Skip to main content

Advertisement

Log in

Recent Studies on Ionic Liquids in Metal Recovery from E-Waste and Secondary Sources by Liquid-Liquid Extraction and Electrodeposition: a Review

  • Review
  • Published:
Materials Circular Economy Aims and scope Submit manuscript

Abstract

Given the high growth of e-waste around the world and the environmental and health risks associated with it, research on optimal and green methods of e-waste recycling is of great importance in order to find solutions to this global crisis. In particular are techniques that are economically attractive in addition to solving problems. In this paper, our research team has collected some recent methods of metal recycling in which ionic liquids (ILs) play a main member in the extraction process. The advantages of ILs include high selectivity, short operating temperature, lower relative toxicity, multiple use, and minimal waste generation. The results of this research are also compared with the results of previous studies. We have done special research on ILs used in leaching processes and applied in liquid-liquid extraction, and electrodeposition of metal in IL. Also listed in this paper are some experimental processes that can be tested in e-waste and secondary sources recycling. Some of which can be used on an industrial scale.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A/O:

Ratio of aqueous phase to organic phase

β :

Separation factor

C or [C]:

Concentration

CAGR:

Compound annual growth rate

CE:

Counter electrode

D :

Distribution ratio

E :

Extraction efficiency

EEE:

Electrical and electronic equipment

FIL:

Functionalized ionic liquid

IL:

Ionic liquid

LLE:

Liquid-liquid extraction

M:

Metal

RE:

Reference electrode

RT:

Room temperature

S :

Selectivity

T :

Temperature

t :

Time

TSIL:

Task-specific ionic liquid

V :

Volume

WE:

Working electrode

WEEE:

Waste electrical and electronic equipment

References

  • Aguilar M, Cortina JL (2008) Solvent extraction and liquid membranes: fundamentals and applications in new materials. CRC Press, pp 1–59

  • Ali Eftekhari H-JS, Shahinpoor M, Afonso AM, Rebelo LPN, Tsuda T, Torrecilla JS, Musumarra G, Li Y, Silva S, Ichii T, Einloft SMO, Matsumoto Y, Kadokawa J-i, Torresi R, Cabo LMV, Takahashi C, Ohisa S, Benito F, Bergaud C, Chung Y, Redhi GG, McIntosh A, Zopf S, Goto M, Chu Y-H, Ferraz R, Schäfer T (2018) Ionic liquid devices. Royal Soc Chem 366–367. https://doi.org/10.1039/9781788011839-00365

  • Arjomand Kermani N, Petrushina I, Rokni MM (2020) Evaluation of ionic liquids as replacements for the solid piston in conventional hydrogen reciprocating compressors: a review. Int J Hydrog Energy 45(33):16337–16354

    CAS  Google Scholar 

  • Banda R, Forte F, Onghena B, Binnemans K (2019) Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids. RSC Adv 9(9):4876–4883

    CAS  Google Scholar 

  • Bestbuy-company (2019) After collecting 2 billion pounds of e-waste, best buy expands recycling program. from https://corporate.bestbuy.com/after-collecting-2-billion-pounds-of-e-waste-best-buy-expands-recycling-program/. Accessed 19 June 2019

  • Boundy T (2020) How much material can a recycling facility source? A business-incentive based model for secondary material sourcing applied to waste LCD screen material. Resour Conserv Recycl 152:104528

    Google Scholar 

  • Bourbos E, Giannopoulou I, Karantonis A, Paspaliaris I, Panias D (2016) Chapter 13 - Electrodeposition of rare earth metals from ionic liquids. In: De Lima IB, Filho WL (eds) Rare earths industry. Elsevier, Boston, pp 199–207

    Google Scholar 

  • Chen J (2016) Application of ionic liquids on rare earth green separation and utilization. Springer, Heidelberg, pp 117–156

    Google Scholar 

  • Devi N, Sukla LB (2019) Studies on liquid-liquid extraction of yttrium and separation from other rare earth elements using bifunctional ionic liquids. Miner Process Extr Metall Rev 40(1):46–55

    CAS  Google Scholar 

  • Dhiman S, Gupta B (2019) Partition studies on cobalt and recycling of valuable metals from waste Li-ion batteries via solvent extraction and chemical precipitation. J Clean Prod 225:820–832

    CAS  Google Scholar 

  • Dhiman S, Gupta B (2020) Cyphos IL 104 assisted extraction of indium and recycling of indium, tin and zinc from discarded LCD screen. Sep Purif Technol 237:116407

    CAS  Google Scholar 

  • Endres F, Abbott A, MacFarlane DR (2017) Electrodeposition from ionic liquids. John Wiley & Sons, pp 1–12

  • Erust C, Akcil A, Tuncuk A, Deveci H, Yazici E (2020) A multi-stage process for recovery of neodymium (Nd) and dysprosium (Dy) from spent hard disc drives (HDDs). Miner Process Extr Metall Rev 1–25. https://doi.org/10.1080/08827508.2019.1692010

  • Fulton K (2019) Apple expands global recycling programs. from https://www.apple.com/newsroom/2019/04/apple-expands-global-recycling-programs/

  • Geng Y, Xiang Z, Lv C, Wang N, Wang Y, Yang Y (2019) Recovery of gold from hydrochloric medium by deep eutectic solvents based on quaternary ammonium salts. Hydrometallurgy 188:264–271

    CAS  Google Scholar 

  • Haider J, Saeed S, Qyyum MA, Kazmi B, Ahmad R, Muhammad A, Lee M (2020) Simultaneous capture of acid gases from natural gas adopting ionic liquids: challenges, recent developments, and prospects. Renew Sust Energ Rev 123:109771

    CAS  Google Scholar 

  • He J, Yang J, Tariq SM, Duan C, Zhao Y (2020) Comparative investigation on copper leaching efficiency from waste mobile phones using various types of ionic liquids. J Clean Prod 256:120368

    CAS  Google Scholar 

  • Hp-company (2005) Sustainable Impact Report. from http://www.hp.com/hpinfo/globalcitizenship/environment/pdf/hew04143_jly16.pdf

  • Hu J, Tian G, Zi F, Hu X (2017) Leaching of chalcopyrite with hydrogen peroxide in 1-hexyl-3-methyl-imidazolium hydrogen sulfate ionic liquid aqueous solution. Hydrometallurgy 169:1–8

    CAS  Google Scholar 

  • Izutsu K (2002) Electrochemistry in nonaqueous solutions. WILEY-VCH, Weinheim, Germany pp 25–58

  • Kamali Ardakani E, Kowsari E, Ehsani A (2020) Imidazolium-derived polymeric ionic liquid as a green inhibitor for corrosion inhibition of mild steel in 1.0 M HCl: experimental and computational study. Colloids Surf A Physicochem Eng Asp 586:124195

    CAS  Google Scholar 

  • Kaya M (2019) Electronic waste and printed circuit board recycling technologies. https://link.springer.com/book/10.1007%2F978-3-030-26593-9, Springer International Publishing: 1-66

  • Khalili Dermani A, Kowsari E, Ramezanzadeh B, Amini R (2019) Utilizing imidazole based ionic liquid as an environmentally friendly process for enhancement of the epoxy coating/graphene oxide composite corrosion resistance. J Ind Eng Chem 79:353–363

    CAS  Google Scholar 

  • Kowsari E (2016) Ionic liquids for green energy applications. Nova Science Pub Inc 1–30

  • Kurnia KA, Pinho SP, Coutinho JAP (2014) Designing ionic liquids for absorptive cooling. Green Chem 16(8):3741–3745

    CAS  Google Scholar 

  • Larriba M, Navarro P, Gonzalez-Miquel M, Omar S, Palomar J, García J, Rodríguez F (2016) Dicyanamide-based ionic liquids in the liquid–liquid extraction of aromatics from alkanes: experimental evaluation and computational predictions. Chem Eng Res Des 109:561–572

    CAS  Google Scholar 

  • Leclerc N, Legeai S, Balva M, Hazotte C, Comel J, Lapicque F, Billy E, Meux E (2018) Recovery of metals from secondary raw materials by coupled electroleaching and electrodeposition in aqueous or ionic liquid media. Metals 8(7):556

    Google Scholar 

  • Lee J-M (2012) Extraction of noble metal ions from aqueous solution by ionic liquids. Fluid Phase Equilib 319:30–36

    CAS  Google Scholar 

  • Legeai S, Diliberto S, Stein N, Boulanger C, Estager J, Papaiconomou N, Draye M (2008) Room-temperature ionic liquid for lanthanum electrodeposition. Electrochem Commun 10(11):1661–1664

    CAS  Google Scholar 

  • Li X, Li Z, Orefice M, Binnemans K (2019) Metal recovery from spent samarium–cobalt magnets using a trichloride ionic liquid. ACS Sustain Chem Eng 7(2):2578–2584

    CAS  Google Scholar 

  • Liu F, Deng Y, Han X, Hu W, Zhong C (2016) Electrodeposition of metals and alloys from ionic liquids. J Alloys Compd 654:163–170

    CAS  Google Scholar 

  • Liu Y, Zhang L, Song Q, Xu Z (2020) Recovery of palladium as nanoparticles from waste multilayer ceramic capacitors by potential-controlled electrodeposition. J Clean Prod 257:120370

    CAS  Google Scholar 

  • Łukomska A, Wiśniewska A, Dąbrowski Z, Domańska U (2020a) Liquid-liquid extraction of cobalt (II) and zinc (II) from aqueous solutions using novel ionic liquids as an extractants. J Mol Liq 112955. https://doi.org/10.1016/j.molliq.2020.112955

  • Łukomska A, Wiśniewska A, Dąbrowski Z, Domańska U (2020b) Liquid-liquid extraction of cobalt (II) and zinc (II) from aqueous solutions using novel ionic liquids as an extractants. J Mol Liq 307:112955

    Google Scholar 

  • Mahandra H, Singh R, Gupta B (2018) Recycling of Zn-C and Ni-Cd spent batteries using Cyphos IL 104 via hydrometallurgical route. J Clean Prod 172:133–142

    CAS  Google Scholar 

  • Masilela M, Ndlovu S (2019) Extraction of Ag and Au from chloride electronic waste leach solutions using ionic liquids. J Environ Chem Eng 7(1):102810

    CAS  Google Scholar 

  • Matsumiya M, Song Y, Tsuchida Y, Sasaki Y (2020) Separation of palladium by solvent extraction with methylamino-bis-N,N-dioctylacetamide and direct electrodeposition from loaded organic phase. Sep Purif Technol 234:115841

    CAS  Google Scholar 

  • Matsumoto MY, Yamaguchi T, Tahara Y (2020) Extraction of rare earth metal ions with an undiluted hydrophobic pseudoprotic ionic liquid. Metals 10(4)502 https://doi.org/10.3390/met10040502

  • Maurice A, Theisen J, Gabriel J-CP (2020) Microfluidic lab-on-chip advances for liquid–liquid extraction process studies. Curr Opin Colloid Interface Sci 46:20–35

    CAS  Google Scholar 

  • Micheau C, Arrachart G, Turgis R, Lejeune M, Draye M, Michel S, Legeai S, Pellet-Rostaing S (2020) Ionic liquids as extraction media in a two-step eco-friendly process for selective tantalum recovery. ACS Sustain Chem Eng 8(4):1954–1963

    CAS  Google Scholar 

  • Micheau C, Lejeune M, Arrachart G, Draye M, Turgis R, Michel S, Legeai S, Pellet-Rostaing S (2019) Recovery of tantalum from synthetic sulfuric leach solutions by solvent extraction with phosphonate functionalized ionic liquids. Hydrometallurgy 189:105107

    CAS  Google Scholar 

  • Michihiko Ike MY, Satoshi Soda (2012) Handbook of metal biotechnology applications for environmental conservation and sustainability, Jenny Stanford: 197

  • Nakamura T (2014) E-scrap recycling system and technologies in Japan. Geosyst Eng 17(2):104–112

    CAS  Google Scholar 

  • Nayak S, Devi N (2020). Studies on the solvent extraction of indium (III) from aqueous chloride medium using Cyphos IL 104. Materials Today: Proceedings

  • Nijman, S. (2019). UN report: time to seize opportunity, tackle challenge of e-waste. Retrieved 24 JAN 2019, from https://www.unenvironment.org/news-and-stories/press-release/un-report-time-seize-opportunity-tackle-challenge-e-waste

  • Orefice M, Van den Bulck A, Blanpain B, Binnemans K (2020) Selective roasting of Nd–Fe–B permanent magnets as a pretreatment step for intensified leaching with an ionic liquid. J Sustain Metal 6(1):91–102

    Google Scholar 

  • Panigrahi M, Grabda M, Kozak D, Dorai A, Shibata E, Kawamura J, Nakamura T (2016) Liquid–liquid extraction of neodymium ions from aqueous solutions of NdCl3 by phosphonium-based ionic liquids. Sep Purif Technol 171:263–269

    CAS  Google Scholar 

  • Parhi PK, Behera SS, Mandal D, Das D, Mohapatra RK (2020) Fundamental principle and practices of solvent extraction (SX) and supported liquid membrane (SLM) process for extraction and separation of rare earth metal(s). In: Jyothi RK (ed) Rare-earth metal recovery for green technologies: methods and applications. Springer International Publishing, Cham, pp 57–85

    Google Scholar 

  • Park J, Jung Y, Kusumah P, Lee J-Y, Kwon K, Lee C (2014) Application of ionic liquids in hydrometallurgy. Int J Mol Sci 15:15320–15343

    Google Scholar 

  • Patil RA, Ramakrishna S (2020) A comprehensive analysis of e-waste legislation worldwide. Environ Sci Pollut Res 27(13):14412–14431

    Google Scholar 

  • Pernak J, Syguda A, Janiszewska D, Materna K, Praczyk T (2011) Ionic liquids with herbicidal anions. Tetrahedron 67(26):4838–4844

    CAS  Google Scholar 

  • Petridis NE, Petridis K, Stiakakis E (2020) Global e-waste trade network analysis. Resour Conserv Recycl 158:104742

    Google Scholar 

  • Popescu A, Soare V, Demidenko O, Calderon-Moreno J, Neacsu E, Donath C, Burada M, Constantin I, Constantin V (2020) Recovery of silver and gold from electronic waste by electrodeposition in ethaline ionic liquid. Rev Chim 71:122–132

    CAS  Google Scholar 

  • Popescu AM, Yanushkevich K, Soare V, Donath C, Neacsu EI, Constantin V (2018) Recovery of metals from anodic dissolution slime of waste from electric and electronic equipment (WEEE) by extraction in ionic liquids. Chem Res Chin Univ 34(1):113–118

    CAS  Google Scholar 

  • Razo-Negrete M (2019) Comparison of the electrochemical behavior of some rare earth elements in butyl methylpyrrolidinium dicyanamide ionic liquid. Int J Electrochem Sci:10431–10447

  • Rout A, Venkatesan KA (2020) Synergic extraction of europium(III) in hydrophobic ammonium ionic liquid containing neutral and acidic extractants. J Mol Liq 113377

  • Rubicon (2018) What are the biggest electronic waste (e-waste) problems? from https://www.rubicon.com/blog/electronic-waste-problem/. Accessed 16 Jan 2018

  • samsung-company (2020) Responsible Recycling. from https://www.samsung.com/us/aboutsamsung/sustainability/environment/responsible-recycling/

  • Sengupta A, Murali MS, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2015) An insight into the complexation of UO22+ with diglycolamide-functionalized task specific ionic liquid: kinetic, cyclic voltammetric, extraction and spectroscopic investigations. Polyhedron 102:549–555

    CAS  Google Scholar 

  • Shi C, Li H, Liu B, Qin Y, Song G (2020) Solvent extraction of lithium from aqueous solution using an ammonium ionic liquid. J Mol Liq 304:112756

    CAS  Google Scholar 

  • Shinde PS, Peng Y, Reddy RG (2020) Electrodeposition of titanium aluminide (TiAl) alloy from AlCl3–BMIC ionic liquid at low temperature. TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings. Springer International Publishing, Cham

    Google Scholar 

  • Singh SK, Savoy AW (2020) Ionic liquids synthesis and applications: an overview. J Mol Liq 297:112038

    CAS  Google Scholar 

  • Skoronski E, Fernandes M, Malaret FJ, Hallett JP (2020) Use of phosphonium ionic liquids for highly efficient extraction of phenolic compounds from water. Sep Purif Technol 248:117069

    CAS  Google Scholar 

  • Sobekova Foltova S, Vander Hoogerstraete T, Banerjee D, Binnemans K (2019) Samarium/cobalt separation by solvent extraction with undiluted quaternary ammonium ionic liquids. Sep Purif Technol 210:209–218

    CAS  Google Scholar 

  • Sun P, Huang K, Liu H (2019) The nature of salt effect in enhancing the extraction of rare earths by non-functional ionic liquids: synergism of salt anion complexation and Hofmeister bias. J Colloid Interface Sci 539:214–222

    CAS  Google Scholar 

  • Sun Y, Wang Z, Wang Y, Liu M, Li S, Tang L, Wang S, Yang X, Ji S (2020) Improved transport of gold(I) from aurocyanide solution using a green ionic liquid-based polymer inclusion membrane with in-situ electrodeposition. Chem Eng Res Des 153:136–145

    CAS  Google Scholar 

  • Takashi Nakamura KH (2015) Urban mining systems. Springer, Tokyo, pp 1–29

    Google Scholar 

  • Traore Y, Legeai S, Diliberto S, Arrachart G, Pellet-Rostaing S, Draye M (2011) New insight into indium electrochemistry in a Tf2N-based room-temperature ionic liquid. Electrochim Acta 58:532–540

    CAS  Google Scholar 

  • Tunsu C, Petranikova M, Gergorić M, Ekberg C, Retegan T (2015) Reclaiming rare earth elements from end-of-life products: a review of the perspectives for urban mining using hydrometallurgical unit operations. Hydrometallurgy 156:239–258

    CAS  Google Scholar 

  • Turgis R, Arrachart G, Michel S, Legeai S, Lejeune M, Draye M, Pellet-Rostaing S (2018) Ketone functionalized task specific ionic liquids for selective tantalum extraction. Sep Purif Technol 196:174–182

    CAS  Google Scholar 

  • Unhelkar B (2010) Handbook of research on green ICT: technology, business and social perspectives: 480–505

  • Usmani Z, Sharma M, Gupta P, Karpichev Y, Gathergood N, Bhat R, Gupta VK (2020) Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresour Technol 304:123003

    CAS  Google Scholar 

  • Van den Bossche A, Vereycken W, Vander Hoogerstraete T, Dehaen W, Binnemans K (2019) Recovery of gallium, indium, and arsenic from semiconductors using tribromide ionic liquids. ACS Sustain Chem Eng 7(17):14451–14459

    Google Scholar 

  • Vereycken W, Riaño S, Gerven TV, Binnemans K (2020) Extraction behavior and separation of precious and base metals from chloride, bromide, and iodide media using undiluted halide ionic liquids. ACS Sustain Chem Eng 8(22):8223-8234. https://doi.org/10.1021/acssuschemeng.0c01181

  • Wang F, Huisman J, Baldé K, Stevels A (2012) A systematic and compatible classification of WEEE. 2012 Electronics Goes Green 2012+ pp 1-6

  • Wang M, Wang Q, Geng Y, Wang N, Yang Y (2020) Gold (III) separation from acidic medium by amine-based ionic liquid. J Mol Liq 304:112735

    CAS  Google Scholar 

  • Yang S, Liu G, Wang J, Cui L, Chen Y (2019) Recovery of lithium from alkaline brine by solvent extraction with functionalized ionic liquid. Fluid Phase Equilib 493:129–136

    CAS  Google Scholar 

  • Yoshida F, Yoshida H (2012) 25 - WEEE management in Japan. Waste Electrical and Electronic Equipment (WEEE) Handbook. V. Goodship and A. Stevels, Woodhead Publishing: 576–590. https://doi.org/10.1016/B978-0-08-102158-3.00021-5

  • Yue C, Fang D, Liu L, Yi T-F (2011) Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions. J Mol Liq 163(3):99–121

    CAS  Google Scholar 

  • Zante G, Masmoudi A, Barillon R, Trébouet D, Boltoeva M (2020) Separation of lithium, cobalt and nickel from spent lithium-ion batteries using TBP and imidazolium-based ionic liquids. J Ind Eng Chem 82:269–277

    CAS  Google Scholar 

  • Zhang Q, Hua Y, Xu C, Li Y, Li J, Dong P (2015) Non-haloaluminate ionic liquids for low-temperature electrodeposition of rare-earth metals—a review. J Rare Earths 33(10):1017–1025

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Research Affairs Division Amirkabir University of Technology (AUT), Tehran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elaheh Kowsari or Seeram Ramakrishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AliAkbari, R., Marfavi, Y., Kowsari, E. et al. Recent Studies on Ionic Liquids in Metal Recovery from E-Waste and Secondary Sources by Liquid-Liquid Extraction and Electrodeposition: a Review. Mater Circ Econ 2, 10 (2020). https://doi.org/10.1007/s42824-020-00010-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42824-020-00010-2

Keywords

Navigation