Skip to main content

Advertisement

Log in

Strontium-substituted biphasic calcium phosphate scaffold for orthopedic applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Strontium ion-substituted calcium phosphate-based ceramic scaffolds enhance osteogenesis. The objective of the present study was to optimize the strontium hydroxyapatite (Sr-HA) and beta tricalcium phosphate (β-TCP) ratio in the fabricated scaffolds to enhance their mechanical strength and bioactivity with controlled biodegradability. Porous polyurethane sponge scaffolds containing Sr-HA and β-TCP in varying concentration were developed by dipping 3D sponge pieces into a slurry containing 10% gelatin, proper concentration of biphasic calcium phosphate (BCP) and 3% poly vinyl alcohol. Four different samples [Sr-BCP, Sr-BCP (20/80), Sr-BCP (30/70), Sr-BCP (40/60)] were prepared and were characterized for biodegradability, water uptake capability and cytotoxicity using various techniques. Pure, crystalline, cytocompatible Sr-BCP Scaffolds possessing both micropores and macropores with porosity greater than 80% and water uptake capability above 100% were obtained. Thus, the effective substitution of Sr-HA and β-TCP in varying proportion makes the composite scaffold a distinctive material of bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30(10), 546–554 (2012)

    CAS  Google Scholar 

  2. M.M. Stevens, Biomaterials for bone tissue engineering. Mater. Today 11(5), 18–25 (2008)

    CAS  Google Scholar 

  3. T.R. Rautray, B. Mohapatra, K.H. Kim, Fabrication of Strontium-hydroxyapatite scaffolds for biomedical applications. Adv. Sci. Lett 20(3-4), 879–881 (2014)

    CAS  Google Scholar 

  4. L. Roseti, V. Paris, M. Petretta, C. Cavallo, G. Desando, I. Bartolotti, B. Grigolo, Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater. Sci. Eng., C 78, 1246–1262 (2017)

    CAS  Google Scholar 

  5. G. Turnbull, J. Clarke, F. Picard, P. Riches, L. Jia, F. Han, B. Li, W. Shu, 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater 3(3), 278–314 (2018)

    Google Scholar 

  6. G. Chen, T. Ushida, T. Tateishi, Development of biodegradable porous scaffolds for tissue engineering. Mater. Sci. Eng., C 17(1-2), 63–69 (2001)

    Google Scholar 

  7. W. Qiu, Y. Huang, W. Teng, C.M. Cohn, J. Cappello, X. Wu, Complete recombinant silk-elastin like protein-based tissue scaffold. Biomacromol 11(12), 3219–3227 (2010)

    CAS  Google Scholar 

  8. J.G. Rouse, M.E.V. Dyke, A Review of keratin-based biomaterials for biomedical applications. Materials 3(2), 999–1014 (2010)

    Google Scholar 

  9. M.E. Hoque, T. Nuge, T.K. Yeow, N. Nordin, R.G.S.V. Prasad, Gelatin based scaffolds for tissue engineering-a review. Polym. Res. J 9(1), 15–32 (2015)

    Google Scholar 

  10. S.K. Swain, D. Sarkar, Fabrication, bioactivity, in vitro cytotoxicity and cell viability of cryo-treated nanohydroxyapatite–gelatin–polyvinyl alcohol macroporous scaffold. J. Asian Ceram. Soc. 2(3), 241–247 (2014)

    Google Scholar 

  11. H.W. Kim, H.E. Kim, V. Salih, Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin hydroxyapatite for tissue engineering scaffolds. Biomaterials 26(25), 5221–5230 (2005)

    CAS  Google Scholar 

  12. S. Swain, T.R. Rautray, R. Narayanan, Sr, Mg, and Co substituted hydroxyapatite coating on TiO2 nanotubes formed by electrochemical methods. Adv. Sci. Lett. 22(2), 482–487 (2016)

    Google Scholar 

  13. Z. Geng, R. Wang, Z. Li, Z. Cui, S. Zhu, Y. Liang, Y. Liu, B. Huijing, X. Li, Q. Huo, Z. Liu, X. Yang, Synthesis, characterization and biological evaluation of strontium/magnesium-co-substituted hydroxyapatite. J. Biomater. Appl. 31(1), 140–151 (2016)

    CAS  Google Scholar 

  14. T.R. Rautray, K.H. Kim, Synthesis of Mg2+ incorporated hydroxyapatite by ion implantation. Key Eng. Mater. 529–530, 114–118 (2013)

    Google Scholar 

  15. S. Teixeira, M.A. Rodriguez, P. Pena, A.H.D. Aza, S.D. Aza, M.P. Ferraz, F.J. Monteiro, Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Mater. Sci. Eng., C 29(5), 1510–1514 (2009)

    CAS  Google Scholar 

  16. Y. Lei, Z. Xu, Q. Ke, W. Yin, Y. Chen, C. Zhang, Y. Guo, Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Mater. Biol. Appl. 72, 134–142 (2016)

    Google Scholar 

  17. R.N. Devi, R. Balu, T.S. SampathKumar, Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. J. Am. Ceram. Soc. 95(9), 2700–2708 (2012)

    Google Scholar 

  18. L. Nie, J. Suo, P. Zou, S. Feng, Preparation and properties of biphasic calcium Phosphate scaffolds multiply coated with HA/PLLA nanocomposites for bone tissue engineering applications. J. Nanomater. 2012, 213549 (2012)

    Google Scholar 

  19. B. Kim, R. Ventura, B.T. Lee, Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering. J. Tissue. Eng. Regen. Med. 12(2), 1256–1267 (2018)

    Google Scholar 

  20. Z. Tang, X. Li, Y. Tan, H. Fan, X. Zhang, The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen. Biomater. 5(1), 43–59 (2018)

    CAS  Google Scholar 

  21. S.E. Kim, Y.P. Yun, D.W. Lee, E.Y. Kang, W.J. Jeong, B. Lee, M.S. Jeong, H.J. Kim, K. Park, H.R. Song, Alendronate-eluting biphasic calcium phosphate (BCP) scaffolds stimulate osteogenic differentiation. Biomed Res Int. 2015, 320713 (2015)

    Google Scholar 

  22. J. Zhang, M. Maeda, N. Kotobuki, M. Hirose, H. Ohgushi, D. Jiang, M. Iwasa, Aqueous processing of hydroxyapatite. Mater. Chem. Phys. 99(2-3), 398–404 (2006)

    CAS  Google Scholar 

  23. T. Sultana, M. Rana, M. Akhtar, Z. Hasan, A.H. Talukder, S.M. Aseduzzaman, Preparation and physicochemical characterization of nano-hydroxyapatite based 3D porous scaffold for biomedical application. Adv. Tissue Eng. Regen. Med. 3(3), 00065 (2017)

    Google Scholar 

  24. H.R. Ramay, M. Zhang, Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials 24(19), 3293–3302 (2003)

    CAS  Google Scholar 

  25. S. Schussler, K. Guiro, T. Arinzeh, In vitro and in vivo evaluation of composite scaffolds for bone tissue engineering, in Handbook of bioceramics and biocomposites, ed. by I.V. Antoniac (Springer, Nigeria, 2016), pp. 615–636

    Google Scholar 

  26. T. Lu, Y. Li, T. Chen, Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int. J. Nanomed. 83, 37–50 (2013)

    Google Scholar 

  27. T. Weigel, G. Schinkel, A. Lendlein, Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev. Med. Devices 3(6), 835–851 (2006)

    CAS  Google Scholar 

  28. T.C. Yong, R. Singh, A.K. Liang, Y.W. Hong, I. Sopyan, T.W. Dung, Sintering behaviour of hydroxyapatite ceramics prepared by different routes. Adv. Bioceram. Porous Ceram. II 30, 127–138 (2009)

    CAS  Google Scholar 

  29. A.Y. Pataquiva-Mateus, M.P. Ferraz, F.J. Monteiro, Nanoparticles of hydroxyapatite: preparation, characterization and cellular approach—an overview. MUTIS 3(2), 43–57 (2013)

    Google Scholar 

  30. T.R. Rautray, V. Vijayan, S. Panigrahi, Synthesis of hydroxyapatite at low temperature. Indian J. Phys. 81(1), 95–98 (2007)

    CAS  Google Scholar 

  31. G.E.J. Poinern, R.K. Brundavanam, X.T. Le, D. Fawcett, The mechanical properties of a porous ceramic derived from a 30 nm sized particle based powder of hydroxyapatite for potential hard tissue engineering applications. Am. J. Biomed. Eng. 2(6), 278–286 (2012)

    Google Scholar 

  32. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 24, 721–734 (1990)

    CAS  Google Scholar 

  33. C. Sopyan, M. Mardziah, R. Singh, Fabrication of porous ceramic scaffolds via polymeric sponge method using sol-gel derived strontium doped hydroxyapatite. Appl. Mech. Mater. 117-119, 829–832 (2012)

    CAS  Google Scholar 

  34. J. Anitalett, M. Sundareswari, K. Ravichandran, S. Sagadevan, The fabrication of porous hydroxyapatite scaffold using guar gum as a natural binder”. Digest J. Nanomater. Biostruct. 13(1), 235–243 (2012)

    Google Scholar 

  35. H. Cao, N. Kuboyama, A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46(2), 386–395 (2010)

    CAS  Google Scholar 

  36. S.W. Tsai, W.X. Yu, P.A. Hwang, S.S. Huang, H.M. Lin, Y.W. Hsu, F.Y. Hsu, Fabrication and characterization of strontium substituted hydroxyapatite-CaO–CaCO3 nanofibers with a mesoporous structure as drug delivery carriers. Pharmaceutics 10(4), 179 (2018)

    CAS  Google Scholar 

  37. C. Ehret, R. Aid-Launais, T. Sagardo, R. Siadous, R. Bareille, S. Rey, S. Pechev, L. Etienne, J. Kalisky, E. de Mones, D. Letourneur, J. AmedeeVilamitjana, Strontium-doped hydroxyapatite polysaccharide materials effect on ectopic bone formation. PLoS ONE 12(9), e0184663 (2017)

    CAS  Google Scholar 

  38. T.B. Ratnayake, M. Mucalo, G.J. Dias, Substituted hydroxyapatites for bone regeneration: a review of current trends. J. Biomed. Mater. Res. B Appl. Biomater. 105(5), 1285–1299 (2017)

    CAS  Google Scholar 

  39. T.R. Rautray, K.H. Kim, Synthesis of silver incorporated hydroxyapatite under magnetic field. Key Eng. Mater. 493–494, 181–185 (2012)

    Google Scholar 

  40. J.H. Yang, K.H. Kim, C.K. You, T.R. Rautray, T.Y. Kwon, Synthesis of spherical hydroxyapatite granules with interconnected pore channels using camphene emulsion. J. Biomed. Mater. Res. 99(1), 150–157 (2011)

    Google Scholar 

  41. S. Swain, T.R. Rautray, Silver doped hydroxyapatite coatings by sacrificial anode deposition under magnetic field. J. Mater. Sci. Mater. Med. 28(10), 160 (2017)

    CAS  Google Scholar 

  42. F. Frasnelli, V.M. Cristofaro, S. Sglavo, E. Dirè, R. Callone, G. Ceccato, A.I. Bruni, L. Cornaglia, Visai, “Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration”. Mater. Sci. Eng., C 71, 653–662 (2017)

    CAS  Google Scholar 

  43. K. Sariibrahimoglu, W. Yang, S.C. Leeuwenburgh, F. Yang, J.G. Wolke, Y. Zuo, Y. Li, J.A. Jansen, Development of porous polyurethane/strontium-substituted hydroxyapatite composites for bone regeneration. Biomed Mater Res A. 103(6), 1930–1939 (2015)

    CAS  Google Scholar 

  44. Q.L. Loh, C. Choong, Three-Dimensional Scaffolds for Tissue Engineering Applications: role of Porosity and Pore Size. Tissue Eng Part B Rev. 19(6), 485–502 (2013)

    CAS  Google Scholar 

  45. K. Zhang, Y. Fan, N. Dunne, X. Li, Effect of microporosity on scaffolds for bone tissue engineering. Regen. Biomater. 5(2), 115–124 (2018)

    Google Scholar 

  46. V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27), 5474–5491 (2005)

    CAS  Google Scholar 

  47. R. Costa-Almeida, P.L. Granja, R. Soares, S.G. Guerreiro, Cellular strategies to promote vascularaisation in tissue engineering applications. Eur. Cells Mater. 28, 51–66 (2014)

    CAS  Google Scholar 

  48. E.C. Chan, S.M. Kuo, A.M. Kong, W.A. Morrison, G.J. Dusting, G.M. Mitchell, S.Y. Lim, G.S. Liu, Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications. PLoS ONE 11(2), e0149799 (2016)

    Google Scholar 

  49. F.A. Macedo, E.H.M. Nunes, W.L. Vasconcelos, R.A. Santos, R.D. Sinisterra, M.E. Cortes, A biodegradable porous composite scaffold of PCL/BCP containing Ang-(1-7) for bone tissue engineering. Cerâmica 58(348), 481–488 (2012)

    CAS  Google Scholar 

  50. H. Yuan, C.A. van Blitterswijk, K. de Groot, J.D. de Bruijn, Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng. 12(6), 1607–1615 (2006)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapash R. Rautray.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, B., Rautray, T.R. Strontium-substituted biphasic calcium phosphate scaffold for orthopedic applications. J. Korean Ceram. Soc. 57, 392–400 (2020). https://doi.org/10.1007/s43207-020-00028-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-020-00028-x

Keywords

Navigation