Skip to main content

Advertisement

Log in

Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Food toxins are regarded as a major source of health risks, serious illnesses susceptible to even death. These dangerous pathogens may lead to significant economic impact worldwide. The food production chain undergoes different stages like harvesting, processing, storage, packaging, distribution, and lastly preparation, and consumption. Therefore, each step is susceptible to risks of environmental contamination. Nowadays, the carbon quantum dots (CDs) are regarded as one of the most widely used hybrid carbon nanomaterials due to their different magical physical and chemical properties. The CDs have a size below 10 nm and show the fluorescent property. The CDs find vast applications in different fields like sensing, food safety, drug delivery, bioimaging, catalyst, energy conversion, etc. Compared to other available methods, the fluorescence detection techniques have low cost, easy handling, and safe operating system. There is a need for a review to compile the fluorescence properties of carbon nanodots used to detect food pathogens. This brief review is addressed in that direction and mostly focused on the synthesis of carbon dots-based fluorescence sensors for detecting pathogens and toxins in foods and beverages. The detailed mechanisms and origin of fluorescence properties of carbon quantum dots are also highlighted herewith.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

CDs:

Carbon dots

CQDs:

Carbon quantum dots

GQDs:

Graphene quantum dots

PL:

Photoluminescence

CPDs:

Carbonized polymer dots

PET:

Photo-induced electron transfer

RET:

Resonance energy transfer

References

  1. Ellis DI, Goodacre R (2001) Rapid and quantitative detection of the microbial spoilage of muscle foods: current status and future trends. Trends Food Sci Technol 12:414–424

    Article  CAS  Google Scholar 

  2. Kaushik G, Satya S, Naik SN (2009) Food processing a tool to pesticide residue dissipation—a review. Food Res Int 42:26–40

    Article  CAS  Google Scholar 

  3. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, van der Giessen J (2010) Food-borne diseases- the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:3–15

    Article  Google Scholar 

  4. McCabe-Sellers BJ, Beattie SE (2004) Food safety: emerging trends in foodborne illness surveillance and prevention. J Am Diet Assoc 104:1708–1717

    Article  Google Scholar 

  5. Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Wang T (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    Article  CAS  Google Scholar 

  6. Van Kernebeek HR, Oosting SJ, Van Ittersum MK, Bikker P, De Boer IJ (2016) Saving land to feed a growing population: consequences for consumption of crop and livestock products. Int J Life Cycle Assess 21:677–687

    Article  Google Scholar 

  7. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties, and applications. J Mater Chem C 2:6921–6939

    Article  CAS  Google Scholar 

  8. Liu J, Li R, Yang B (2020) Carbon dots: a new type of carbon-based nanomaterial with wide applications. ACS Cent Sci 6(12):2179–2195

    Article  CAS  Google Scholar 

  9. Feng T, Tao S, Yue D, Zeng Q, Cheneng W (2020) Recent advances in energy conversion applications of carbon dots: from optoelectronic devices to electrocatalysis. Small 16:2001295

    Article  CAS  Google Scholar 

  10. Zeng Q, Feng T, Tao S, Zhu S, Yang B (2021) Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light Sci Appl 10:142

    Article  CAS  Google Scholar 

  11. Perikala M, Bhardwaj A (2020) Engineering photo-luminescent centers of carbon dots to achieve higher quantum yields. ACS Appl Mater Interfaces 2(8):2470–2478

    Article  CAS  Google Scholar 

  12. Jalilov AS (2020) Solvent effect on structural elucidation of photoluminescent graphitic carbon nanodots. ACS Omega 5(32):20409–20416

    Article  CAS  Google Scholar 

  13. Louleb M, Latrous L, Ríos Á, Zougagh M, Rodríguez-Castellón E, Algarra M, Soto J (2020) Detection of dopamine in human fluids using n-doped carbon dots. ACS Appl Nano Mater 3(8):8004–8011

    Article  CAS  Google Scholar 

  14. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12743

    Article  CAS  Google Scholar 

  15. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757

    Article  CAS  Google Scholar 

  16. Jin S, Jun GH, Jeon S, Hong SH (2016) Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells. Nano Convergence 3:8

    Article  CAS  Google Scholar 

  17. Han MY, Kim P (2014) Graphene nanoribbon devices at high bias. Nano Convergence 1:1

    Article  CAS  Google Scholar 

  18. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902

    Article  CAS  Google Scholar 

  19. Kang C, Huang Y, Yang H, Yan XF, Chen ZP (2020) Review of carbon dots produced from biomass wastes. Nanomaterials 10(11):2316

    Article  CAS  Google Scholar 

  20. Liu M, Xu Y, Niu F, Gooding JJ, Liu J (2016) Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141:2657–2664

    Article  CAS  Google Scholar 

  21. Xu H, Yang X, Li G, Zhao C, Liao X (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63:6707–6714

    Article  CAS  Google Scholar 

  22. Chowdhury D, Gogoi N, Majumdar G (2012) Fluorescent carbon dots obtained from chitosan gel. RSC Adv 2:12156–12159

    Article  CAS  Google Scholar 

  23. Baruah U, Deka MJ, Chowdhury D (2014) Reversible on/off switching of fluorescence via esterification of carbon dots. RSC Adv 4:36917

    Article  CAS  Google Scholar 

  24. Gogoi N, Chowdhury D (2014) Novel carbon dot coated alginate beads with superior stability, swelling and pH-responsive drug delivery. J Mater Chem B 2:4089

    Article  CAS  Google Scholar 

  25. Baruah U, Gogoi N, Majumdar G, Chowdhury D (2015) β-Cyclodextrin and calix[4]arene-25,26,27,28-tetrol capped carbon dots for selective and sensitive detection of fluoride. Carbohydr Polym 117:377

    Article  CAS  Google Scholar 

  26. Gogoi N, Barooah M, Majumdar G, Chowdhury D (2015) Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl Mater Interfaces 7:3058–3067

    Article  CAS  Google Scholar 

  27. Konwar A, Chowdhury D (2015) Property relationship of alginate and alginate–carbon dot nanocomposites with bivalent and trivalent cross-linker ions. RSC Adv 5:62864

    Article  CAS  Google Scholar 

  28. Jing S, Zhao Y, Sun R-C, Zhong L, Peng X (2019) Facile and High-Yield Synthesis of carbon quantum dots from biomass-derived carbons at mild condition. ACS Sustain Chem Eng 7:7833–7843

    Article  CAS  Google Scholar 

  29. Konwar A, Gogoi N, Majumdar G, Chowdhury D (2015) Green chitosan–carbon dots nanocomposite hydrogel film with superior properties. Carbohydr Polym 115:238

    Article  CAS  Google Scholar 

  30. Majumdar S, Krishnatreya G, Gogoi N, Thakur D, Chowdhury D (2016) Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater Interfaces 8:34179–34184

    Article  CAS  Google Scholar 

  31. Baruah U, Konwar A, Chowdhury D (2016) A sulphonated carbon dot–chitosan hybrid hydrogel nanocomposite as an efficient ion-exchange film for Ca2+ and Mg2+ removal. Nanoscale 8:8542

    Article  CAS  Google Scholar 

  32. Gogoi N, Agarwal DS, Sehgal A, Chowdhury D, Sakhuja R (2017) One-pot synthesis of carbon nanodots in an organic medium with aggregation-induced emission enhancement (AIEE): a rationale for “enzyme-free” detection of cholesterol. ACS Omega 2:3816–3827

    Article  CAS  Google Scholar 

  33. Konwar A, Baruah U, Deka MJ, Hussain AA, Haque SR, Pal AR, Chowdhury D (2017) Tea-carbon dots-reduced graphene oxide: an efficient conducting coating material for fabrication of an E-textile. ACS Sustain Chem Eng 5:11645–11651

    Article  CAS  Google Scholar 

  34. Deka MJ, Chowdhury D (2017) Chiral carbon dots and their effect on the optical properties of photosensitizers. RSC Adv 7:53057–53063

    Article  CAS  Google Scholar 

  35. Konwar A, Deb, Kar A, Chowdhury D (2019) Dual emission carbon dots from carotenoids: Converting a single emission to dual emission. Luminescence 34:790–795

  36. Chowdhury D, Majumdar S, Thakur D (2020) Actinobacteria mediated synthesis of bioconjugate of carbon dot with enhanced biological activity. Appl Nanosci 10:2199–2206

    Article  CAS  Google Scholar 

  37. Boruah JS, Chowdhury D (2020) Palmitic acid–carbon dot hybrid vesicles for absorption of uric acid. Appl Nanosci 10:2207–2218

    Article  CAS  Google Scholar 

  38. Deb A, Konwar A, Chowdhury D (2020) pH-responsive hybrid jute carbon dot-cotton patch. ACS Sustainable Chem Eng 8:7394–7402

    Article  CAS  Google Scholar 

  39. Gogoi J, Shishodia S, Chowdhury D (2020) Tunable electrical properties of carbon dot doped photo-responsive azobenzene–clay nanocomposites. RSC Adv 10:37545

    Article  Google Scholar 

  40. Deka MJ, Chowdhury D (1999) CVD-assisted hydrophobic graphene quantum dots: fluorescence sensors for aromatic amino acids. Chem Select 2017:2

    Google Scholar 

  41. Deka MJ, Dutta A, Chowdhury D (2018) Tuning wettability and photoluminescence of graphene quantum dots via covalent modification. New J Chem 42:355

    Article  CAS  Google Scholar 

  42. Baruah U, Gogoi N, Konwar A, Deka MJ, Chowdhury D, Majumder G (2014) Carbon dot-based sensing of dopamine and ascorbic acid. J Nanopart 2014:8

    Article  Google Scholar 

  43. Deka MJ, Chowdhury D (2019) Surface charge induced tuning of electrical properties of CVD assisted graphene and functionalized graphene sheets. J Mater Sci Technol 35:151–158

    Article  CAS  Google Scholar 

  44. Kuma VB, Sahu AK, Mohsin ASM, Li X, Gedanken A (2017) Refractive-index tuning of highly fluorescent carbon dots. ACS Appl Mater Interfaces 9:28930–28938

    Article  CAS  Google Scholar 

  45. Shenand P, Xia Y (2014) Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem 86(11):5323–5329

    Article  CAS  Google Scholar 

  46. Das P, Ganguly S, Bose M, Mondal S, Das A, Banerjee S, Das N (2017) A simplistic approach to green future with eco-friendly luminescent carbon dots and their application to fluorescent nano-sensor “turn-off” probe for selective sensing of copper ions. Mater Sci Eng C 75:1456–1464

    Article  CAS  Google Scholar 

  47. Kumar A, Kumar A, Cabral-Pinto MMS, Chaturvedi AK, Shabnam AA, Subrahmanyam G, Mondal R, Gupta DK, Malyan SK, Kumar SS, Khan SA, Yadav KK (2020) Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. Int J Environ Res Public Health 17(7):2179

    Article  CAS  Google Scholar 

  48. Eid R, Arab NTT, Greenwood MT (2017) Iron mediated toxicity and programmed cell death: a review and a re-examination of existing paradigms. Biochim Biophys Acta Mol Cell Res Mol Cell Res. 1864:399–430

    Article  CAS  Google Scholar 

  49. Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115

    Article  CAS  Google Scholar 

  50. (2014) Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water, EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J 12(3):3595

  51. Drake PL, Hazelwood KJ (2005) Exposure-related health effects of silver and silver compounds: a review. Ann Occup Hyg 49(7):575–585

    CAS  Google Scholar 

  52. Cammack R, Joannou CL, Cui X-Y, Martinez CT, Maraj SR, Hughes MN (1999) Nitrite and nitrosyl compounds in food preservation. Biochim Biophys Acta Bioenerg 1411:475–488

    Article  CAS  Google Scholar 

  53. Cheremisinoff NP, Rosenfeld PE (2010) Sources of air emissions from pulp and paper mills, Handbook of Pollution Prevention and Cleaner Production, William Andrew Publishing, 179–259

  54. Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. Environ Int Environ 34(2):292–308

    Article  CAS  Google Scholar 

  55. Al-Amoudi WM (2018) Toxic effects of lambda-cyhalothrin, on the rat thyroid: involvement of oxidative stress and ameliorative effect of ginger extract. Toxicol Rep 5:728–736

    Article  CAS  Google Scholar 

  56. Yang F-W, Li Y-X, Wang F-ZR, Pang G-F (2019) Toxicity, residue, degradation and detection methods of the insecticide triazophos. Environ Chem Lett 17:1769–1785

    Article  CAS  Google Scholar 

  57. Aggarwal V, Deng X, Tuli A, Goh KS (2013) Diazinon-chemistry and environmental fate: a California perspective. Rev Environ Contam T 223

  58. Bui-Klimke TR, Felicia W (2015) Ochratoxin A and human health risk: a review of the evidence. Crit Rev Food Sci Nutr 55:1860–1869

    Article  CAS  Google Scholar 

  59. Ayan F, Trindade M, Velini E (2009) Amicarbazone, a new photosystem ii inhibitor. Weed Sci 57(6):579–583

    Article  CAS  Google Scholar 

  60. Mahendrakar K, Venkategowda PM, Rao SM, Mutkule DP (2014) Glyphosate surfactant herbicide poisoning and management. Indian J Crit Care Med 18(5):328–330

    Article  Google Scholar 

  61. Deka MJ, Dutta P, Sarma S, Medhi OK, Talukdar NC, Chowdhury D (2019) Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon 5:01985

    Article  Google Scholar 

  62. Jafari M, Hasanzadeh M, Karimian R, Shadjou N (2019) Sensitive detection of Trifluralin in untreated human plasma samples using reduced graphene oxide modified by polyethyleneimine and silver nanoparticles: a new platform on the analysis of pesticides and chemical injuries. Microchem J 147:741–748

    Article  CAS  Google Scholar 

  63. Suzuki T, Morishita T, Noda T, Ishiguro K (2015) Acute and subacute toxicity studies on rutin-rich tartary buckwheat dough in experimental animals. J Nutr Sci Vitaminol (Tokyo) 61(2):175

    Article  CAS  Google Scholar 

  64. Xu D, Xiao Y, Pan H, Mei Y (2019) Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicol Environ Saf 174:43–47

    Article  CAS  Google Scholar 

  65. Michalak K, Sobolewska-Włodarczyk A, Włodarczyk M, Sobolewska J, Woźniak P, Sobolewski B (2017) Treatment of the fluoroquinolone-associated disability: the pathobiochemical implications. Oxid Med Cell Longev 2017:8023935

    Google Scholar 

  66. Glick Z, Joslyn MA (1970) Food intake depression and other metabolic effects of tannic acid in the rat. J Nutr 100(5):509–515

    Article  CAS  Google Scholar 

  67. Amin KA, Al-Shehri FS (2018) Toxicological and safety assessment of tartrazine as a synthetic food additive on health biomarkers: a review. Afr J Biotechnol 17(6):139–149

    Article  CAS  Google Scholar 

  68. Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov 3(2):275–290

    Article  Google Scholar 

  69. DoNascimento GE, Cavalcanti VOM, Santana RMR, Sales DCS, Rodríguez-Díaz JM, Napoleão DC, Duarte MMMB (2020) Degradation of a sunset yellow and tartrazine dye mixture: optimization using statistical design and empirical mathematical modeling. Water Air Soil Pollut 231:254

    Article  CAS  Google Scholar 

  70. ESilva APS, de Sousa ST, de Almeida DSA, Ribeiro KG, Marques MMM, de Almeida PM, Peron AP (2020) Toxicity of carmine cochineal and caramel iv dyes to terrestrial plants and micro-crustaceans. Water Air Soil Pollut 231:313

    Article  CAS  Google Scholar 

  71. Khayyat L, Essawy A, Sorour J, Soffar A (2017) Tartrazine induces structural and functional aberrations and genotoxic effects in vivo. Peer J 5:3014

    Article  CAS  Google Scholar 

  72. Majumdar S, Baruah U, Majumdar G, Thakur D, Chowdhury D (2016) Paper carbon dot-based fluorescence sensor for distinction of organic and inorganic sulphur in analytes. RSC Adv 6:57327–57334

    Article  CAS  Google Scholar 

  73. Weschawalit S, Thongthip S, Phutrakool P, Asawanonda P (2017) Glutathione and its antiaging and antimelanogenic effects. Clin Cosmet Investig Dermatol 10:147–153

    Article  CAS  Google Scholar 

  74. Lin JK (1990) Nitrosamines as potential environmental carcinogens in man. Clin Biochem 23:67–71

    Article  CAS  Google Scholar 

  75. Huiying L, Le X, Muchen Z, Jiaqi W, Nan Z (2018) The toxic effects of aflatoxin B1 and aflatoxin M1 on kidney through regulating l-proline and downstream apoptosis. Biomed Res Int 2018:9074861

    Google Scholar 

  76. Zor E, Morales-Narváez E, Zamora-Gálvez A, Bingol H, Ersoz M, Merkoçi A (2015) Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection. ACS Appl Mater Interfaces 7(36):20272–20279

    Article  CAS  Google Scholar 

  77. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Economical, greensynthesis of fluorescent carbon nanoparticles and their use as probes for sensitive andselective detection of mercury(II) ions. Anal Chem 84(12):5351–5357

    Article  CAS  Google Scholar 

  78. Hou Y, Lu Q, Deng J, Li H, Zhang Y (2015) One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Anal Chim Acta 866:69–74

    Article  CAS  Google Scholar 

  79. Costas-Mora I, Romero V, Lavilla I, Bendicho C (2014) In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection. Anal Chem 86(9):4536–4543

    Article  CAS  Google Scholar 

  80. Jiao X-Y, Li L-S, Qin S, Zhang Y, Huang K, Xu L (2019) The synthesis of fluorescent carbon dots from mango peel and their multiple applications. Colloids Surf A Physicochem Eng Asp 577:306–314

    Article  CAS  Google Scholar 

  81. Gedda G, Lee C-Y, Lin Y-C, Wu H (2016) Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions. Sensor Actuat B-Chem 224:396–403

    Article  CAS  Google Scholar 

  82. Tyagi A, Tripathi KM, Singh N (2016) Green synthesis of carbon quantum dots from lemon peel waste: applications in sensing and photocatalysis. RSC Adv 76:72423–72432

    Article  CAS  Google Scholar 

  83. Han Z, Nan D, Yang H, Sun Q, Pan S, Liu H, Hu X (2019) Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione. Sensor Actuat B-Chem 298:126842

    Article  CAS  Google Scholar 

  84. Wang Q, Liu X, Zhang L, Lv Y (2012) Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst 137(22):5392–5397

    Article  CAS  Google Scholar 

  85. Xu Y, Niu X, Zhang H, Xu L, Zhao S, Chen X, Chen H (2015) Switch-on fluorescence sensing of glutathione in foodsamples based on a g-CNQDs-Hg2+ chemosensor. J Agric Food Chem 63(6):1747–1755

    Article  CAS  Google Scholar 

  86. Lu H, Li C, Wang H, Wang X, Xu S (2019) Biomass-derived sulfur, nitrogen co-doped carbon dots for colorimetric and fluorescent dual mode detection of silver (i) and cell imaging. ACS Omega 4:21500–21508

    Article  CAS  Google Scholar 

  87. Yue X, Zhou Z, Wu Y, Jie M, Li Y, Guo H, Bai Y (2020) Green carbon dots based fluorescent sensor for selective and visual detection of nitrite triggered by the nitrite-thiol reaction. New J Chem 44:8503–8511

    Article  CAS  Google Scholar 

  88. Yang S, Liang J, Luo S-L, Liu C, Tang Y (2013) Supersensitive detection of chlorinated phenols by multiple amplification electrochemiluminescence sensing based on carbon quantum dots/graphene. Anal Chem 85(16):7720–7725

    Article  CAS  Google Scholar 

  89. Zhang D, Tang J, Liu H (2019) Rapid determination of lambda-cyhalothrin using a fluorescent probe based on ionic-liquid-sensitized carbon dots coated with molecularly imprinted polymers. Anal Bioanal Chem 411:5309–5316

    Article  CAS  Google Scholar 

  90. Wang C, Tan R, Chen D (2018) Fluorescence method for quickly detecting ochratoxin A in flour and beer using nitrogen-doped carbon dots and silver nanoparticles. Talanta 182:363–370

    Article  CAS  Google Scholar 

  91. Wu M, Fan Y, Li J, Lu D, Guo Y, Xie L, Wu Y (2019) Vinyl phosphate-functionalized, magnetic, molecularly-imprinted polymeric microspheres’ enrichment and carbon dots’ fluorescence-detection of organophosphorus pesticide residues. Polymers (Basel) 11(11):1770

    Article  CAS  Google Scholar 

  92. Tafreshi FA, Fatahi Z, Ghasemi SF, Taherian A, Esfandiari N (2020) Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS ONE 15(3):e0230646

    Article  CAS  Google Scholar 

  93. Sinduja B, Abraham John S (2018) Sensitive determination of rutin by spectrofluorimetry using carbon dots synthesized from a non-essential amino acid. Spectrochim Acta A Mol Biomol Spectrosc 93:486–491

    Article  CAS  Google Scholar 

  94. Fua Y, Zhao S, Wuc S, Huang L, Xua T, Xinga X, Lana M, Songa X (2020) A carbon dots-based fluorescent probe for turn-on sensing of ampicillin. Dyes Pigm 172:107846

    Article  CAS  Google Scholar 

  95. Wang B, Chen Y, Wu Y, Weng B, Liu Y, Lu Z, Li CM, Yu C (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron 78:23–30

    Article  CAS  Google Scholar 

  96. Lia H, Zhao L, Xu Y, Zhou T, Liu H, Huang N, Ding J, Lic Y, Ding L (2018) Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta 185:542–549

    Article  CAS  Google Scholar 

  97. Li H, Xu Y, Ding J, Zhao L, Zhou T, Ding H, Chen Y, Ding L (2018) Microwave-assisted synthesis of highly luminescent N- and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin. Microchim Acta 185:104

    Article  CAS  Google Scholar 

  98. Yang P, Zhu Z, Chen M, Zhou X, Chen W (2019) Microwave-assisted synthesis of polyamine-functionalized carbon dots from xylan and their use for the detection of tannic acid. Spectrochim Acta A Mol Biomol Spectrosc 213:301–308

    Article  CAS  Google Scholar 

  99. Xiupei Y, Jing X, Na L, Fenglin T, Maoxue Z, Bin Z (2020) N, Cl co-doped fluorescent carbon dots as nanoprobe for detection of tartrazine in beverages. Food Chem 310:125832

    Article  CAS  Google Scholar 

  100. Chatzimitakos T, Kasouni A, Sygellou L, Avgeropoulos A, Troganis A, Stalikas C (2017) Two of a kind but different: luminescent carbon quantum dots from citrus peels for iron and tartrazine sensing and cell imaging. Talanta 175:305–312

    Article  CAS  Google Scholar 

  101. Yang H, Yang L, Yuan Y, Pan S, Yang J, Yan J, Zhang H, Sun Q, Hu X (2018) A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect. Spectrochim Acta A Mol Biomol Spectrosc 189:139–146

    Article  CAS  Google Scholar 

  102. Shao M, Yao M, De Saeger S, Yan L, Song S (2018) Carbon quantum dots encapsulated molecularly imprinted fluorescence quenching particles for sensitive detection of zearalenone in corn sample. Toxins 10:438

    Article  CAS  Google Scholar 

  103. Nsibande SA, Forbes PBC (2020) Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water. RSC Adv 10:12119–12128

    Article  CAS  Google Scholar 

  104. Sari E, Uzek R, Merkoçi A (2019) Paper-based photoluminescent sensing platform with recognition sites for tributhyltin. ACS Sens 4:645–653

    Article  CAS  Google Scholar 

  105. Sun XY, Yuan MJ, Liu B, Shen JS (2018) Carbon dots as fluorescent probes for detection of VB12 based on the inner filter effect. RSC Adv 8:19786–19790

    Article  CAS  Google Scholar 

  106. Deka MJ, Dutta P, Sarma S, Medhi OK, Talukdar NC, Chowdhury D (2019) Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon 5(6):e01985

    Article  Google Scholar 

  107. Gogoi J, Chowdhury D (2020) Calcium-modified carbon dots derived from polyethylene glycol: fluorescence-based detection of Trifluralin herbicide. J Mater Sci 55:11597–11608

    Article  CAS  Google Scholar 

  108. Majumdar S, Bhattacharjee T, Thakur D, Chowdhury D (2018) Carbon dot based fluorescence sensor for retinoic acid. Chem Select 3:673–677

    CAS  Google Scholar 

  109. Majumdar S, Baruah U, Majumdar G, Thakur D, Chowdhury D (2016) Paper carbon dots based fluorescence sensor for distinction of organic and inorganic sulphur in analytes. RSC Adv 6:57327–57334

    Article  CAS  Google Scholar 

  110. Majumdar S, Thakur D, Chowdhury D (2020) DNA carbon-nanodots based electrochemical biosensor for detection of mutagenic nitrosamines. ACS Appl Bio Mater 3:1796–1803

    Article  CAS  Google Scholar 

  111. Anmei S, Qingmei Z, Yuye C, Yilin W (2018) Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I. Anal Chim Acta 1023:115–120

    Article  CAS  Google Scholar 

  112. Muthusankar G, Sethupathi M, Chen S-M, Devi RK, Vinoth R, Gopu G, Anandhan N, Sengottuvelan N (2019) N-doped carbon quantum dots @ hexagonal porous copper oxide decorated multiwall carbon nanotubes: a hybrid composite material for an efficient ultra-sensitive determination of caffeic acid. Compos Part B 174:106973

    Article  CAS  Google Scholar 

  113. Su A, Wang D, Shu X, Zhong Q, Chen Y, Liu J, Wang Y (2018) Synthesis of fluorescent carbon quantum dots from dried lemon peel for determination of carmine in drinks. Chem Res Chin Univ 34:164–168

    Article  CAS  Google Scholar 

  114. Huang G, Chen X, Wang C, Zheng H, Huang Z, Chen D, Xie H (2017) Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications. RSC Adv 7:47840–47847

    Article  CAS  Google Scholar 

  115. Devi M, Das P, Boruah PK, Deka MJ, Duarah R, Gogoi A, Neog D, Dutta HS, Das MR (2021) Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: Colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. J Environ Chem Eng 9:104803

    Article  CAS  Google Scholar 

  116. Jard G, Liboz T, Mathieu F, Guyonvarc’h A, Lebrihi A (2011) Review of mycotoxin reduction in food and feed: from prevention in the field to detoxification by adsorption or transformation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(11):1590–1609

    Article  CAS  Google Scholar 

  117. Klein AV, Kiat H (2015) Detox diets for toxin elimination and weight management: a critical review of the evidence. J Hum Nutr Diet 28(6):675–686

    Article  CAS  Google Scholar 

  118. Cassano A, Conidi C, Ruby-Figueroa R, Castro-Muñoz R (2018) nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int J Mol Sci 19:351

    Article  CAS  Google Scholar 

  119. Nahyoon NA, Liu L, Rabe K, Thebo KH, Yuan L-F, Sun J, Yang F (2018) Significant photocatalytic degradation and electricity generation in the photocatalytic fuel cell (PFC) using novel anodic nanocomposite of Fe, graphene oxide, and titanium phosphate. Electrochim Acta 271:41–48

    Article  CAS  Google Scholar 

  120. Sharif S, Ahmad KS, Rehman F, Bhatti Z, Thebo KH (2021) Two-dimensional graphene oxide-based membranes for ionic and molecular separation: current status and challenges. J Environ Chem Eng 9(4):105605

    Article  CAS  Google Scholar 

  121. Thebo KH, Qian X, Zhang Q, Chen L, Cheng H-M, Ren W (2018) Highly stable graphene-oxide-based membranes with superior permeability. Nat Commun 9:1486

    Article  CAS  Google Scholar 

  122. Chandio I, Janjhi FA, Memon AA, Memon S, Ali Z, Thebo KH, Pirzado AAA, Hakro AA, Khan WS (2021) Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 500:114848

    Article  CAS  Google Scholar 

  123. Janjhi FA, Chandio I, Memon AA, Ahmed Z, Thebo KH, Pirzado AAA, Hakro AA, Iqbal M (2021) Functionalized graphene oxide based membranes for ultrafast molecular separation. Sep Purif Technol 274:117969

    Article  CAS  Google Scholar 

  124. Thebo KH, Qian X, Wei Q, Zhang Q, Cheng H-M, Ren W (2018) Reduced graphene oxide/metal oxide nanoparticles composite membranes for highly efficient molecular separation. J Mater Sci Technol 34(9):1481–1486

    Article  CAS  Google Scholar 

  125. Ali Z, Mehmood M, Ahmed J, Majeed A, Thebo KH (2020) CVD grown defect rich-MWCNTs with anchored CoFe alloy nanoparticles for OER activity. Mater Lett 259:126831

    Article  CAS  Google Scholar 

  126. Ali Z, Mehmood M, Ahmed J, Majeed A, Thebo KH (2019) MWCNTs and carbon onions grown by CVD method on nickel-cobalt alloy nanocomposites prepared via novel alcogel electrolysis technique and its oxygen evolution reaction application. Mater Res Express 6:105627

    Article  CAS  Google Scholar 

  127. Ali A, Aamir M, Thebo KH, Akhtar J (2020) Laminar graphene oxide membranes towards selective ionic and molecular separations: challenges and progress. Chem Rec 20(4):344–354

    Article  CAS  Google Scholar 

  128. Ali A, Pothu R, Siyal SH, Phulpoto S, Sajjad M, Thebo KH (2019) Graphene-based membranes for CO2 separation (Short Survey). Mater Sci Energy Technol 2(1):83–88

    Google Scholar 

Download references

Acknowledgements

We would like to thank HOD, Department of Chemistry, and Principal, Bimala Prasad Chaliha College, Nagarbera, Kamrup Assam, India, for their technical support in writing this article. We would like to acknowledge IQAC cell and Science Forum of Bimala Prasad Chaliha College and also MNL group of IASST, Guwahati for their help and support. We would also like to acknowledge Institutional Biotech- Hub (IBH) of Bimala Prasad Chaliha College, for the support in writing this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MJD designed the work and wrote the manuscript. DC and BKN provided assistance in drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manash Jyoti Deka.

Ethics declarations

Conflict of interest

There is no conflict of interest or competing interest to declare.

Ethics approval

Not applicable.

Consent to participate

All the authors have consented to the submission of the manuscript to this journal.

Consent for publication

All the authors have consented to publish the manuscript to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deka, M.J., Chowdhury, D. & Nath, B.K. Recent development of modified fluorescent carbon quantum dots-based fluorescence sensors for food quality assessment. Carbon Lett. 32, 1131–1149 (2022). https://doi.org/10.1007/s42823-022-00347-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00347-5

Keywords

Navigation