size. The high-resolution scanning electron microscope spectra revealed the uniform distribution of Ag NPs on the graphene sheets. This simple, novel and rapid approach enabled a facile production of homogeneously deposited Ag NPs on graphene sheets. Thus synthesized CRG–Ag nanocomposite showed excellent photocatalytic efficiency of 96% in 2 h under sunlight using methylene blue as a model pollutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  2. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113:3407–3424

    Article  CAS  Google Scholar 

  3. Gao N, Fang X (2015) Synthesis and development of graphene–inorganic semiconductor nanocomposites. Chem Rev 115:8294–8343

    Article  CAS  Google Scholar 

  4. Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev 115:2483–2531

    Article  CAS  Google Scholar 

  5. Xu C, Wang X, Zhu J (2008) Graphene − metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  6. Kamat PV (2009) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527

    Article  Google Scholar 

  7. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of graphene-based nanocomposites. Small 5:2253–2259

    Article  CAS  Google Scholar 

  8. Wang P, Huang B, Dai Y, Whangbo MH (2012) Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys Chem Chem Phys 14:9813–9825

    Article  CAS  Google Scholar 

  9. Zhang N, Yang MQ, Liu S, Sun Y, Xu YJ (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem Rev 115:10307–10377

    Article  CAS  Google Scholar 

  10. Luo G, Jiang X, Li M, Zhang L, Yu H (2013) Facile fabrication and enhanced photocatalytic performance of Ag/AgCl/rGO heterostructure photocatalyst. ACS Appl Mater Interfaces 5:2161–2168

    Article  CAS  Google Scholar 

  11. Hsieh SH, Chen WJ, Wu CT (2015) Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light. Appl Surf Sci 340:9–17

    Article  CAS  Google Scholar 

  12. Bhunia SK, Jana NR (2014) Reduced graphene oxide–silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl Mater Interfaces 6:20085–20092

    Article  CAS  Google Scholar 

  13. Shen J, Shi M, Li N, Yan B, Ma H, Hu Y, Ye M (2010) Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res 3:339–349

    Article  CAS  Google Scholar 

  14. Xu Z, Gao H, Guoxin H (2011) Solution-based synthesis and characterization of a silver nanoparticle–graphene hybrid film. Carbon 49:4731–4738

    Article  CAS  Google Scholar 

  15. Tang XZ, Cao Z, Zhang HB, Liu J, Yu ZZ (2011) Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach. Chem Commun 47:3084–3086

    Article  CAS  Google Scholar 

  16. Wang Y, Shi Z, Yin J (2011) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3:1127–1133

    Article  CAS  Google Scholar 

  17. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921

    Article  CAS  Google Scholar 

  18. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via l-ascorbic acid. Chem Commun 46:1112–1114

    Article  CAS  Google Scholar 

  19. Chen D, Li L, Guo L (2011) An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22:325601

    Article  Google Scholar 

  20. Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437

    Article  CAS  Google Scholar 

  21. Singh C, Ali MA, Sumana G (2016) Green synthesis of graphene based biomaterial using fenugreek seeds for lipid detection. ACS Sustain Chem Eng 4:871–880

    Article  CAS  Google Scholar 

  22. Bhattacharya G, Sas S, Wadhwa S, Mathur A, McLaughlin J, Roy SS (2017) Aloe vera assisted facile green synthesis of reduced graphene oxide for electrochemical and dye removal applications. RSC Adv 7:26680–26688

    Article  CAS  Google Scholar 

  23. Maryami M, Nasrollahzadeh M, Mehdipour E, Sajadi SM (2016) Preparation of the Ag/RGO nanocomposite by use of Abutilon hirtum leaf extract: a recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature. Int J Hydrogen Energy 41:21236–21245

    Article  CAS  Google Scholar 

  24. Vizuete KS, Kumar B, Vaca AV, Debut A, Cumbal L (2016) Cumbal, Mortiño (Vaccinium floribundum Kunth) berry assisted green synthesis and photocatalytic performance of silver–graphene nanocomposite. J Photochem Photobiol A Chem 329:273–279

    Article  CAS  Google Scholar 

  25. Maham M, Nasrollahzadeh M, Sajadi SM, Nekoei M (2017) Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J Colloid Interface Sci 497:33–42

    Article  CAS  Google Scholar 

  26. Wang Z, Xu C, Li X, Liu Z (2015) In situ green synthesis of Ag nanoparticles on tea polyphenols-modified graphene and their catalytic reduction activity of 4-nitrophenol. Colloids Surf A 485:102–110

    Article  CAS  Google Scholar 

  27. Chandu B, Nurbasha S, Bollikolla HB (2017) A facile green reduction for graphene–silver nanocomposite using betel leaf extract for the photocatalytic degradation of water pollutants. ChemistrySelect 2:11172–11176

    Article  CAS  Google Scholar 

  28. Mosali VSS, Qasim M, Mullamuri B, Chandu B, Das D (2017) Synthesis and characterization of Ag/CoFe2O4/polyaniline nanocomposite for photocatalytic application. J Nanosci Nanotechnol 17:8918–8924

    Article  CAS  Google Scholar 

  29. Ponrasu T, Suguna L (2012) Efficacy of Annona squamosa on wound healing in streptozotocin-induced diabetic rats. Int Wound J 9:613–623

    Article  Google Scholar 

  30. Pelissier Y, Marion C, Dezeuze A, Bessiere JM (1993) Volatile components of Annona squamosa L. J Essent Oil Res 5:557–560

    Article  CAS  Google Scholar 

  31. Chandu B, Mosali VSS, Qasim M, Mullamuri B, Bollikolla HB (2017) A facile green reduction of graphene oxide using Annona squamosa leaf extract. Carbon Lett 21:74–80

    Article  Google Scholar 

  32. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  33. Kumar SV, Huang NM, Lim HN, Zainy M, Harrison I, Chia CH (2013) Preparation of highly water dispersible functional graphene/silver nanocomposite for the detection of melamine. Sens Actuators B 181:885–893

    Article  CAS  Google Scholar 

  34. Chattopadhyay P, Thakur S, Karak N, Buragohain AK, Barua S, Aidew L (2014) One step preparation of a biocompatible, antimicrobial reduced graphene oxide–silver nanohybrid as a topical antimicrobial agent. RSC Adv 4:9777–9783

    Article  Google Scholar 

  35. Kumar A, Jena HM (2016) Removal of methylene blue and phenol onto prepared activated carbon from Fox nutshell by chemical activation in batch and fixed-bed column. J Clean Prod 137:1246–1259

    Article  CAS  Google Scholar 

  36. Khan ME, Khan MM, Cho MH (2015) Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem 39:8121–8129

    Article  CAS  Google Scholar 

  37. Zhu C, Zheng J, Fang L, Hu P, Liu Y, Cao X, Wu M (2016) Advanced visible-light driven photocatalyst with enhanced charge separation fabricated by facile deposition of Ag3PO4 nanoparticles on graphene-like h-BN nanosheets. J Mol Catal A Chem 424:135–144

    Article  CAS  Google Scholar 

  38. Jiao T, Guo H, Zhang Q, Peng Q, Yan X (2015) Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment. Sci Rep 5:11873

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Chemistry and SAIF, IIT Madras for providing XRD, Raman and HRSEM analysis, respectively. The authors also thank Dr. P. Nagaprasad for UV–Vis and FT-IR analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Babu Bollikolla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandu, B., Kurmarayuni, C.M., Kurapati, S. et al. Green and economical synthesis of graphene–silver nanocomposite exhibiting excellent photocatalytic efficiency. Carbon Lett. 30, 225–233 (2020). https://doi.org/10.1007/s42823-019-00091-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00091-3

Keywords

Navigation