Skip to main content

Advertisement

Log in

Surface engineering of Li- and Mn-rich layered oxides for superior Li-ion battery

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

The Li- and Mn-rich layered oxides (R-LNCM) are considered as promising cathode materials for high-energy density lithium-ion batteries (LIBs). However, the interface side reaction aggravates the voltage and capacity fading between cathode material and electrolyte at high voltage, which severely hinders the practical application of LIBs. Herein, lithium polyacrylate (LiPAA) as the binder and coating agent is applied to suppress the voltage and capacity fading of R-LNCM electrode. The flexible LiPAA layers with high elasticity are capable of impeding cathode cracks on the particle surface via mechanical stress relief. Thus, superior voltage and capacity fading suppression on R-LNCM electrode is finally achieved. As a result, LiPAA-R-LNCM cathode exhibits a remarkable specific capacity of 186 mA‧h‧g−1 with ~ 73% retention at 1 ℃ after 200 cycles. Further, the corresponding average discharge potential is maintained to ~ 3.1 V with only ~ 0.4 V falling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li WD, Liu XM, Celio H, Smith P, Dolocan A, Chi MF, Manthiram A. Mn versus Al in layered oxide cathodes in lithium-ion batteries: a comprehensive evaluation on long-term cyclability. Adv Energy Mater. 2018;8(15):1703154.

    Article  Google Scholar 

  2. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang JG. Li-and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater. 2016;7(6):1601284.

    Article  Google Scholar 

  3. Li W, Song B, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev. 2017;46(10):3006.

    Article  CAS  PubMed  Google Scholar 

  4. Li Z, Li Y, Zhang M, Yin ZW, Yin L, Xu S, Zuo C, Qi R, Xue H, Hu J, Cao B, Chu M, Zhao W, Ren Y, Xie L, Ren G, Pan F. Modifying Li@Mn6 superstructure units by Al substitution to enhance the long-cycle performance of Co-free Li-rich cathode. Adv Energy Mater. 2021;11(37):2101962.

    Article  CAS  Google Scholar 

  5. Liu H, Harris KJ, Jiang M, Wu Y, Goward GR, Botton GA. Unraveling the rapid performance decay of layered high-energy cathodes: from nanoscale degradation to drastic bulk evolution. ACS Nano. 2018;12(3):2708.

    Article  CAS  PubMed  Google Scholar 

  6. Nayak PK, Grinblat J, Levi M, Levi E, Kim S, Choi JW, Aurbach D. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for li-ion batteries. Adv Energy Mater. 2016;6(8):1502398.

    Article  Google Scholar 

  7. Yu X, Lyu Y, Gu L, Wu H, Bak SM, Zhou Y, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater. 2014;4(5):1300950.

    Article  Google Scholar 

  8. Park KS, Benayad A, Park MS, Choi W, Im D. Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VO(x)-impregnated0.5Li2MnO3–0.5LiNi(0.4)Co(0.2)Mn(0.4)O2 cathode. Chem Commun. 2010;46(23):4190.

    Article  CAS  Google Scholar 

  9. Liu S, Wang B, Zhang X, Zhao S, Zhang Z, Yu H. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter. 2021;4(5):1511.

    Article  CAS  Google Scholar 

  10. Cui Z, Xie Q, Manthiram A. A cobalt-and manganese-free high-nickel layered oxide cathode for long-life, safer lithium-ion batteries. Adv Energy Mater. 2021;11(41):2102421.

    Article  CAS  Google Scholar 

  11. Pham HQ, Kim G, Jung HM, Song SW. Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries. Adv Funct Mater. 2018;28(2):1704690.

    Article  Google Scholar 

  12. Kim K, Hwang D, Kim S, Park SO, Cha H, Lee YS, Cho J, Kwak SK, Choi NS. Cyclic aminosilane-based additive ensuring stable electrode-electrolyte interfaces in Li-Ion batteries. Adv Energy Mater. 2020;10(15):2000012.

    Article  CAS  Google Scholar 

  13. Singer A, Zhang M, Hy S, Cela D, Fang C, Wynn TA, Qiu B, Xia Y, Liu Z, Ulvestad A, Hua N, Wingert J, Liu H, Sprung M, Zozulya AV, Maxey E, Harder R, Meng YS, Shpyrko OG. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat Energy. 2018;3(8):641.

    Article  CAS  ADS  Google Scholar 

  14. Lee EJ, Chen Z, Noh HJ, Nam SC, Kang S, Kim DH, Amine K, Sun YK. Development of microstrain in aged lithium transition metal oxides. Nano Lett. 2014;14(8):4873.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Cho Y, Oh P, Cho J. A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. Nano Lett. 2013;13(3):1145.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Li J, Shunmugasundaram R, Doig R, Dahn JR. In situ x-ray diffraction study of layered Li–Ni–Mn–Co oxides: effect of particle size and structural stability of core–shell materials. Chem Mater. 2015;28(1):162.

    Article  Google Scholar 

  17. Wang L, Dai A, Xu W, Lee S, Cha W, Harder R, Liu T, Ren Y, Yin G, Zuo P, Wang J, Lu J, Wang J. Structural distortion induced by manganese activation in a lithium-rich layered cathode. J Am Chem Soc. 2020;142(35):14966.

    Article  CAS  PubMed  Google Scholar 

  18. Shi S, Lu P, Liu Z, Qi Y, Hector LG Jr, Li H, Harris SJ. Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc. 2012;134(37):15476.

    Article  CAS  PubMed  Google Scholar 

  19. Yu H, So YG, Ren Y, Wu T, Guo G, Xiao R, Lu J, Li H, Yang Y, Zhou H, Wang R, Amine K, Ikuhara Y. Temperature-sensitive structure evolution of lithium-manganese-rich layered oxides for lithium-ion batteries. J Am Chem Soc. 2018;140(45):15279.

    Article  CAS  PubMed  Google Scholar 

  20. Lyu Y, Liu Y, Gu L. Surface structure evolution of cathode materials for Li-ion batteries. Chin Phys B. 2016;25(1):018209.

    Article  ADS  Google Scholar 

  21. Jung SK, Gwon H, Hong J, Park KY, Seo DH, Kim H, Hyun J, Yang W, Kang K. Understanding the degradation mechanisms LiNi0.5Co0.2Mn0.3O2 of cathode material in lithium ion batteries. Adv Energy Mater. 2014;4(1):1300787.

    Article  Google Scholar 

  22. Cui SL, Gao MY, Li GR, Gao XP. Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv Energy Mater. 2021;12(4):2003885.

    Article  Google Scholar 

  23. Zang X, Wang X, Liu H, Ma X, Wang W, Ji J, Chen J, Li R, Xue M. Enhanced ion conduction via epitaxially polymerized twodimensional conducting polymer for high-performance cathode in zinc-ion batteries. ACS Appl Mater Interfaces. 2020;12(8):9347.

    Article  CAS  PubMed  Google Scholar 

  24. Chung Y, Shin Y, Liu Y, Park JS, Margez CL, Greszler TA. Synergetic effect of carbon and AlF3 coatings on the lithium titanium oxide anode material for high power lithium-ion batteries. J Electroanal Chem. 2019;837(15):240.

    Article  CAS  Google Scholar 

  25. Pyun MH, Park YJ. Enhanced cyclic performance of MgF2-coated Li[Ni0.2Li0.2Mn0.6]O2 nanoparticle cathodes in full lithium ion cells. J Electroceram. 2014;33(3–4):264.

    Article  CAS  Google Scholar 

  26. Chong S, Chen Y, Yan W, Guo S, Tan Q, Wu Y, Jiang T, Liu Y. Suppressing capacity fading and voltage decay of Li-rich layered cathode material by a surface nano-protective layer of CoF2 for lithium-ion batteries. J Power Sources. 2016;332(15):230.

    Article  CAS  Google Scholar 

  27. Liu X, Liu J, Huang T, Yu A. CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta. 2013;109(13):52.

    Article  CAS  ADS  Google Scholar 

  28. Liu X, Huang T, Yu A. Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim Acta. 2015;163(15):82.

    Article  CAS  Google Scholar 

  29. Yan P, Zheng J, Zhang X, Xu R, Amine K, Xiao J, Zhang JG, Wang CM. Atomic to nanoscale investigation of functionalities of an Al2O3 coating layer on a cathode for enhanced battery performance. Chem Mater. 2016;28(3):857.

    Article  CAS  Google Scholar 

  30. Han E, Li Y, Zhu L, Zhao L. The effect of MgO coating on Li1.17·Mn0.48·Ni0.23·Co0.12·O2 cathode material for lithium ion batteries. Solid State Ionics. 2014;255(34):113.

    Article  CAS  Google Scholar 

  31. Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axelbaum RL. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater. 2013;3(10):1299.

    Article  CAS  Google Scholar 

  32. Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh MP, Yang L, Sham TK, Li R, Cai M, Sun X. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy. 2017;34(15):120.

    Article  CAS  Google Scholar 

  33. Wang Z, Liu E, He C, Shi C, Li J, Zhao N. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources. 2013;236(15):25.

    Article  CAS  Google Scholar 

  34. Lai X, Hu G, Peng Z, Tong H, Lu Y, Wang Y, Qi X, Xue Z, Huang Y, Du K, Cao Y. Surface structure decoration of high capacity Li1.2Mn0.54Ni0.13Co0.13O2 cathode by mixed conductive coating of Li1.4Al0.4Ti1.6(PO4)3 and polyaniline for lithium-ion batteries. J Power Sources. 2019;431(16):144.

    Article  CAS  Google Scholar 

  35. Liu H, Chen C, Du C, He X, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y. Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J Mater Chem A. 2015;3(6):2634.

    Article  CAS  ADS  Google Scholar 

  36. Lee YM, Nam KM, Hwang EH, Kwon YG, Kang DH, Kim SS, Song SW. Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2 battery cathodes. J Phys Chem C. 2014;118(20):10631.

    Article  CAS  Google Scholar 

  37. Zhao J, Liang Y, Zhang X, Zhang Z, Wang E, He S, Wang B, Han Z, Lu J, Amine K, Yu H. In situ construction of uniform and robust cathode-electrolyte interphase for Li-rich layered oxides. Adv Funct Mater. 2021;31(8):2009192.

    Article  CAS  Google Scholar 

  38. Zhao J, Zhang X, Liang Y, Han Z, Liu S, Chu W, Yu H. Interphase engineering by electrolyte additives for lithium-rich layered oxides: advances and perspectives. ACS Energy Lett. 2021;6(7):2552.

    Article  CAS  Google Scholar 

  39. Song YM, Kim CK, Kim KE, Hong SY, Choi NS. Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0.5Mn1.5O4 cathodes. J Power Sour. 2016;302(6):220.

    Google Scholar 

  40. Hu E, Yu X, Lin R, Bi X, Lu J, Seongmin B, Nam KW, Xin HL, Cherno J, Fischer DA, Amine K, Yang XQ. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat Energy. 2018;3(8):690.

    Article  CAS  ADS  Google Scholar 

  41. Luo D, Ding X, Fan J, Zhang Z, Liu P, Yang X, Guo J, Sun S, Lin Z. Accurate control of initial coulombic efficiency for Li-rich Mn-based layered oxides by surface multicomponent integration. Angew Chem Int Ed. 2020;59(51):23261.

    Article  ADS  Google Scholar 

  42. Wang C, Xing L, Vatamanu J, Chen Z, Lan G, Li W, Xu K. Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Nat Commun. 2019;10(1):1.

    ADS  Google Scholar 

  43. Naylor AJ, Makkos E, Maibach J, Guerrini N, Sobkowiak A, Björklund E, Lozano JG, Menon AS, Younesi R, Roberts MR, Edström K, Islam MS, Bruce PG. Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes. J Mater Chem A. 2019;7(44):25355.

    Article  CAS  Google Scholar 

  44. Pang WK, Lin HF, Peterson VK, Lu CZ, Liu CE, Liao SC, Chen JM. Effects of fluorine and chromium doping on the performance of lithium-rich Li1+xMO2 (M = Ni, Mn, Co) positive electrodes. Chem Mater. 2017;29(24):10299.

    Article  CAS  Google Scholar 

  45. Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M. Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed Engl. 2015;127(44):13058.

    Article  Google Scholar 

  46. Wang G, Yi L, Yu R, Wang X, Wang Y, Liu Z, Wu B, Liu M, Zhang X, Yang X, Xiong X, Liu M, Zhang X, Yang X, Xiong X, Liu M. Liu M. Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9(30):25358.

    Article  CAS  PubMed  Google Scholar 

  47. Ye D, Zeng G, Nogita K, Ozawa K, Hankel M, Searles DJ, Wang L. Understanding the origin of Li2MnO3 activation in Li-rich cathode materials for lithium-ion batteries. Adv Funct Mater. 2015;25(48):7488.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (Grant No. 2021YFB2400401), and Project of Development Fund of Key Laboratory of Green Plateau and Ecological Community of Qinghai Province (Grant No.SL-2020-019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Tao Chen or Yuan Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LX., Chen, TD., Hai, CX. et al. Surface engineering of Li- and Mn-rich layered oxides for superior Li-ion battery. Tungsten 6, 259–268 (2024). https://doi.org/10.1007/s42864-022-00187-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-022-00187-w

Keywords

Navigation