Skip to main content
Log in

A Critical Review of 3GPP Standardization of Device-to-Device Communication in Cellular Networks

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Device-to-device (D2D) communication is rapidly evolving into a viable method of information exchange in a cellular network. It has a very low end-to-end latency and can increase spectral efficiency of a cellular network. The latest releases of 3GPP specification have given considerable attention to standardize this mode of communication and integrate it in the ecosystem of LTE advanced. This will give more impetus to the development of D2D technologies and their adoption by mobile operators. This paper presents a discussion and critical analysis of the main features of D2D communication as defined in Release 12 and subsequent releases of 3GPP specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

(from [40])

Fig. 11

(from [40])

Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 3GPP, RP-140808. Review of regulatory requirements for Unlicensed Spectrum, Alcatel-Lucent, Alcatel-Lucent Shanghai Bell, Ericsson, Huawei, HiSilicon, IAESI, LG, Nokia, NSN, Qualcomm, NTT Docomo, Technical report. 2014.

  2. Abualhaol I, Muegge S. Securing d2d wireless links by continuous authenticity with legitimacy patterns. In: Proceedings of 49th Hawaii international conference on system sciences (HICSS). IEEE; 2016. p. 5763–71.

  3. Ansari RI, Chrysostomou C, Hassan SA, Guizani M, Mumtaz S, Rodriguez J, Rodrigues JJ. 5G D2D networks: techniques, challenges, and future prospects. IEEE Syst J. 2017;12(4):3970–84.

    Article  Google Scholar 

  4. Araniti G, Raschellà A, Orsino A, Militano L, Condoluci M. Device-to-device communications over 5G systems: standardization, challenges and open issues. In: 5G mobile communications. Springer; 2017. p. 337–60

  5. Bastug E, Bennis M, Debbah M. Living on the edge: the role of proactive caching in 5g wireless networks. IEEE Commun Mag. 2014;52(8):82–9.

    Article  Google Scholar 

  6. Câmara D, Nikaein N. Wireless public safety networks volume 1: overview and challenges. Amsterdam: Elsevier; 2015.

    Google Scholar 

  7. Cho B, Koufos K, Jäntti R. Spectrum allocation and mode selection for overlay d2d using carrier sensing threshold. In: Proceedings of the 9th international conference on cognitive radio oriented wireless networks and communications (CROWNCOM). IEEE; 2014. p. 26–31.

  8. Dahlman E, Parkvall S, Skld J. Chapter 2—device-to-device connectivity. In: Dahlman E, Parkvall S, Skld J, editors. 4G LTE-advanced pro and the road to 5G. New York: Academic Press; 2016. p. 461–86.

    Chapter  Google Scholar 

  9. Doumi T, Dolan MF, Tatesh S, Casati A, Tsirtsis G, Anchan K, Flore D. Lte for public safety networks. IEEE Commun Mag. 2013;51(2):106–12.

    Article  Google Scholar 

  10. ETSI 3GPP. Study on downlink multiuser superposition transmission for LTE; (Release 13), 3GPP TR 36.859 V13.0.0. 2017.

  11. ETSI 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Services provided by the physical layer; (Release 12), TS 36.302 V 12.4.0. 2015.

  12. ETSI 3GPP. Universal mobile telecommunications system (UMTS); LTE; proximity-based services (ProSe); (Release 13) Stage 2, 3GPP TS 23.303 V 13.3.0. 2016.

  13. ETSI 3GPP. 3rd generation partnership project; Technical Specification Group Radio Access Network; Study on Licensed-Assisted Access to Unlicensed Spectrum;(Release 13), Technical report 36.889. 2015.

  14. ETSI 3GPP: Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception; (Release 14), TS 36.102 V14.5.0. 2017.

  15. Feng D, Lu L, Yuan-Wu Y, Li GY, Li S, Feng G. Device-to-device communications in cellular networks. IEEE Commun Mag. 2014;52(4):49–55.

    Article  Google Scholar 

  16. Gandotra P, Jha RK. Device-to-device communication in cellular networks: a survey. J Netw Comput Appl. 2016;71:99–117.

    Article  Google Scholar 

  17. Hamoud ON, Kenaza T, Challal Y. Security in device-to-device communications: a survey. IET Netw. 2017;7(1):14–22.

    Article  Google Scholar 

  18. Haus M, Waqas M, Ding AY, Li Y, Tarkoma S, Ott J. Security and privacy in device-to-device (d2d) communication: a review. IEEE Commun Surv Tutor. 2017;19(2):1054–79.

    Article  Google Scholar 

  19. Höyhtyä M, Apilo O, Lasanen M. Review of latest advances in 3GPP standardization: D2D communication in 5G systems and its energy consumption models. Future Internet. 2018;10(1):3.

    Article  Google Scholar 

  20. Iwamura M, Etemad K, Fong MH, Nory R, Love R. Carrier aggregation framework in 3g pp lte-advanced [wimax/lte update]. IEEE Commun Mag. 2010;48(8):60–7.

    Article  Google Scholar 

  21. Jameel F, Hamid Z, Jabeen F, Zeadally S, Javed MA. A survey of device-to-device communications: research issues and challenges. IEEE Commun Surv Tutor. 2018;20(3):2133–68.

    Article  Google Scholar 

  22. Ji H, Kim Y, Lee J, Onggosanusi E, Nam Y, Zhang J, Lee B, Shim B. Overview of full-dimension MIMO in LTE-advanced pro. IEEE Commun Mag. 2016;55(2):176–84.

    Article  Google Scholar 

  23. Jung Y, Festijo E, Peradilla M. Joint operation of routing control and group key management for 5g ad hoc d2d networks. In: 2014 international conference on privacy and security in mobile systems (PRISMS). IEEE; 2014. p. 1–8.

  24. Kar UN, Sanyal DK. An overview of device-to-device communication in cellular networks. ICT Express. 2018;4(4):203–8.

    Article  Google Scholar 

  25. Kar UN, Sanyal DK. A sneak peek into 5G communications. Resonance. 2018;23(5):555–72.

    Article  Google Scholar 

  26. Kwon HJ, Jeon J, Bhorkar A, Ye Q, Harada H, Jiang Y, Liu L, Nagata S, Ng BL, Novlan T, et al. Licensed-assisted access to unlicensed spectrum in LTE release 13. IEEE Commun Mag. 2017;55(2):201–7.

    Article  Google Scholar 

  27. Lai L, Liang Y, Du W. Cooperative key generation in wireless networks. IEEE J Sel Areas Commun. 2012;30(8):1578–88.

    Article  Google Scholar 

  28. Lee J, Kwak Y. 5G standard development: technology and roadmap, chap. 23. New York: Wiley; 2016. p. 561–76.

    Google Scholar 

  29. Lien SY, Chien CC, Liu GST, Tsai HL, Li R, Wang YJ. Enhanced lte device-to-device proximity services. IEEE Commun Mag. 2016;54(12):174–82.

    Article  Google Scholar 

  30. Lien SY, Chien CC, Tseng FM, Ho TC. 3GPP device-to-device communications for beyond 4G cellular networks. IEEE Commun Mag. 2016;54(3):29–35.

    Article  Google Scholar 

  31. Lin X, Andrews J, Ghosh A, Ratasuk R. An overview of 3GPP device-to-device proximity services. IEEE Commun Mag. 2014;52(4):40–8.

    Article  Google Scholar 

  32. Lin X, Andrews JG, Ghosh A. A comprehensive framework for device-to-device communications in cellular networks. 2013. arXiv:1305.4219.

  33. Mach P, Becvar Z, Vanek T. In-band device-to-device communication in ofdma cellular networks: a survey and challenges. IEEE Commun Surv Tutor. 2015;17(4):1885–922.

    Article  Google Scholar 

  34. Mittal D, Kar UN, Sanyal DK. A novel matching theory-based framework for computation offloading in device-to-device communication. In: Proceedings of the 14th IEEE India council international conference (INDICON). IEEE; 2017. p. 1–6.

  35. Mumtaz S, Huq KMS, Rodriguez J. Direct mobile-to-mobile communication: paradigm for 5G. IEEE Wirel Commun. 2014;21(5):14–23.

    Article  Google Scholar 

  36. Mumtaz S, Rodriguez J. Smart device to smart device communication. Berlin: Springer; 2014.

    Book  Google Scholar 

  37. National Instruments. 3GPP release 15 overview. https://spectrum.ieee.org/telecom/wireless/3gpp-release-15-overview. Accessed 4 Aug 2019.

  38. Noura M, Nordin R. A survey on interference management for device-to-device (d2d) communication and its challenges in 5g networks. J Netw Comput Appl. 2016;71:130–50.

    Article  Google Scholar 

  39. Osanaiye O, Choo KKR, Dlodlo M. Distributed denial of service (DDoS) resilience in cloud: review and conceptual cloud ddos mitigation framework. J Netw Comput Appl. 2016;67:147–65.

    Article  Google Scholar 

  40. Oscar L, Ivn P, Patricia O, Vania C, David V, Engin Z, Leandro D. D6.2.2 standardization and communication activity report (release b) WP 6-Dissemination, standardization, and exploitation. http://www.fp7moto.eu/wp-content/uploads/2015/12/D6.2.2..pdf. Accessed 4 Aug 2019.

  41. Panaitopol D, Mouton C, Lecroart B, Lair Y, Delahaye P. Recent advances in 3GPP Rel-12 standardization related to D2D and public safety communications. arXiv preprint arXiv:1505.07140 (2015).

  42. Panaousis E, Alpcan T, Fereidooni H, Conti M. Secure message delivery games for device-to-device communications. In: Proceedings of international conference on decision and game theory for security. Springer; 2014. p. 195–215.

  43. Panigrahi B, Ramamohan R, Rath HK, Simha A. Efficient device-to-device (d2d) offloading mechanism in lte networks. arXiv preprint. arXiv:1612.02926 (2016).

  44. Pyattaev A, Johnsson K, Andreev S, Koucheryavy Y. 3GPP LTE traffic offloading onto WiFi direct. In: Proceedings of the wireless communications and networking conference workshops (WCNCW), 2013 IEEE. IEEE; 2013. p. 135–40.

  45. Rigazzi G, Pratas NK, Popovski P, Fantacci R. Aggregation and trunking of m2m traffic via d2d connections. In: Proceedings of the IEEE international conference on communications (ICC). IEEE; 2015. p. 2973–8.

  46. Safdar GA, Ur-Rehman M, Muhammad M, Imran MA, Tafazolli R. Interference mitigation in d2d communication underlaying lte-a network. IEEE Access. 2016;4:7967–87.

    Article  Google Scholar 

  47. Shalmashi S, Slimane SB. Cooperative device-to-device communications in the downlink of cellular networks. In: Proceedings of the IEEE wireless communications and networking conference (WCNC). IEEE; 2014. p. 2265–70.

  48. Shen W, Hong W, Cao X, Yin B, Shila DM, Cheng Y. Secure key establishment for device-to-device communications. In: Proceedings of IEEE global communications conference. IEEE; 2014. p. 336–40.

  49. Shen X. Device-to-device communication in 5G cellular networks. IEEE Netw. 2015;29(2):2–3.

    Article  Google Scholar 

  50. Thompson J, Ge X, Wu HC, Irmer R, Jiang H, Fettweis G, Alamouti S. 5g wireless communication systems: prospects and challenges [guest editorial]. IEEE Commun Mag. 2014;52(2):62–4.

    Article  Google Scholar 

  51. Tsolkas D, Liotou E, Passas N, Merakos L. Lte-a access, core, and protocol architecture for d2d communication. In: Smart device to smart device communication. Springer; 2014. p. 23–40.

  52. Wu Y, Guo W, Yuan H, Li L, Wang S, Chu X, Zhang J. Device-to-device meets lte-unlicensed. IEEE Commun Mag. 2016;54(5):154–9.

    Article  Google Scholar 

  53. Xu S, Wang H, Chen T, Huang Q, Peng T. Effective interference cancellation scheme for device-to-device communication underlaying cellular networks. In: Proceedings of the IEEE 72nd vehicular technology conference-fall. IEEE; 2010. p. 1–5.

  54. Yu CH, Tirkkonen O, Doppler K, Ribeiro C. On the performance of device-to-device underlay communication with simple power control. In: Proceedings of the VTC Spring 2009-IEEE 69th vehicular technology conference. IEEE; 2009. p. 1–5.

  55. Zhang A, Chen J, Hu RQ, Qian Y. Seds: secure data sharing strategy for d2d communication in lte-advanced networks. IEEE Trans Veh Technol. 2015;65(4):2659–72.

    Article  Google Scholar 

  56. Zhang A, Zhou L, Wang L. Security-aware device-to-device communications underlaying cellular networks. New York: Springer; 2016.

    Book  Google Scholar 

  57. Zhang B, Li Y, Jin D, Hui P, Han Z. Social-aware peer discovery for d2d communications underlaying cellular networks. IEEE Trans Wirel Commun. 2014;14(5):2426–39.

    Article  Google Scholar 

  58. Zheng K, Liu F, Xiang W, Xin X. Dynamic downlink aggregation carrier scheduling scheme for wireless networks. IET Commun. 2014;8(1):114–23.

    Article  Google Scholar 

  59. Zhu D, Swindlehurst AL, Fakoorian SAA, Xu W, Zhao C. Device-to-device communications: the physical layer security advantage. In: Proceedings of the IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2014. p. 1606–10.

  60. Zou KJ, Wang M, Yang KW, Zhang J, Sheng W, Chen Q, You X. Proximity discovery for device-to-device communications over a cellular network. IEEE Commun Mag. 2014;52(6):98–107.

    Article  Google Scholar 

Download references

Funding

This study is partially funded by the Ph.D. scholarship offered by KIIT Deemed University to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udit Narayana Kar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, U.N., Sanyal, D.K. A Critical Review of 3GPP Standardization of Device-to-Device Communication in Cellular Networks. SN COMPUT. SCI. 1, 37 (2020). https://doi.org/10.1007/s42979-019-0045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-019-0045-5

Keywords

Navigation