Skip to main content

Dynamic Reliability

  • Chapter

Part of the book series: Advances in Nuclear Science & Technology ((ANST,volume 25))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Aldemir, N.O. Siu, P.C. Cacciabue and B.G. Göktepe (editors), “Reliability and Safety Assessment of Dynamic Process Systems”, NATO ASI Series, Vol. 120, Springer (1994).

    Google Scholar 

  2. T. Aldemir and N. Siu (Guest editors), “Special Issue on Reliability and Safety Analysis of Dynamic Process Systems”, RESS, 52(3) (June 1996).

    Google Scholar 

  3. N. Siu, “Risk assessment for dynamic systems: an overview”, RESS, 43:43 (1994).

    MATH  Google Scholar 

  4. “USNRC: A review of NRC staff uses of probabilistic risk assessment”, NUREG-1489, 1994.

    Google Scholar 

  5. “Proceedings of Workshop I in Advanced Topics in Risk and Reliability Analysis: model uncertainty, its characterization and quantification”, Report NUREG/CP-0138 (October 1994).

    Google Scholar 

  6. I.A. Papazoglou and E.P. Gyftopoulos, “Markov process for reliability analysis of large systems”, IEEE Transactions on Reliability, 26(3) (1977 & supplement).

    Google Scholar 

  7. J. Devooght and C. Smidts, “Probabilistic reactor dynamics I. The theory of continuous event trees”, Nucl. Sci. Eng., 111:229 (1992).

    Google Scholar 

  8. J.C. Helton, R.J. Breeding and S.C. Hora, “Probability of containment failure mode for fast pressure rise”, RESS, 35:91 (1992).

    Google Scholar 

  9. Report NUREG/CR-4551, SAND 86-1309, Vol. 2 (December 1990).

    Google Scholar 

  10. G. Apostolakis and P.C. Cacciabue (Guest editors), “Special Issue on Probabilistic Safety Assessment Methodology”, RESS, 45(1–2) (1994).

    Google Scholar 

  11. D.R. Cox, “The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables”, Proc. Cambridge Phil. Soc., 51:433 (1955).

    MATH  Google Scholar 

  12. M.H.A. Davis, “Markov models and optimization”, Monographs on Statistics and Applied Probability, 49, Chapman Hall (1993).

    Google Scholar 

  13. C.W. Gardiner, “Handbook of stochastic methods for physics, chemistry and the natural sciences”, Springer-Verlag, Berlin (1985).

    Google Scholar 

  14. B. Tombuyses and T. Aldemir, “Continuous cell-to-cell mapping and dynamic PSA”, Proc. of ICONE-4 (ASME), Vol. 3, pp. 431–438, New Orleans (1996).

    Google Scholar 

  15. M. Belhadj and T. Aldemir, “The cell-to-cell mapping technique and Chapman-Kolmogorov representation of system dynamics”, J. of Sound and Vibration, 181(4):687 (1995).

    MathSciNet  Google Scholar 

  16. T. Aldemir, “Utilization of the cell-to-cell mapping technique to construct Markov failure models for process control systems”, PSAM I, Vol. 2, pp. 1431–1436, Elsevier (1991).

    Google Scholar 

  17. J. Devooght and P.E. Labeau, “Moments of the distributions in probabilistic dynamics”, Ann. Nucl. En., 22(2):97 (1995).

    Google Scholar 

  18. P.E. Labeau and J. Devooght, “Synthesis of multivariate distributions from their moments for probabilistic dynamics”, Ann. Nucl. En., 22(2):109 (1995).

    Google Scholar 

  19. N.L. Johnson and S. Kotz, “Distributions in statistics: Continuous multivariate distributions”, J. Wiley and Sons, New York (1972).

    MATH  Google Scholar 

  20. P.E. Labeau, “Méthodes semi-analytiques et outils de simulation en dynamique probabiliste”, PhD Thesis, Université Libre de Bruxelles (1996).

    Google Scholar 

  21. M. Cukier, “Détermination du temps de sortie du domaine de sécurité de lĿespace des états lors dďun transitoire accidentel”, MSc Thesis, Université Libre de Bruxelles (1991).

    Google Scholar 

  22. P.E. Labeau, “A method of benchmarking for two-state problems of probabilistic dynamics”, Nucl. Sc. Eng., 119:212 (1995).

    Google Scholar 

  23. Z. Schuss, “Theory and applications of stochastic differential equations”, Wiley (1980).

    Google Scholar 

  24. P. Hänggi and P. Talkner, “Reaction rate theory: fifty years after Kramers”, Rev. Mod. Phys., 62(2) (April 1990).

    Google Scholar 

  25. J. Devooght and C. Smidts, “Probabilistic dynamics: the mathematical and computing problems ahead”. In T. Aldemir, N.O. Siu, P.C. Cacciabue and E.G. Göktepe (editors), Reliability and Safety Assessment of Dynamic Process Systems, Turkey, August 24–28, 1992, pp. 85–100, NATO, Springer Verlag, Berlin (1994).

    Google Scholar 

  26. J. Devooght and C. Smidts, “Probabilistic dynamics as a tool for dynamic PSA”, RESS, 52(3): 185 (1996).

    Google Scholar 

  27. J.L. Delcoux, J. Devooght and P.E. Labeau, Proc. ESREL 96/PSAM-III, Vol. 1, pp. 436–442, Crete (1996).

    Google Scholar 

  28. A. Birolini, “On the use of stochastic processes in modeling reliability problems”, Springer-Verlag, Berlin (1985).

    MATH  Google Scholar 

  29. C. Smidts, “Probabilistic reactor dynamics. IV, An example of man-machine interaction”, Nucl. Sc. Eng., 112:114 (1992).

    Google Scholar 

  30. E. Hollnagel, “Reliability analysis and operator modelling”, RESS, 52(3):327 (1996).

    Google Scholar 

  31. S. Nordholm and R. Zwanzig, J. Stat. Phys., 13:347 (1975).

    Article  MathSciNet  Google Scholar 

  32. H. Grabert, “Projection operator techniques in nonequilibrium statistical mechanics”, Springer Tracts in Modern Physics, Vol. 95 (1982).

    Google Scholar 

  33. J. Devooght, “The computation of time dependent event trees”, to appear in Proc. PSA’96, Park City (September 1996).

    Google Scholar 

  34. P. Grigolini, in “Noise in nonlinear dynamical systems”, Vol. 1 (Theory of continuous Fokker-Planck system), edited by F. Moss, P.V.E. Me Clintock, Cambridge University Press (1989).

    Google Scholar 

  35. J.C. Helton and R.J. Breeding, “Calculation of reactor accident safety goals”, RESS, 39:129 (1993).

    Google Scholar 

  36. Ed. M. Dougherty Jr., “Time considerations in recovery analysis”, RESS, 35:107 (1992).

    Google Scholar 

  37. J.M. Izquierdo, E. Melendez and J. Devooght, “Relationships between probabilistic dynamics, dynamic event trees and classical event trees”, RESS, 52:197 (1996).

    Google Scholar 

  38. B. Tombuyses, “Modélisation markovienne en fiabilité Réduction des grands systémes”, PhD Thesis, Université Libre de Bruxelles (1994).

    Google Scholar 

  39. J. Devooght and B. Tombuyses, “The use of the component influence graph to reduce the size of Markovian availability problems”, RESS, 46(3):237 (1994).

    Google Scholar 

  40. G. Cojazzi, “The Dylam approach to the dynamic reliability analysis of systems”, RESS, 52:279 (1996).

    Google Scholar 

  41. C. Acosta and N. Siu, Dynamic event tree in accident sequence analysis: application to steam generator tube rupture”, RESS, 41:135 (1993).

    Google Scholar 

  42. K.-S. Hsueh and A. Mosleh, “The development and application of the accident dynamic simulator for dynamic probabilistic risk assessment of nuclear power plants”, RESS, 52(3):297 (1996).

    Google Scholar 

  43. C. Smidts, “Probabilistic dynamics: a comparison between continuous event tree and discrete event tree model”, RESS, 44:189 (1994).

    Google Scholar 

  44. M.G. Kendall and A. Stewart, “The advanced theory of statistics”, C. Griffin, London.

    Google Scholar 

  45. J. Devooght and C. Smidts, “A theoretical analysis of Dylam-type event tree sequence”, Proc. Int. Conf. PS AM II, pp. 011 (1–6) (1994).

    Google Scholar 

  46. G. Cojazzi, J.M. Izquierdo, E. Melendez and M. Sanchez-Perea, “The Dylam-Treta package”, Technical note No 1.92.111, ISE/IE 2358/92, JCR Ispra (1992).

    Google Scholar 

  47. T. Aldemir, M. Belhadj and L. Dinca, “Process reliability and safety under uncertainties, RESS, 52(3) (1996).

    Google Scholar 

  48. C.S. Hsu, “Cell-to-cell mapping. A method of global analysis for nonlinear systems”, Springer-Verlag, New York (1987).

    MATH  Google Scholar 

  49. B. Tombuyses and J. Devooght, “Solving Markovian systems of ODE for availability and reliability calculations”, RESS, 48:47 (1995).

    Google Scholar 

  50. O. Aneziris and I. Papazoglou, “Safety analysis of probabilistic dynamic systems”, Proc. of ICONE-4 (ASME), Vol. 3, pp. 171–179, New Orleans (1996).

    Google Scholar 

  51. P.E. Labeau, “Improvement of probabilistic dynamics calculations by the determination of the support of the distribution”, Proc. of ESREL’95, Vol. 1, pp. 431–444 (1995).

    Google Scholar 

  52. I. Lux and L. Koblinger, “Monte Carlo particle transport methods: neutron and photon calculations”, CRC Press, Boca Raton (1991).

    Google Scholar 

  53. J. Spanier and E.M. Gelbard, “Monte Carlo principles and neutron transport problems”, Addison-Wesley, Reading (1969).

    MATH  Google Scholar 

  54. L. Devroye, “Non-uniform random variate generation”. Springer-Verlag, New York (1986).

    MATH  Google Scholar 

  55. J. Lewins, “Importance: the adjoint function”, Pergamon Press, Oxford (1965).

    Google Scholar 

  56. P.E. Labeau, “Probabilistic dynamics: estimation of generalized unreliability through efficient Monte-Carlo simulation”, Ann. Nucl. Eng. (1996).

    Google Scholar 

  57. E.E. Lewis and F. Bohm, “Monte Carlo simulation of Markov unreliability models”, Nucl. Eng. Des., 77:49 (1984).

    Google Scholar 

  58. M. Marseguerra and E. Zio, “Monte Carlo approach to PSA for dynamic process systems”, RESS, 52(3):227 (1996).

    Google Scholar 

  59. M. Marseguerra and E. Zio, “Non linear Monte Carlo reliability analysis with biasing towards top event”, RESS, 39:31 (1993).

    Google Scholar 

  60. M. Marseguerra and E. Zio, “Improving the efficiency of Monte Carlo methods in PSA by using neural networks”, Proc. of PSAM II, 025.1–025.8, San Diego, (1994).

    Google Scholar 

  61. A.M.H. Meeuwissen, “Dependent random variables in uncertainty analysis”, Ph.D.thesis, T.U. Delft (1991).

    Google Scholar 

  62. N. Siu, D. Kelly and J. Schroeder, “Variance reduction techniques for dynamics probabilistic risk assessment”, Proc. Int. Conf. PSAM II, pp. 025(27–32) (1994).

    Google Scholar 

  63. G.A. Mikhailov, “Minimization of computational costs of non-analogue Monte Carlo method,” Series on Soviet and East European Mathematics, World Scientific, Singapore (1991).

    Google Scholar 

  64. E.E. Lewis and T.U. Zhuguo, “Monte Carlo reliability modeling by inhomogeneous Markov processes”, Reliab. Eng., 16:277 (1986).

    Article  Google Scholar 

  65. A. Dubi et al., A.N.E., 22:215 (1995).

    Google Scholar 

  66. A. Dubi, A. Gandini, A. Goldfeld, R. Righini and H. Simonot, “Analysis of non Markovian systems by a Monte-Carlo method”, Annals Nucl. En., 18:125 (1991).

    Google Scholar 

  67. Yun-Fu Wu and J.D. Lewins, “System reliability perturbation studies by a Monte Carlo method”, Annals Nucl. Energy, 18:141 (1991).

    Google Scholar 

  68. J.D. Lewins and Yun-Fu Wu, “Some results in semi Markov reliability theory”, Proc. of PSAM II, Vol. 1, 025(15–26), San Diego (1994).

    Google Scholar 

  69. Yun-Fu Wu and J.D. Lewins, “Monte Carlo studies of non-Markovian system reliability”, preprint.

    Google Scholar 

  70. C.A. Clarotti, “The method of supplementary variables and related issues in reliability theory”. In A. Serra and R.E. Barlow, editors. Proc. of the Int. School of Physics “Enrico Fermi”, pp. 86–103, North-Holland, Amsterdam (1986).

    Google Scholar 

  71. C. Smidts and J. Devooght, “Probabilistic reactor dynamics II. A Monte Carlo study of a fast reactor transient”, Nucl. Sci. Eng., 111:241 (1992).

    Google Scholar 

  72. A. Amendola and G. Reina, “Event sequence and consequences spectrum: a methodology for probabilistic transient analysis”, Nucl. Sc. Eng., 77:297 (1981).

    Google Scholar 

  73. P. De Luca and C. Smidts, “Probabilistic dynamics: development of quasi-optimal Monte Carlo strategies”, Proc. ESREL’96/PSAM III, Vol. 3, pp. 2111–2116 Crete (1996).

    Google Scholar 

  74. M. Gondran and M. Minoux, “Graphes et algorithmes”, Editions Eyrolles, Paris (1979).

    MATH  Google Scholar 

  75. P.E. Labeau, “Improved Monte Carlo simulation of generalized unreliability in probabilistic dynamics”, Proc. of ICONE-4, Vol. 3, pp. 419–426 (1996).

    Google Scholar 

  76. T. Aldemir, “Computer assisted Markov failure modeling of process control systems”, IEEE Transactions on Reliability, 36:133 (1987).

    MATH  Google Scholar 

  77. D.L. Deoss and N. Siu, “A simulation model for dynamic system availability analysis”, (MITNE-287), MIT (1989).

    Google Scholar 

  78. M. Marseguerra and E. Zio, “Monte Carlo approach to PSA for dynamic process systems”, RESS, 52(3):227 (1996).

    Google Scholar 

  79. T. Matsuoka and M. Kobayashi, “An analysis of a dynamic system by the Go-Flow methodology”, Proc. ESREL’96/PSAM III, pp. 1547–1552, Crete (1996).

    Google Scholar 

  80. P.E. Labeau, “A Monte Carlo dynamic PSA study of a PWR pressurizer”, to appear in Proc. PSA 96, Park City, USA (1996).

    Google Scholar 

  81. M. Marseguerra, M.E. Ricotti and E. Zio, “Neural network-b0ased fault detections in a PWR pressurizer”, accepted for publication in Nucl. Sc. Eng. (1996).

    Google Scholar 

  82. S. Aumeier, J.C. Lee and A.Z. Akcasu, “Probabilistic techniques using Monte Carlo sampling for multi-component system diagnostics”, Proc. of the Int. Conf. Math. Comp. (ANS), Portland (USA), April 30–May 4, 1995, p. 103–112.

    Google Scholar 

  83. M. Sanchez and J.M. Izquierdo, “Application of the integrated safety assessment methodology to emergency procedures of a SGTR of a PWR”, RESS, 45:159 (1994).

    Google Scholar 

  84. M. Sanchez and J. Melara, “Extending PSA to accident management (AM). The case of the steam generator tube rupture (SGTR) emergency operating procedures (EOF) assessment”, Proc. of ICONE-4 (ASME), Vol. 3, pp. 523–530, New Orleans (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Devooght, J. (2002). Dynamic Reliability. In: Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science & Technology, vol 25. Springer, Boston, MA. https://doi.org/10.1007/0-306-47812-9_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47812-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45604-6

  • Online ISBN: 978-0-306-47812-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics