Skip to main content
Log in

Assessment of heavy metals concentration in soils in the central parts of Tanzania using pollution indices and multivariate statistical approach: implication on the source and health

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The presence of potentially toxic elements (PTEs) in soils has been known to have harmful effects on humans, plants, and the overall ecological system. Consequently, ongoing research is needed to investigate the concentration, sources, and spatial distribution of PTEs. In central Tanzania, where there are significant mineral deposits, anthropogenic activities, such as mining and commercial agriculture have contributed to soil pollution. This study aimed to assess the concentrations, sources, and spatial distribution of PTEs in the Singida region, which is part of central Tanzania. The order of the studied PTEs concentrations is Mn > Zn > Cr > Cu > Pb > As > Cd, and generally falls within acceptable limits according to the Tanzania Ministry of State (TMS) standards except for As and Cr, which pollute 50% and 5.3% of the stations exceeding 1 mg kg−1 and 100 mg kg−1, respectively. The pollution indices indicate that all PTEs reach moderate to highly polluted levels in the region. The mafic–ultramafic rocks of this region significantly contribute to the PTEs contents in soils. The robust compositional contamination index (RCCI) indicates moderate (22.7%), high (57.3%), and very high (13.3%) levels caused by anthropogenic activities and the geology of the region. Mining and fertilizer run-offs from agricultural lands may affect Cd concentrations in the soil. The PTEs reach hotspots with high concentrations in the southern, eastern, northern, and southeastern parts of the study area. The region is at risk of cancer, mortality, reproduction challenges, and other noncarcinogenic issues in the future. In this paper, the terms heavy metals, PTEs, and trace elements are used interchangeably implying similar elements or metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846.

    Article  Google Scholar 

  • ABS (Australian Bureau of Statistics). (1999). Environment Protection Expenditure, Australia. New York: ABS.

    Google Scholar 

  • Abu, M., Kalimenze, J., Mvile, B. N., & Kazapoe, R. W. (2021). Sources and pollution assessment of trace elements in soils of the central, Dodoma region, East Africa: Implication for public health monitoring. Environmental Technology & Innovation, 23, 101705.

    Article  Google Scholar 

  • Abu, M., & Sunkari, E. D. (2020). Geochemistry and petrography of beach sands along the western coast of Ghana: Implications for provenance and tectonic settings. Turkish Journal of Earth Sciences, 29, 363–380. https://doi.org/10.3906/yer-1903-8

    Article  Google Scholar 

  • Anani, C., Abu, M., Daniel, K., & Daniel, K. A. (2017). Provenance of sandstones from the Neoproterozoic Bombouaka Group of the Volta Basin, northeastern Ghana. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-017-3243-2

    Article  Google Scholar 

  • Andrews, S., & Sutherland, R. A. (2004). Cu, Pb and Zn contamination in Nuuanu watershed, Oahu, Hawaii. Science of the Total Environment, 324(1–3), 173–182.

    Article  Google Scholar 

  • Arhin, E., Zango, M. S., & Berdie, B. S. (2016). Trace elements assessments using pollution load index and spatial maps towards the development of environmental policies against the impacts of the natural environment on primary health, Nadowli district-NW Ghana. Journal of Earth and Environmental Sciences 6(2), ISSN 2225–0948

  • Chen, C. W., Kao, C. M., Chen, C. F., & Dong, C. D. (2009). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66(8), 1431–1440.

    Article  Google Scholar 

  • Dixon, J. B., & White, G. N. (2002). Manganese oxides. Soil Mineralogy with Environmental Applications, 7, 367–388.

    Google Scholar 

  • Drake, P., Rojas, M., Reh, C., Mueller, C., & Jenkins, F. (2001). Occupational exposure to airborne mercury during gold mining operations near El Callao, Venezuela. International Archive of Occupational and Environmental Health, 74(3), 206–212.

    Article  Google Scholar 

  • European Institute of Copper. (2018). https://copperalliance.eu/benefits-ofcopper/copper-and-the-environment/

  • Feng, X. D., Dang, Z., Huang, W. L., & Yang, C. (2009). Chemical speciation of fine particle bound trace metals. International Journal of Environmental Science & Technology, 6, 337–346.

    Article  Google Scholar 

  • Fu, J., Zhou, Q., Liu, J., Liu, W., Wang, T., Zhang, Q., et al. (2008). High levels of heavy metals in rice (Oryzasativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere, 71(7), 1269–1275.

    Article  Google Scholar 

  • Grygar, T. M., Elznicová, J., Bábek, O., Hošek, M., Engel, T., & Kiss, T. (2014). Obtaining isochrones from pollution signals in a fluvial sediment record: A case study in a uranium polluted floodplain of the Ploučnice River, Czech Republic. Applied Geochemistry, 48, 1–15.

    Article  Google Scholar 

  • Guevara, Y. Z. C., de Souza, J. J. L. L., & Vieira, G. (2018). Reference values of soil quality for the rio doce basin. Revista Brasileira De Ciência Do Solo, 42–58, e0170231.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research., 14(8), 975–1001.

    Article  Google Scholar 

  • Henderson, P. J., McMartin, I., Hall, G. E., Percival, J. B., & Walker, D. A. (1998). The chemical and physical characteristics of heavy metals in humus and till in the vicinity of the base metal smelter at Flin Flon, Manitoba, Canada. Environmental Geology, 3(1), 39–58.

    Article  Google Scholar 

  • Herman, A., & Kihampa, C. (2015). Heavy metals contamination in soils and water in the vicinity of small-scale gold mines at londoni and sambaru, Singida region, Tanzania. International Journal of Environmental Monitoring and Analysis., 3, 397. https://doi.org/10.11648/j.ijema.20150306.13

    Article  Google Scholar 

  • Kabete, J. M., Groves, D. I., McNaughton, N. J., & Mruma, A. H. (2012). A new tectonic and temporal framework for the Tanzanian Shield: Implications for gold metallogeny and undiscovered endowment. Ore Geology Reviews, 48, 88–124.

    Article  Google Scholar 

  • Kazapoe, R. W., Amuah, E. E. Y., Dankwa, P., Ibrahim, K., Mvile, B., Abubakari, S., & Bawa, N. (2021). Compositional and source patterns of potentially toxic elements (PTEs) in soils in southwestern Ghana using robust compositional contamination index (RCCI) and k-means cluster analysis. Environmental Challenges, 5, 100248.

    Article  Google Scholar 

  • Kazapoe, R., & Arhin, E. (2019). Determination of local background and baseline values of elements within the soils of the Birimian Terrain of the Wassa Area of Southwest Ghana. Geology, Ecology and Landscapes. https://doi.org/10.1080/24749508.2019.1705644

    Article  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with waste water in Beijing, China. Environmental Pollution Journal., 152(3), 686–692.

    Article  Google Scholar 

  • Kumar, S., Islam, A. R. M. T., Hassanuzzaman, M., Salam, R., Khan, R., & Islam, S. M. (2021). Preliminary assessment of heavy metals in surface water and sediment in Nakuvadra Rakiraki River, Fiji using indexical and chemometric approaches. Journal of Environmental Management, 298(2021), 113517.

    Article  Google Scholar 

  • Lema, M. W., & Mseli, Z. H. (2017). Assessment of soil pollution (heavy metal) from small scale gold mining activities: A Case of Nyarugusu Gold Mines, Geita—Tanzania. International Journal of Environmental Monitoring and Protection 4(1), 1 http://www.openscienceonline.com/journal/ijemp ISSN: 2381–4551 (Print); ISSN: 2381–456X

  • Lermi, A., & Sunkari, E. D. (2020). Geochemistry, risk assessment and Pb isotopic evidence for sources of heavy metals in stream sediments around the Ulukışla Basin, Niğde, southern Turkey. Turkish Journal of Earth Sciences. https://doi.org/10.3906/yer-2001-9

    Article  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  Google Scholar 

  • Lottermoser, B. G. (2007). Mine wastes. Characterization, treatment and environmental impacts (2nd ed.). Springer.

    Google Scholar 

  • Magesa, S. M., Mboera, L. E. G., Mwisongo, A. J., Kisoka, W. J., Mubyazi, G. M., Malebo, H., Senkoro, K. P., Mcharo, J., Makundi, E. A., Kisinza, W. N., Mwanga, J., Mushi, A. K., Hiza, P., Malecela-Lazaro, M. N., & Kitua, A. Y. (2001). Major health problems in some selected Districts of Tanzania. Tanzania Health Research Bulletin., 3(2), 10–14.

    Google Scholar 

  • Masindi, V., & Muedi, K. L. (2018). Environmental contamination by heavy metals. Heavy Metals, 10, 115–132.

    Google Scholar 

  • McLaren, R. G. (2003). Micronutrients and toxic elements. In D. K. Benbi & R. Nieder (Eds.), Handbook of processes and modeling in soil-plant system (pp. 589–625). Haworth Press.

    Google Scholar 

  • McLaughlin, M. J., Hamon, R., McLaren, R., Speir, T., & Rogers, S. (2000). A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Soil Research, 38(6), 1037–1086.

    Article  Google Scholar 

  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. Geological Society of America Special Paper, 284, 21–40.

    Article  Google Scholar 

  • Mpangile, Z. M., Kazimoto, E., & Msabi, M. M. (2020). Reconnaissance Exploration for Gold in the Misaki Area within the Iramba-Sekenke Greenstone Belt, Central Tanzania. Tanzania Journal of Science, 46(1), 151–170. 2020 ISSN 0856-1761, e-ISSN 2507-7961.

    Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Muntau, H., & Raudo, R. (1992). Sources of cadmium, its distribution and turnover in the freshwater environment. IARC Scientific Publications, 118, 133–148.

    Google Scholar 

  • Mvile, B. N., Abu, M., & Kalimenze, J. (2021). Trace elements geochemistry of in situ Regolith materials and their implication on gold mineralization and exploration targeting, Dodoma Region East Africa. Mining, Metallurgy & Exploration. https://doi.org/10.1007/s42461-021-00450-7

    Article  Google Scholar 

  • New Hampshire Department of Environmental Services. (2013). Copper: Health Information Summary, Environmental Fact Sheet. ARD-EHP-9 2005. http://des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ardehp-9.pdf. Accessed 12 Dec 2020.

  • Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Role of potentially toxic elements in soils. Soil Components and Human Health. https://doi.org/10.1007/978-94-024-1222-2-8

    Article  Google Scholar 

  • Nirel, P., & Pasquini, F. (2010). Differentiation of copper pollution origin: agricultural and urban sources. In Novatech 2010-7ème Conférence internationale sur les techniques et stratégies durables pour la gestion des eaux urbaines par temps de pluie/7th International Conference on sustainable techniques and strategies for urban water management (pp. 1–6). Lyon: GRAIE.

  • Rengel, Z. (2000). Uptake and transport of manganese in plants. In A. Sigel & H. Sigel (Eds.), Metal ions in biological systems (pp. 57–87). Marcel Dekker.

    Google Scholar 

  • Reyes, A., Thiombane, M., Panico, A., Daniele, L., Lima, A., Di Bonito, M., & De Vivo, B. (2020). Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environmental Geochemistry and Health, 42, 2573–2594.

    Article  Google Scholar 

  • Rezaei, A., Hassani, H., Mousavi, S. B. F., & Jabbari, N. (2019). Evaluation of heavy metals concentration. In: Jajarm Bauxite Deposit In Northeast Of Iran Using Environmental Pollution Indices. Malaysian Journal of Geosciences, 3(1), 12–20.

    Article  Google Scholar 

  • Rinklebe, J., Antoniadis, V., Shaheena, S. M., Roschef, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International., 126, 76–88.

    Article  Google Scholar 

  • Rivera-Hernández, J. R., Green-Ruiz, C. R., Pelling-Salazar, L. E., & Flegal, A. R. (2021). Monitoring of As, Cd, Cr, and Pb in groundwater of Mexico’s Agriculture Mocorito River Aquifer: Implications for risks to human health. Water, Air, & Soil Pollution, 232, 291. https://doi.org/10.1007/s11270-021-05238-5

    Article  Google Scholar 

  • Sakyi, P. A., Manu, J., Su, B. X., Kwayisi, D., Nude, P. M., & Dampare, S. B. (2019). Geochemical and Sm–Nd isotopic evidence for the composition of the palaeoproterozoic crust of the West African Craton in Ghana. Geological Journal, 54(6), 3940–3957.

    Article  Google Scholar 

  • Salomons, W. (1995). Environmental impact of metals derived from mining activities: Processes, predictions, prevention. Journal of Geochemical Exploration., 52(1), 5–23.

    Article  Google Scholar 

  • Sargaonkar, A., & Deshpande, V. (2003). Development of an overall index of pollution for surface water based on a general classification scheme in Indian context. Environmental Monitoring and Assessment, 89, 43–67.

    Article  Google Scholar 

  • Schulin, R., Curchod, F., Mondeshka, M., Daskalova, A., & Keller, A. (2007). Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi (Bulgaria). Geoderma, 140, 52–61.

    Article  Google Scholar 

  • Senesi, G. S., Baldassarre, G., Senesi, N., & Radina, B. (1999). Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere, 39(2), 343–377.

    Article  Google Scholar 

  • Sheehan, P., Ricks, R., Ripple, S., & Paustenbach, D. (1992). field evaluation of a sampling and analytical method for environmental levels of airborne hexavalent chromium. American Industrial Hygiene Association Journal, 53(1), 57–68. https://doi.org/10.1080/15298669291359302

    Article  Google Scholar 

  • Shi, G., Chen, Z., Bi, C., Li, Y., & Teng, J. (2010). Comprehensive assessment of toxic metals in urban and Suburban Street deposited sediments (SDSs) in the biggest metropolitan area of China. Environmental Pollution, 158, 694–703.

    Article  Google Scholar 

  • Sikakwe, G. U., Nwachukwu, A. N., Uwa, C. U., & Eyong, G. A. (2020). Geochemical data handling, using multivariate statistical methods for environmental monitoring and pollution studies. Environmental Technology & Innovation. https://doi.org/10.1016/j.eti.2020.100645

    Article  Google Scholar 

  • Somma, R., Ebrahimi, P., Troise, C., De Natale, G., Guarino, A., Cicchella, D., & Albanese, S. (2021). The first application of compositional data analysis (CoDA) in a multivariate perspective for detection of pollution source in sea sediments: The Pozzuoli Bay (Italy) case study. Chemosphere, 274, 129955.

    Article  Google Scholar 

  • Spiegel, S. J. (2009). Resource policies and small-scale gold mining in Zimbabwe. Resources Policy., 34(1), 39–44.

    Article  Google Scholar 

  • Sunkari, E. D., Abu, M., Bayowobie, P. S., & Dokuz, U. E. (2019). Hydrogeochemical appraisal of groundwater quality in the Ga west municipality, Ghana: implication for domestic and irrigation purposes. Groundwater for Sustainable Development, 8, 501–511. https://doi.org/10.1016/j.gsd.2019.02.002

    Article  Google Scholar 

  • Sunkari, E. D., Abu, M., & Zango, M. S. (2021). Geochemical evolution and tracing of groundwater salinization using different ionic ratios, multivariate statistical and geochemical modeling approaches in a typical semi-arid basin. Journal of Contaminant Hydrology., 236, 103742. https://doi.org/10.1016/j.jconhyd.2020.103742

    Article  Google Scholar 

  • Sunkari, E. D., Abu, M., Zango, M. S., & Wani, A. M. L. (2020). Hydrogeochemical characterization and assessment of groundwater quality in the kwahu-bombouaka Group of the voltaian Supergroup Ghana. Journal of African Earth Sciences., 169, 103899. https://doi.org/10.1016/j.jafrearsci.2020.103899

    Article  Google Scholar 

  • Sunkari, E. D., Appiah-Twum, M., & Lermi, A. (2019). Spatial distribution and trace element geochemistry of laterites in Kunche area: Implication for gold exploration targets in NW. Ghana. Journal of African Earth Sciences, 158,

    Article  Google Scholar 

  • Tanzania Minister of State (TMS). (2007). The environmental management (soil quality standards) regulations, Vice President’s Office—Environment

  • Tanzania Chamber of Mines and Energy. (2015). http://www.tcme.or.tz/miningin-tanzania/industry-overview/

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust. Blackwell Scientific Publication.

    Google Scholar 

  • Tchounwou, P., Yedjou, C., Patlolla, A., & Sutton, D. (2012). Heavy metals toxicity and the environment. Environmental Toxicology, 10, 133–164.

    Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth's crust. Geological society of America bulletin, 72(2), 175–192.

    Article  Google Scholar 

  • Wang, L., Cui, X., Cheng, H., Chen, F., Wang, J., Zhao, X., Lin, C., & Pu, X. (2015). A review of soil cadmium contamination in China including a health risk assessment. Environmental Science and Pollution Research, 2015(22), 16441–16452. https://doi.org/10.1007/s11356-015-5273-1

    Article  Google Scholar 

  • Williams, M., Todd, G. D., Roney, N., Crawford, J., Coles, C., McClure, P. R., Garey, J. D., Zaccaria, K., & Citra, M. (2012). Toxicological profile for manganese. https://www.ncbi.nlm.nih.gov/books/NBK158868/

  • World Health Organization (WHO). (2000). Air Quality Guidelines for Europe. WHO. https://www.euro.who.int/en/publications/abstracts/air-quality-guidelinesfor-europe

  • Wuana, R. A., Okieimen, F. E., & Amua, Q. M. (2007). Aqueous phase adsorption of organics onto rice hull carbon modified with oxalic acid.

  • Xiong, X., Liu, X., Yu, I. K. M., Wang, L., Zhou, J., Sun, X., Rinklebe, J., Shaheen, S. M., Ok, Y. S., Lin, Z., & Tsang, D. C. W. (2019). Potentially toxic elements in solid waste streams: Fate and management approaches. Environmental Pollution, 253, 680–707. https://doi.org/10.1016/j.envpol.2019.07.012

    Article  Google Scholar 

  • Yidana, S. M., Bawoyobie, P., Sakyi, P., & Fynn, O. F. (2018). Evolutionary analysis of groundwater flow: application of multivariate statistical analysis to hydrochemical data in the Densu Basin, Ghana. Journal of African Earth Sciences., 138, 167–176. https://doi.org/10.1016/j.jafrearsci.2017.10.026

    Article  Google Scholar 

  • Yusuf, A. J., Galadima, A., Garba, Z. N., & Nasir, I. (2015). Determination of some heavy metals in soil sample from Illela Garage in Sokoto State, Nigeria. Research Journal of ChemicalSciences.

  • Zango, M. S., Sunkari, E. D., Abu, M., & Lermi, A. (2019). Hydrogeochemical controls and human health risk assessment of groundwater fluoride and boron in the semi-arid North East region of Ghana. Journal of Geochemical Exploration., 207, 106363. https://doi.org/10.1016/j.gexplo.2019.106363

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Geological Survey of Tanzania (GST) for providing all data used in this work.

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript. BNM and JDK were responsible for conducting the fieldwork and laboratory work, designing the study, and reviewing the draft manuscript. MA conceptualized and designed the study, drafted the initial manuscript, and reviewed and finalized it for submission.

Corresponding author

Correspondence to Benatus Norbert Mvile.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 498 KB)

Supplementary file2 (XLSX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mvile, B.N., Abu, M. & Kalimenze, J.D. Assessment of heavy metals concentration in soils in the central parts of Tanzania using pollution indices and multivariate statistical approach: implication on the source and health. J. Sediment. Environ. 8, 457–469 (2023). https://doi.org/10.1007/s43217-023-00144-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00144-8

Keywords

Navigation