Skip to main content
Log in

Fracture Failure Evaluation of Foam WMA Mixes Containing RAP by Applying Weibull Probability Distribution Function

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Will reclaimed asphalt pavement (RAP) be used more in pavements in the future? This is why researchers tended toward investigating high-RAP mixes. Hence, evaluating the fracture resistance of warm mix asphalt (WMA) mixes containing various RAP contents was chosen as the aim of this research. The first step was to determine the optimum binder contents and the required mixing temperatures. The optimized mixes were compacted and were tested under fracture in semi-circular bending (SCB) test. The SCB specimens were tested in fracture opening mode at temperatures varying from 25 to – 20 °C and after exposure to freeze–thaw cycles. The role of RAP materials in WMA mixes was investigated, assessing crack evolution criteria at different condition regimes. Analytical indices and the R-curve method were employed in investigating the experimental results. Moreover, the possibility of cracking failure was determined through the Weibull probability distribution function. The desirability value that was defined to represent the degree of agreement between the criteria of the optimized mixes and predefined goals, showed that mixes with 30% RAP were the most desirable. As the RAP content increased lower desirability values were recorded. R-curves showed that the foam WMA mixes containing 30% of RAP were the most resistant mixes against fracture failure. At the same time, Weibull analysis showed that greater RAP contents resulted in increased cracking in WMA mixes, while the inclusion of 30% RAP resulted in the most desirable mixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Padula, F. R. G., Nicodemos, S., Mendes, J. C., Willis, R., & Taylor, A. (2019). Evaluation of fatigue performance of high RAP-WMA mixtures. International Journal of Pavement Research and Technology, 12, 430–434. https://doi.org/10.1007/s42947-019-0051-y

    Article  Google Scholar 

  2. Kavussi, A., Motevalizadeh, M., Karimi, A., & Rahimizadeh, A. (2017). Evaluating the moisture resistance of foam warm mix asphalt using image processing method. Computational Research Progress in Applied Science & Engineering, 03, 1–7.

    Google Scholar 

  3. Newcomb, D. E., Arambula, E., Yin, F., Zhang, J., Bhasin, A., Li, W., & Arega, Z. (2015). Properties of foamed asphalt for warm mix asphalt applications. Properties of Foamed Asphalt for Warm Mix Asphalt. https://doi.org/10.17226/22145

    Article  Google Scholar 

  4. Martin, H., Kerstin, Z., & Joachim, M. (2019). Reduced emissions of warm mix asphalt during construction. Road Materials and Pavement Design. https://doi.org/10.1080/14680629.2019.1628426

    Article  Google Scholar 

  5. You, L., You, Z., Dai, Q., Guo, S., Wang, J., & Schultz, M. (2018). Characteristics of water-foamed asphalt mixture under multiple freeze-thaw cycles: Laboratory evaluation. Journal of Materials in Civil Engineering, 30, 1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002474

    Article  Google Scholar 

  6. Li, X., Marasteanu, M. O., Williams, R. C., & Clyne, T. R. (2008). Effect of reclaimed asphalt pavement (proportion and type) and binder grade on asphalt mixtures. Transportation Research Record. https://doi.org/10.3141/2051-11

    Article  Google Scholar 

  7. I. Al-Qadi, H. Ozer, J. Lambros, A. El Khatib, D. Singhvi, Testing protocols to ensure performance of high asphalt binder replacement mixes using RAP and RAS, (2015)

  8. Song, W., Huang, B., & Shu, X. (2018). Influence of warm-mix asphalt technology and rejuvenator on performance of asphalt mixtures containing 50% reclaimed asphalt pavement. Journal of Cleaner Production, 192, 191–198. https://doi.org/10.1016/j.jclepro.2018.04.269

    Article  Google Scholar 

  9. A. Arshadi, M. Rahman, M. Barman, Development of Special Provision for Mix Design of Foamed WMA Containing Development of Special Provision for Mix Design of Foamed WMA Containing RAP The University of Oklahoma, (2019). https://doi.org/10.13140/RG.2.2.29342.97604.

  10. Kaseer, F., Yin, F., Arámbula-Mercado, E., Martin, A. E., Daniel, J. S., & Salari, S. (2018). Development of an index to evaluate the cracking potential of asphalt mixtures using the semi-circular bending test. Construction and Building Materials, 167, 286–298. https://doi.org/10.1016/j.conbuildmat.2018.02.014

    Article  Google Scholar 

  11. Li, C., Xiao, Y., Chen, Z., & Wu, S. (2016). Crack resistance of asphalt mixture with steel slag powder. Emerging Materials Research. https://doi.org/10.1680/jemmr.16.00009

    Article  Google Scholar 

  12. Fakhri, M., & Ahmadi, A. (2017). Evaluation of fracture resistance of asphalt mixes involving steel slag and RAP: Susceptibility to aging level and freeze and thaw cycles. Construction and Building Materials, 157, 748–756. https://doi.org/10.1016/j.conbuildmat.2017.09.116

    Article  Google Scholar 

  13. Fakhri, M., Kharrazi, E. H., & Aliha, M. R. M. (2018). Mixed mode tensile—In plane shear fracture energy determination for hot mix asphalt mixtures under intermediate temperature conditions. Engineering Fracture Mechanics, 192, 98–113. https://doi.org/10.1016/j.engfracmech.2018.02.007

    Article  Google Scholar 

  14. Xiao, F., Newton, D., Putman, B., Punith, V. S., & Amirkhanian, S. N. (2013). A long-term ultraviolet aging procedure on foamed WMA mixtures. Materials and Structures Construction, 46, 1987–2001. https://doi.org/10.1617/s11527-013-0031-7

    Article  Google Scholar 

  15. M.A. Rahman, A. Arshadi, R. Ghabchi, S.A. Ali, M. Zaman, Evaluation of Rutting and Cracking Resistance of Foamed Warm Mix Asphalt Containing RAP (2019). https://doi.org/10.1007/978-3-319-96241-2_11.

  16. Ameri, M., Mohammadi, M. H., Motevalizadeh, S. M., & Mousavi, A. (2019). Experimental study to investigate the performance of cold in-place recycling asphalt mixes. Proceedings of the Institution of Civil Engineers Transport, 172, 360–370. https://doi.org/10.1680/jtran.17.00062

    Article  Google Scholar 

  17. Esfandabad, A. S., Motevalizadeh, S. M., Sedghi, R., Ayar, P., & Asgharzadeh, S. M. (2020). Fracture and mechanical properties of asphalt mixtures containing granular polyethylene terephthalate (PET). Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.120410

    Article  Google Scholar 

  18. Motevalizadeh, S. M., Sedghi, R., & Rooholamini, H. (2020). Fracture properties of asphalt mixtures containing electric arc furnace slag at low and intermediate temperatures. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2019.117965

    Article  Google Scholar 

  19. A.C. Falchetto, K.H. Moon, D. Wang, C. Riccardi, M.P. Wistuba, A. Cannone, K.H. Moon, D. Wang, C. Riccardi, Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from IDT and SCB under different testing configurations, (2018). https://doi.org/10.1080/14680629.2018.1418722.

  20. Ozer, H., Al-Qadi, I. L., Lambros, J., El-Khatib, A., Singhvi, P., & Doll, B. (2016). Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Construction and Building Materials, 115, 390–401. https://doi.org/10.1016/j.conbuildmat.2016.03.144

    Article  Google Scholar 

  21. Son, S., Said, I. M., & Al-Qadi, I. L. (2019). Fracture properties of asphalt concrete under various displacement conditions and temperatures. Construction and Building Materials, 222, 332–341. https://doi.org/10.1016/j.conbuildmat.2019.06.161

    Article  Google Scholar 

  22. Zhu, Y., Dave, E. V., Rahbar-Rastegar, R., Daniel, J. S., & Zofka, A. (2017). Comprehensive evaluation of low temperature fracture indices for asphalt mixtures. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions., 86, 629–658. https://doi.org/10.1080/14680629.20l7.1389085

    Article  Google Scholar 

  23. Elseifi, M. A., Mohammad, L. N., Ying, H., & Cooper, S. (2012). Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions., 81, 277–298.

    Google Scholar 

  24. Li, X., & Marasteanu, M. O. (2005). Cohesive modeling of fracture in asphalt mixtures at low temperatures. International Journal of Fracture, 136, 285–308. https://doi.org/10.1007/s10704-005-6035-8

    Article  Google Scholar 

  25. Nemati, R., Haslett, K., Dave, E. V., & Sias, J. E. (2019). Development of a rate-dependent cumulative work and instantaneous power-based asphalt cracking performance index. Road Materials and Pavement Design, 20, S315–S331. https://doi.org/10.1080/14680629.2019.1586753

    Article  Google Scholar 

  26. M.R.M. Aliha, H.R.F. Amirdehi, Fracture toughness prediction using Weibull statistical method for asphalt mixtures containing different air void contents, (2016) 1–14. https://doi.org/10.1111/ffe.12474.

  27. Pirmohammad, S., Khoramishad, H., & Ayatollahi, M. R. (2015). Effects of asphalt concrete characteristics on cohesive zone model parameters of hot mix asphalt mixtures. Canadian Journal of Civil Engineering, 43, 226–232. https://doi.org/10.1139/cjce-2014-0504

    Article  Google Scholar 

  28. Saha, G., & Biligiri, K. P. (2015). Fracture damage evaluation of asphalt mixtures using Semi-Circular Bending test based on fracture energy approach. Engineering Fracture Mechanics, 142, 154–169. https://doi.org/10.1016/j.engfracmech.2015.06.009

    Article  Google Scholar 

  29. Hill, B., Behnia, B., Hakimzadeh, S., Buttlar, W., & Reis, H. (2012). Evaluation of low-temperature cracking performance of warm-mix asphalt mixtures. Transportation Research Record. https://doi.org/10.3141/2294-09

    Article  Google Scholar 

  30. Maupin, G. W., Diefenderfer, S. D., & Gillespie, J. S. (2009). Virginia’s higher specification for reclaimed asphalt pavement: Performance and economic evaluation. Transportation Research Record. https://doi.org/10.3141/2126-17

    Article  Google Scholar 

  31. National Center for Asphalt Technology, LTPP Data Shows RAP Mixes Perform as Well as Virgin Mixes, Asphalt Technology News. 21 (2009)

  32. R.S. McDaniel, H. Soleymani, A. Shah, Use of Reclaimed Asphalt Pavement (RAP ) Under Superpave Specifications : A Regional Pooled Fund Project. Publication FHWA/IN/JTRP-2002/06., Fhwa. (2002) https://doi.org/10.5703/1288284313465

  33. Hamzah, M. O., Kakar, M. R., Quadri, S. A., & Valentin, J. (2014). Quantification of moisture sensitivity of warm mix asphalt using image analysis technique. Journal of Cleaner Production, 68, 200–208. https://doi.org/10.1016/j.jclepro.2013.12.072

    Article  Google Scholar 

  34. Arega, Z. A., Bhasin, A., Li, W., Newcomb, D. E., & Arambula, E. (2014). Characteristics of asphalt binders foamed in the laboratory to produce warm mix asphalt. Journal of Materials in Civil Engineering. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000981

    Article  Google Scholar 

  35. You, L., You, Z., Yang, X., Ge, D., & Lv, S. (2018). Laboratory testing of rheological behavior of water-foamed bitumen. Journal of Materials in Civil Engineering, 30, 4–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002362

    Article  Google Scholar 

  36. Yin, F., Arámbula-Mercado, E., & Newcomb, D. (2016). Mix design procedure for foamed asphalt mixtures. Road Mater. Pavement Des., 17, 946–957. https://doi.org/10.1080/14680629.2015.1132633

    Article  Google Scholar 

  37. Kavussi, A., & Hashemian, L. (2011). Properties of wma-foam mixes based on major mechanical tests. Journal of Civil Engineering and Management, 17, 207–216. https://doi.org/10.3846/13923730.2011.576825

    Article  Google Scholar 

  38. A. Kavussi, L. Hashemian, International Journal of Pavement Engineering Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes, (2012) 37–41.

  39. Wu, S., & Li, X. (2017). Evaluation of effect of curing time on mixture performance of Advera warm mix asphalt. Construction and Building Materials, 145, 62–67. https://doi.org/10.1016/j.conbuildmat.2017.03.240

    Article  Google Scholar 

  40. Kim, Y., & Lee, H. D. (2006). Development of mix design procedure for cold in-place recycling with foamed asphalt. Journal of Materials in Civil Engineering, 18, 116–124. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:1(116)

    Article  Google Scholar 

  41. AASHTO T283–14, Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage, American Association of State Highway and Transportation Officials Washington, DC. 14 (2014) 1–8. https://global.ihs.com/doc_detail.cfm?document_name=AASHTO T 283&item_s_key=00489198.

  42. D. 7369, Standard Test Method for Determining the Resilient Modulus of Bituminous Mixtures by Indirect Tension Test, Transportation Research Record Journal of the Transportation Research Board. 32 (2012) 48–55. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.013%0Ahttp://trid.trb.org/view.aspx?id=1214989%0Ahttp://ieeexplore.ieee.org/document/6728529/%0Ahttp://dx.doi.org/10.1016/j.conbuildmat.2008.12.001%0Ahttp://ascelibrary.org/doi/10.1061/%28ASCE%29MT.1943-5533.

  43. (AASHTO), Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Hot Mix Asphalt (HMA), American Association of State Highway and Transportation Officials T 324–11 (2013).

  44. Hamzah, M. O., Gungat, L., & Golchin, B. (2017). Estimation of optimum binder content of recycled asphalt incorporating a wax warm additive using response surface method. International Journal of Pavement Engineering, 18, 682–692. https://doi.org/10.1080/10298436.2015.1121779

    Article  Google Scholar 

  45. Hamzah, M. O., Golchin, B., & Tye, C. T. (2013). Determination of the optimum binder content of warm mix asphalt incorporating Rediset using response surface method. Construction and Building Materials, 47, 1328–1336. https://doi.org/10.1016/j.conbuildmat.2013.06.023

    Article  Google Scholar 

  46. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  Google Scholar 

  47. Kavussi, A., Qorbaninik, M., & Hassani, A. (2019). The influence of moisture content and compaction level on LWD modulus of unbound granular base layers. Transportation Geotechnics. https://doi.org/10.1016/j.trgeo.2019.100252

    Article  Google Scholar 

  48. Kavussi, A., Qorbani, M., Khodaii, A., & Haghshenas, H. F. (2014). Moisture susceptibility of warm mix asphalt: A statistical analysis of the laboratory testing results. Construction and Building Materials, 52, 511–517. https://doi.org/10.1016/j.conbuildmat.2013.10.073

    Article  Google Scholar 

  49. ASTM D2172, Standard Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures, American Society for Testing and Materials (2017). https://doi.org/10.1520/D2172.

  50. D5444 ASTM. (2015). Standard Test Method for Mechanical Size Analysis of Extracted Aggregate 1. Am. Soc. Test. Mater. ASTM., 14, 98–100.

    Google Scholar 

  51. Kavussi, A., & Hashemian, L. (2012). Laboratory evaluation of moisture damage and rutting potential of WMA foam mixes. International Journal of Pavement Engineering, 13, 415–423. https://doi.org/10.1080/10298436.2011.597859

    Article  Google Scholar 

  52. Shu, X., Huang, B., Shrum, E. D., & Jia, X. (2012). Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Construction and Building Materials, 35, 125–130. https://doi.org/10.1016/j.conbuildmat.2012.02.095

    Article  Google Scholar 

  53. X. Li, M.O. Marasteanu, Using Semi Circular Bending Test to Evaluate Low Temperature Fracture Resistance for Asphalt Concrete, (2010) 867–876. https://doi.org/10.1007/s11340-009-9303-0.

  54. Mirsayar, M. M. (2017). On the low temperature mixed mode fracture analysis of asphalt binder—Theories and experiments. Engineering Fracture Mechanics, 186, 181–194. https://doi.org/10.1016/j.engfracmech.2017.10.010

    Article  Google Scholar 

  55. Bradley, W., Cantwell, W. J., & Kausch, H. H. (1997). Viscoelastic creep crack growth: A review of fracture mechanical analyses. Mechanics of Time-Dependent Materials, 1, 241–268. https://doi.org/10.1023/A:1009766516429

    Article  Google Scholar 

  56. Kavussi, A., & Motevalizadeh, S. M. (2020). Fracture and mechanical properties of water-based foam warm mix asphalt containing reclaimed asphalt pavement. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2020.121332

    Article  Google Scholar 

  57. Yang, S., & Braham, A. (2018). R-curves characterisation analysis for asphalt concrete. International Journal of Pavement Engineering, 19, 99–108. https://doi.org/10.1080/10298436.2016.1172467

    Article  Google Scholar 

  58. De Castro, P. M. S. T. (1984). R-curve behaviour of a structural steel. Engineering Fracture Mechanics, 19, 341–357. https://doi.org/10.1016/0013-7944(84)90028-6

    Article  Google Scholar 

  59. Braham, A., & Mudford, C. (2013). Development of fracture resistance curves for asphalt concrete. Journal of Materials in Civil Engineering, 25, 1631–1637. https://doi.org/10.1061/(asce)mt.1943-5533.0000724

    Article  Google Scholar 

  60. Gilmour, S. G. (2006). Response surface designs for experiments in bioprocessing. Biometrics, 62, 323–331. https://doi.org/10.1111/j.1541-0420.2005.00444.x

    Article  MathSciNet  MATH  Google Scholar 

  61. Amirdehi, H. R. F., Aliha, M. R. M., Moniri, A., & Torabi, A. R. (2019). Using the generalized maximum tangential stress criterion to predict mode II fracture of hot mix asphalt in terms of mode I results—A statistical analysis. Construction and Building Materials, 213, 483–491. https://doi.org/10.1016/j.conbuildmat.2019.04.067

    Article  Google Scholar 

  62. Wallin, K. (1984). The scatter in KIC-results. Engineering Fracture Mechanics, 19, 1085–1093. https://doi.org/10.1016/0013-7944(84)90153-X

    Article  Google Scholar 

  63. Bala, N., Napiah, M., & Kamaruddin, I. (2018). Nanosilica composite asphalt mixtures performance-based design and optimisation using response surface methodology. International Journal of Pavement Engineering, 8436, 1–12. https://doi.org/10.1080/10298436.2018.1435881

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Kavussi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavussi, A., Motevalizadeh, S.M. Fracture Failure Evaluation of Foam WMA Mixes Containing RAP by Applying Weibull Probability Distribution Function. Int. J. Pavement Res. Technol. 15, 1277–1296 (2022). https://doi.org/10.1007/s42947-021-00088-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00088-0

Keywords

Navigation