Skip to main content

High-Speed III-V Semiconductor Devices

  • Chapter
Semiconductor Physical Electronics

Abstract

In this chapter the basic device physics, operational principles, and general characteristics of high-speed III-V compound semiconductor devices such as MESFETs and HEMTs are presented. The devices described here include GaAs- and InPbased metal–semiconductor field-effect transistors (MESFETs) and high electron mobility transistors (HEMTs). The GaAs-based high-speed devices are fabricated using the lattice-matched GaAs/AlGaAs material system grown on a semiinsulating GaAs substrate, while the InP-based devices utilize the lattice-matched InAlAs/InGaAs or InGaAs/InP material systems grown on a semi-insulating InP substrate. Although the GaAs/AlGaAs material technology is more mature than that of the InP/InGaAs material system, the InP-based devices can be operated at a much higher frequency and higher speed than those of the GaAs-based devices. This is due to the fact that the InGaAs/InP material system has a higher electron mobility and smaller electron effective mass than those of the AlGaAs/GaAs material system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. A. Liechti, IEEE Trans. Microwave Theory Tech. MTT-24, 286 (1976).

    ADS  Google Scholar 

  2. R. Pucel, H. Haus, and H. Statz, Advances in Electronics and Electron Physics, Vol. 38, p. 195, Academic Press, New York (1975).

    Book  Google Scholar 

  3. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York (1981).

    Google Scholar 

  4. D. Delagebeaudeuf and N. T. Ling, “Metal-n-AlGaAs/GaAs Two-Dimensional Electron Gas FET,” IEEE Trans. Electron Devices ED-29, 955 (1982).

    Article  Google Scholar 

  5. K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, “Current–Voltage and Capacitance–Voltage Characteristics of Modulation-doped Field Effect Transistors,” IEEE Trans. Electron Devices ED-30, 207 (1983).

    Google Scholar 

  6. S. M. Sze, High Speed Devices, Wiley, New York (1991).

    Google Scholar 

  7. C. A. Mead, Proc. IRE 48, 359 (1960).

    Google Scholar 

  8. F. Capasso, in: High-Speed Electronics (B. Kallback and H. Beneking, eds.), Vol. 22, pp. 50–61, Springer-Verlag, Berlin (1986).

    Google Scholar 

  9. C. O. Bozler and G. D. Alley, “Fabrication and Numerical Simulation of the Permeable Base Transistor,” IEEE Trans. Electron Devices ED-27, 1128 (1980).

    Article  ADS  Google Scholar 

  10. C. O. Bozler and G. D. Alley, “The Permeable Base Tansistor and Its Application to Logic Circuits,” Proc. IEEE 70, 46 (1982).

    Article  ADS  Google Scholar 

  11. L. L. Chang, L. Esaki, and R. Tsu, J. Appl. Phys. 24, 593 (1974).

    Google Scholar 

  12. J. B. Gunn, “Microwave Oscillations of Current in III-V Semiconductors,” Solid State Commun. 1, 88 (1963).

    Article  ADS  Google Scholar 

  13. C. Hilsum, “Transferred Electron Amplifiers and Oscillators,” Proc. IRE 50, 185 (1962).

    Article  Google Scholar 

  14. Bibliography

    Google Scholar 

  15. E. Alekseev and D. Pavlidis, “DC and High-Frequency Performance of AlGaN/GaN HBTs,” Solid State Electronics, vol. 44 (2), pp. 245–252 (2000).

    Article  ADS  Google Scholar 

  16. J. S. Blackmore, “Electron and Hole Traps in GaAs,” J. Appl. Phys. 53, R123 (1982).

    Article  ADS  Google Scholar 

  17. I. B. Bott and W. Fawcett, “The Gunn Effect in GaAs,” in Advances in Microwaves (L. Yung, ed.), Vol. 3, pp. 223–300, Academic Press, New York (1968).

    Google Scholar 

  18. P. J. Bulman, G. S. Hobson, B. C. Taylor, “Transferred Electron Devices,” Academic Press, London and New York (1972).

    Google Scholar 

  19. F. Capasso, in: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.) Vol. 22, Part D, p. 2, Academic Press, New York (1985).

    Google Scholar 

  20. F. Capasso, J. Allam, A. Y. Cho, K. Mohammed, R. J. Malik, A. L. Hutchinson, and D. Sivco, Appl. Phys. Lett. 48, 1294 (1986).

    Article  ADS  Google Scholar 

  21. C. Y. Chang and Francis Kai, GaAs High Speed Devices, Wiley Interscience, New York (1994).

    Google Scholar 

  22. C. Y. Chang and S. M. Sze, ULSI Devices, Wiley Interscience, New York (2000).

    Google Scholar 

  23. T. H. Chen and M. S. Shur, “Capacitance Model of GaAs MESFETs,” IEEE Trans. Electron Devices ED-32, 883 (1985).

    Article  Google Scholar 

  24. R. Dingle, H. L. Stormer, A. C. Gossard, and W Wiegmann, Appl. Phys. Lett. 37, 805 (1978).

    Google Scholar 

  25. T. J. Drummond, H. Morkoc, K. Lee, and M. S. Shur, “Model for Modulation Doped Field Effect Transistor,” IEEE Electron Device Lett. EDL-3, 338 (1981).

    Google Scholar 

  26. T. J. Drummond, W. Kopp, M. Keever, H. Morkoc, and A. Y. Cho, “Electron Mobility in Single and Multiple Period Modulation-Doped AlGaAs/GaAs Heterostructures,” J. Appl. Phys. 23, 230 (1984).

    Article  Google Scholar 

  27. W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs–GaAlAs Heterojunction Transistor for High Frequency Operation,” Solid-State Electron. 15, 1339 (1972).

    Article  ADS  Google Scholar 

  28. L. F. Eastman, “Very High Electron Velocity in Short GaAs Structures,” in: Advances in Solid State Physics 12 (J. Treush, ed.), p. 173, Vieweg, Braunschweig (1982).

    Google Scholar 

  29. A. A. Grinberg and M. S. Shur, “Density of Two-dimensional Electron Gas in Modulation-doped Structure with Graded Interface,” Appl. Phys. Lett. 45, 573 (1984).

    Article  ADS  Google Scholar 

  30. M. Hirano, K. Oe, and F. Yanagawa, “High-Transconductance p-Channel Modulation-Doped AlGaAs/GaAs Heterostructure FETs,” IEEE Trans. Electron Devices ED-33, 620 (1986).

    Article  ADS  Google Scholar 

  31. M. A. Hollis, S. C. Palmateer, L. F. Eastman, N. V. Dandekar, and P. M. Smith, IEEE Electron Device Lett. EDL-4, 440 (1983).

    Article  ADS  Google Scholar 

  32. S. Hutchinson, J. Stephens, M. Carr and M. J. Kelly, “Implant isolation scheme for current confinement in graded-gap Gunn diodes” Electronics Letters 32 851–2 (1996)

    Article  Google Scholar 

  33. H. Kroemer, “Theory of Wide-gap Emitter Transistors,” Proc. IRE 45, 1535 (1957).

    Article  Google Scholar 

  34. H. Kroemer, “Theory of the Gunn Effect,” Proc. IEEE 52, 1736 (1964).

    Article  Google Scholar 

  35. H. Kroemer, “The Gunn Effect Under Imperfect Cathode Boundary Conditions,” IEEE Trans. Electron Devices ED-15, 819 (1968).

    Article  Google Scholar 

  36. H. Kroemer, “Heterostructure Bipolar Transistors and Integrated Circuits,” Proc. IEEE 70, 13 (1982).

    Article  ADS  Google Scholar 

  37. K. Lehovec and R. Zuleeg, “Voltage–Current Characteristics of GaAs-JFETs in the Hot Electron Range,” Solid-State Electron. 13, 1415 (1970).

    Article  ADS  Google Scholar 

  38. S. Luryi, Appl. Phys. Lett. 47, 490 (1985).

    Article  ADS  Google Scholar 

  39. A. G. Milnes and D. L. Feucht, Heterojunctions and Metal–Semiconductor Junctions, Academic Press, New York (1972).

    Google Scholar 

  40. T. Mimura, S. Hiyamizu, T. Fijii, and K. Nanbu, “A New Field Effect Transistor with Selectively Doped GaAs/n-AlGaAs Heterojunctions,” Jpn. J. Appl. Phys. 19, L225 (1980).

    Article  ADS  Google Scholar 

  41. H. Morkoc, J. Chen, U. K. Reddy, T. Henderson, P. D. Coleman, and S. Luryi, Appl. Phys. Lett. 42, 70 (1986).

    Article  ADS  Google Scholar 

  42. D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd edition, McGrew Hill, New York, (2003).

    Google Scholar 

  43. C. Pacha, P. Glösekötter, K. Goser, U. Auer, W. Prost, F.-J. Tegude, “Resonant Tunneling Transistors for Threshold Logic Circuit Applications,” 9th Great Lakes Symposium on VLSI, p. 344 (1999).

    Google Scholar 

  44. C. Pacha and K. Goser. “Design of Arithmetic Circuits Using Resonant Tunneling Diodes and Threshold Logic,” Proceedings of the 2nd Workshop on Innovative Circuits and Systems for Nanoelectronics, pages 83–93. TU Delft, NL, September 1997.

    Google Scholar 

  45. K. Park and K. D. Kwack, “A Model for the Current–Voltage Characteristics of MODFETs,” IEEE Trans. Electron Devices ED-33, 673 (1986).

    Article  ADS  Google Scholar 

  46. B. K. Ridley, “Specific Negative Resistance in Solids,” Proc. Phys. Soc. 82, 954 (1963).

    Article  ADS  Google Scholar 

  47. B. K. Ridley and T. B. Watkins, “The Possibility of Negative Resistance,” Proc. Phys. Soc. 78, 291 (1961).

    ADS  Google Scholar 

  48. T. G. Ruttan, “High Frequency Gunn Oscillators,” IEEE Trans. on MTT, pp. 142–144 (1974).

    Google Scholar 

  49. L. P. Sadwick and K. L. Wang, “A Treatise on the Capacitance–Voltage Relation of High Electron Mobility Transistors,” IEEE Trans. Electron Devices ED-33, 651 (1986).

    Article  ADS  Google Scholar 

  50. E. F. Schubert and A. Fischer, “The Delta-Doped Field-Effect Tansistor (δFET),” IEEE Trans. Electron Devices ED-33, 625 (1986).

    Article  ADS  Google Scholar 

  51. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions, Pergamon, London (1974).

    Google Scholar 

  52. W. Shockley, Bell Syst. Tech. J. 30, 990 (1951).

    Google Scholar 

  53. W. Shockley, “A Unipolar Field-effect Transistor,” Proc. IRE 40, 1365 (1952).

    Article  Google Scholar 

  54. M. S. Shur, “Analytical Model of GaAs MESFETs,” IEEE Trans. Electron Devices ED-25, 612 (1978).

    Article  ADS  Google Scholar 

  55. M. S. Shur, “Analytical Models of GaAs MESFETs,” IEEE Trans. Electron Devices ED-32, 18 (1985).

    Google Scholar 

  56. M. S. Shur, GaAs Devices and Circuits, Plenum Press, New York (1987).

    Google Scholar 

  57. M. S. Shur and L. F. Eastman, “Current–Voltage Characteristics, Small-Signal Parameters and Switching Times of GaAs FETs,” IEEE Trans. Electron Devices ED-25, 606 (1978).

    Article  ADS  Google Scholar 

  58. M. S. Shur and L. F. Eastman, “A Near Ballistic Electron Transport in GaAs Devices at 77 K,” Solid-State Electron. 24, 11 (1981).

    Article  ADS  Google Scholar 

  59. P. M. Solomon and H. Morkoc, IEEE Trans. Electron Devices ED-31, 1015 (1984).

    Article  ADS  Google Scholar 

  60. H Spooner and N R Crouch “Advances in hot electron injector Gunn diodes” GEC Journal of Research 7, 34–45 (1990).

    Google Scholar 

  61. S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York (1981).

    Google Scholar 

  62. S. M. Sze, Semiconductor Devices: Physics and Technology, 2nd edition, Wiley Interscience, New York (2002).

    Google Scholar 

  63. G. W. Taylor, H. M. Darley, R. C. Frye, and P. K. Chatterjee, “A Device Model for an Ion Implanted MESFET,” IEEE Trans. Electron Devices ED-26, 172 (1979).

    Article  Google Scholar 

  64. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).

    Article  ADS  Google Scholar 

  65. H. Unlu and A. Nussbaum, “Band Discontinuities at Heterojunction Device Design Parameters,” IEEE Trans. Electron Devices ED-33, 616 (1986).

    Article  Google Scholar 

  66. T. Wada and S. Frey, “Physical Basis of Short-Channel MESFET Operator,” IEEE Trans. Electron Devices ED-26, 476 (1979).

    Article  Google Scholar 

  67. G. W. Wang and W. H. Ku, “An Analytical and Computer-aided Model of the AlGaAs/GaAs High Electron Mobility Transistor,” IEEE Trans. Electron Devices ED-33, 657 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Li, S.S. (2006). High-Speed III-V Semiconductor Devices. In: Li, S.S. (eds) Semiconductor Physical Electronics. Springer, New York, NY. https://doi.org/10.1007/0-387-37766-2_16

Download citation

Publish with us

Policies and ethics