Skip to main content

Abstract

Heavy metals are defined as those having densities higher than 5 g cm-3. Ions of heavy metals such as iron, copper, zinc, cobalt, or nickel are essential micronutrients that are critically involved in functional activities of large numbers of proteins involved in sustaining growth and development of living organisms. However, at excess concentrations, these metal ions can become detrimental to living organisms. Furthermore, these organisms can be also exposed to highly toxic ions of cadmium, lead, mercury, and other metals that are generally considered non-essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah, S.N.A., Cheah, S.C. and Murphy, D.J. (2002). Isolation and characterization of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis. Plant. Physiol. Biochem. 40, 255–263.

    Article  CAS  Google Scholar 

  • Alia. and Saradhi, P. (1991). Proline accumulation under heavy metal stress. J. Plant. Physiol. 138, 504–508.

    Google Scholar 

  • Arazi, T., Sunkar, R., Kaplan, B. and Fromm, H. (1999). A tobacco plasma membrane calmodulinbinding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 20, 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Arisi, A-C.M., Mocquot, B., Lagriffoul, A., Mench, M., Foyer, C.H. and Jouanin, L. (2000). Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol. Plant. 109, 143–149.

    Article  CAS  Google Scholar 

  • Assunção, A.G.L., Bookum, W.M., Nelissen, H.J.M., Voojis, R., Schat, H. and Ernst, W.H.O. (2003). Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol. 159, 411–419.

    Google Scholar 

  • Assunção, A.G.L., Da Costa Martins, P., Folter, S., Vooijs, R., Schat, H. and Aarts, M.G.M. (2001). Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Env. 24, 217–226.

    Google Scholar 

  • Baker, A.J.M., McGrath, S.P., Reeves, D.R. and Smith, J.A.C. (2000). Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N. and Banuelos G., eds. Phytoremediation of contaminated soils and water. Boca Raton, FL, USA: CRC Press LLC, pp. 171–188.

    Google Scholar 

  • Balandin, T. and Castresana, C. (2000). AtCPX17, an Arabidopsis homolog of the yeast copper chaperone COX17. Plant Physiol. 129, 1852–1857.

    Google Scholar 

  • Bassi, R. and Sharma, S.S. (1993a). Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann. Bot. 72, 151–154.

    Article  CAS  Google Scholar 

  • Bassi, R. and Sharma, S.S. (1993b). Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochem. 33, 1339–1342.

    Article  CAS  Google Scholar 

  • Baxter, I., Tchieu, J., Sussman, M.R., Boutry, M., Palmgren, M.G., Gribskov, M., Harper, J.F. and Axelsen, K.B. (2003). Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol. 132, 618–328.

    Article  PubMed  CAS  Google Scholar 

  • Becher, M., Talke, I.N., Krall, L. and Krämer, U. (2004). Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J. 37, 251–268.

    PubMed  CAS  Google Scholar 

  • Belouchi, A., Cellier, M., Kwan, T., Saini, H.S., Leroux, G. and Gros, P. (1995). The macrophage-specific membrane protein Nramp controlling natural resistance to infection in mice has homologues expressed in the root system of plants. Plant Mol. Biol. 29, 1181–1196.

    Article  PubMed  CAS  Google Scholar 

  • Belouchi, A., Kwan, T. and Gros, P. (1997). Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol. Biol. 33, 1085–1092.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, L.E., Burkhead, J.L., Hale, K.L., Terry, N. and Pilon-Smits, E.A. (2003). Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32, 432–440.

    Article  PubMed  CAS  Google Scholar 

  • Bereczky, Z., Wang, H-Y., Schubert, V., Ganal, M. and Bauer, P. (2003). Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J. Biol. Chem. 278, 24697–24704.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, W.R. and Kägi, H.R. 1987. Purification and characterization of atypical cadmium-binding polypeptides from Zea mays. Experientia, 52, 309–315.

    CAS  Google Scholar 

  • Bizili, S.P., Rugh, C.L. and Megaher, R.B. (2000). Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotech. 18, 213–217.

    Google Scholar 

  • Blaudez, D., Kohler, A., Martin, F., Sanders, D. and Chalot, M. (2003). Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell, 15, 2911–2928.

    Article  PubMed  CAS  Google Scholar 

  • Bleeker, P.M., Schat, H., Voojis, R., Verkleij, A.C. and Ernst, W.H.O. (2003). Mechanisms of arsenate tolerance in Cytisus striatus. New Phytol. 157, 33–38.

    Article  CAS  Google Scholar 

  • Boominathan, R. and Doran, P.M. (2003). Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotech. Bioeng. 83, 158–167.

    Article  CAS  Google Scholar 

  • Borrelly, G.P., Harrison, M.D., Robinson, A.K., Cox, S.G., Robinson, N.J. and Whitehall, S.K. (2002). Surplus zinc is handled by Zym1 metallothionein and Zhf endoplasmic reticulum transporter in Schizosaccharomyces pombe. J. Biol. Chem. 277, 30394–30400.

    Article  PubMed  CAS  Google Scholar 

  • Bovet, L., Eggman, T., Meylan-Bettex, M., Polier, J., Kammer, P., Marin, E., Feller, U. and Martinoia, E. (2003). Transcription levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Env. 26, 371–381

    CAS  Google Scholar 

  • Bughio, N., Yamaguchi, H., Nishizawa, N.K., Nakanishi, H. and Mori, S. (2002). Cloning an iron-regulated metal transporter from rice. J. Exp. Bot. 53, 1677–1682.

    Article  PubMed  CAS  Google Scholar 

  • Carrier, P., Baryla, A. and Havaux, M. (2003). Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium – contaminated soil. Planta, 216, 939–950.

    PubMed  CAS  Google Scholar 

  • Chang, T., Liu, X., Xu, H., Meng, K., Chen, S. and Zhu, Z. (2004). A metallothionein like gene htMT2 strongly expressed in internodes and nodes of Helinathus tuberosus and effects of metal ion treatment on its expression. Planta, 218, 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Chassaigne, H., Vachina, V., Kutchan, T.M. and Zenk, M.H. (2001). Identification of phytochelatinrelated peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro. Phytochem. 56, 657–668.

    Article  CAS  Google Scholar 

  • Chen, J., Zhou, J. and Goldsbrough, P. (1997). Characterization of phytocheltain synthase from tomato. Physiol. Plant. 101, 165–172.

    CAS  Google Scholar 

  • Clemens, S., Bloss, T., Vess, C., Neumann, D., Nies, D.H and zur Nieden, U. (2002). A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediated zinc storage and differentially affects transition metal tolerance. J. Biol. Chem. 277, 18215–18221.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, S., Kim, E.J., Neumann, D. and Schroeder, J.I. 1999. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J. 18, 3325–3333.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, S. 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–486

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S. and Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53, 159-182

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S., Hussain, D. and Haydon, M.J. (2003). Structural and functional relationship between type 1B heavy metal-transporting P-type ATPases in Arabidopsis. New Phytol. 159, 315–321.

    CAS  Google Scholar 

  • Cobbett, C.S., May, M.J., Howden, R. and Rolls, B. (1998). The gluthatione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J. 16, 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Cobbett, C.S. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123, 825–832.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, E.L., Fett, J.P. and Guerinot, M.L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell, 14, 1347

    Article  PubMed  CAS  Google Scholar 

  • Cosio, C., Martinois, E. and Keller, C. (2004). Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol. 134, 716–725.

    Article  PubMed  CAS  Google Scholar 

  • Costa, G. and Morel, J.L. (1994). Water, relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol. Biochem. 32, 561–565.

    CAS  Google Scholar 

  • Creissen, G., Firmin, J., Fryer, M., Kular, B., Leyland, N., Reynolds, H., Pastori, G., Wellburn, F., Baker, N., Wellburn, A. and Mullineaux, P. (1999). Elevated gluthatione biosynthetic capacity in the chloroplasts of the tobacco plants paradoxically causes increased oxidative stress. Plant Cell, 11, 1277–1291.

    Article  PubMed  CAS  Google Scholar 

  • Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S.L., Briat, J.F. and Walker, E.L. (2001). Maize yellow stripe 1 encodes a membrane protein directly involved in Fe(III) uptake. Nature, 409, 346–349.

    Article  PubMed  CAS  Google Scholar 

  • De Vos, R.C.H., Vonk, M.J., Voojis, R. and Schat, H. (1992). Gluthatione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol. 98, 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Delhaize, E., Kataoka, T., Hebb, D.M., White, R.G. and Ryan, P.R. (2003). Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell, 15, 11311142.

    Article  PubMed  CAS  Google Scholar 

  • Delhaize, E., Ryan, P.R. and Randall, P.J. (1993). Aluminum tolerance in wheat (Triticum aestivum) II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol. 103, 695–702.

    PubMed  CAS  Google Scholar 

  • Dixit, V., Pandey, V. and Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot. 52, 1101–1109.

    Article  PubMed  CAS  Google Scholar 

  • Domigues-Solis, J.R., Gutierrez-Alcala, G., Romero, L.C. and Gotor, C. (2001). The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J. Biol. Chem. 276, 9297–9302.

    Google Scholar 

  • Ebb, S., Lau, I., Ahner, B. and Kochian, L. (2002). Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta, 214, 635–640.

    Google Scholar 

  • Eide, D., Broderius, M., Fett, J., Guerinot, M.L. (1996). A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA, 93, 5624–5628.

    PubMed  CAS  Google Scholar 

  • Ezaki. B., Katsuhara. M., Kawamura. M. and Matsumoto. H. (2001). Different mechanisms of four aluminum (Al)-resistant transgene for Al toxicity in Arabidopsis. Plant Physiol. 127, 918–927.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Hernandez. M., Murphy. A. and Taiz. L. (1998). Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol. 118, 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Gisbert. C., Ros. R., de Haro. A., Walker. D.J., Bernal. M.P., Serrano. R. and Navarro-Aviñó. J. (2003). A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Bioch. Biophys. Res. Com. 303, 440–445.

    CAS  Google Scholar 

  • Gong. J.M., Lee. D.A. and Schroeder. J.I. (2003). Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc. Nat. Acad. Sci. USA, 100, 10118–10123.

    PubMed  CAS  Google Scholar 

  • Grill. E., Löffler. S., Winnacker. E-L. and Zenk. M.H. (1989). Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc. Natl. Acad. Sci. USA, 86, 6838–6842.

    CAS  PubMed  Google Scholar 

  • Grill. E., Winnacker. E.L. and Zenk. M.H. (1985). Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science, 230, 674–676.

    CAS  PubMed  Google Scholar 

  • Grill E., Winnacker E.L. and Zenk M.H., (1986). Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells. FEBS Lett. 197, 115–120.

    Article  CAS  Google Scholar 

  • Gross. J., Stein. R.J., Fett-Neto. A.G. and Fett. J.P. (2003). Iron homeostasis related genes in rice. Gen. Mol. Biol. 26, 477–497.

    CAS  Google Scholar 

  • Grotz. N., Fox. T., Connolly. E., Park. W., Guerinot. M.L. and Eide. D. (1998). Identification of family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA, 95, 7220–7224.

    Article  PubMed  CAS  Google Scholar 

  • Grotz. N. and Guerinot. M.L. (2002). Limiting nutrients: an old problem with new solutions Curr. Opin Pant Biol. 5, 158–63.

    CAS  Google Scholar 

  • Guerinot. M.L. (2000). The ZIP family of metal transporters. Biochim. Biophys. Acta, 1465, 190–198.

    PubMed  CAS  Google Scholar 

  • Guo. W.J., Bundithya. W. and Goldsbrough. P.B. (2003). Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol. 159, 369–381.

    Article  CAS  Google Scholar 

  • Hall, J.L., Williams, L.E. (2003). Transition metal transporters in plants. J. Exp. Bot. 54, 2601–2613.

    Article  PubMed  CAS  Google Scholar 

  • Halloran, T.V. and Cullota, V.C. (2000). Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem. 275, 25057–25060.

    Google Scholar 

  • Hamer, D.H., Thiele, D.J. and Lemontt, J.E. (1985). Function and autoregulation of yeast copperthionein. Science, 228, 685–690.

    PubMed  CAS  Google Scholar 

  • Hartley-Whitaker, J., Ainsworth, G. and Mehrang, A.A. (2001a). Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Env. 24, 713–722.

    CAS  Google Scholar 

  • Hartley-Whitaker, J., Ainsworth, G., Voojis, R., Ten Bookum, W., Schat, H. and Mehrang, A. (2001b). Phytochleatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol. 126, 299–306.

    Article  CAS  Google Scholar 

  • Hasegawa, I., Terada, E., Sunairi, M., Wakita, H., Shinmachi, F., Noguchi, A., Nakajima, M. and Yakazi, J. (1997). Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil, 196, 277–281.

    Article  CAS  Google Scholar 

  • Heaton, A.C.P., Rugh, C.L., Wang, N-J. and Meagher, R.B. (19980. Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants. J. Soil Contam. 7, 497–509.

    CAS  Google Scholar 

  • Heiss, S., Wachter, A., Bogs, J., Cobbett, C. and Rausch, T. (2003). Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J. Exp. Bot. 54, 1833–1839.

    Article  PubMed  CAS  Google Scholar 

  • Himelblau, E. and Amasino, R.M. (2000). Delivering copper within plant cell. Plant Biol. 3, 205–210.

    CAS  Google Scholar 

  • Himelblau, E., Mira, H., Lin, S.J., Culotta, V.C., Penarrubia, L. and Amasino, R.M. (1998). Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol. 117, 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, T., Kieber, J.J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J.M., Dailey W.P., Dancis A. and Ecker J.R. (1999). Responsive to antagonist 1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell, 97, 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, K.D., Korenkov, V.D., Wilganowski, N.L. and Wagner, G.J. (2000). Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124, 125–134.

    Google Scholar 

  • Howden, R., Andersen, C.R., Goldsbrough, P.B. and Cobbett, C.S. (1995a). A cadmium sensitive, gluthatione-deficient mutant of Arabidopsis thaliana. Plant Physiol. 107, 1067–1073.

    CAS  Google Scholar 

  • Howden, R., Goldsbrough, P.B., Andersen, C.R. and Cobbett, C.S. (1995b). Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol. 107, 1059–1066.

    CAS  Google Scholar 

  • Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F., and Cobbett, C.S. (2004). P-Type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell, 16, 1327–1339.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, H., Higuchi, K., Takahashi, M., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2003). Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J. 36, 366–381.

    Article  PubMed  CAS  Google Scholar 

  • Kägi, J.H.R. (1993). Evolution, structure and chemical activity of class I metallothioneins: an overview, In Suzuki K.T., Imura N. and Kimura M., eds, Metallothioneins III. Biological Roles and Medical Implications. Birkhäuser Verlag, Basel, Switzerland, pp. 29–55.

    Google Scholar 

  • Kampfenkel, K., Kushnir, S., Babiychuk, E., Inzé, D. And Van Montagu, M. (1995). Molecular characterizayion of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J. Biol. Chem. 270, 28479–28486.

    PubMed  CAS  Google Scholar 

  • Kawashima, C.G., Noji, M., Nakamura, M., Ogra, Y., Suzuki, K.T. and Saito, K. (2004). Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotech. Lett. 26, 153–157.

    CAS  Google Scholar 

  • Kerkeb, L. and Krämer, U. (2003). The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol. 131, 716–724.

    Article  PubMed  CAS  Google Scholar 

  • Klapheck, S., Schlunz, S. and Bergmann, L. (1995). Synthesis of phytochelatins and homophytochelatins in Pisum sativum L. Plant Physiol. 107, 515–521.

    PubMed  CAS  Google Scholar 

  • Koh, S., Wiles, A.M., Sharp, J.S., Naider, F.R., Becker, J.M., Stacey, G. (2002). An oligopeptide transporter gene family in Arabidopsis. Plant Physiol. 128, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Krämer, U. and Chardonnens, A.N. (2001). The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55, 661–672.

    PubMed  Google Scholar 

  • Krämmer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J.M. and Smith, J.A.C. (1996). Free histidine as a metal chelator in plant that accumulate nickel. Nature, 379, 635–638.

    Google Scholar 

  • Kubota, H., Sato, K., Yamada, T. and Maitani, T. 2000. Phytochelatins homologs induced in hairy roots of horseradish. Phytochem. 53, 239–245.

    Article  CAS  Google Scholar 

  • Küpper, H., Lombi, E., Zhao, F-J. and McGrath, S.P. (2000). Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halerii. Planta, 212, 75–84.

    PubMed  Google Scholar 

  • Küpper, H., Lombi, E., Zhao, F-J., Wieshammer, G. and McGrath, S.P. (2001). Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J. Exp. Bot. 52, 2291–2300.

    PubMed  Google Scholar 

  • Küpper, H., Mijovilovich, A., Meyer-Klaucke, W., Kroneck, P.M.H. (2004). Tissue- and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy. Plant Physiol. 134, 748–757.

    PubMed  Google Scholar 

  • Lane, B., Kajioka, R. and Kennedy, T. (1987). The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem. Cell Biol. 65, 1001–1005.

    CAS  Google Scholar 

  • Lasat, M.M., Pence, N.S., Garvin, D.F., Ebbs, S.D. and Kochian, L.V. (2000). Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 51, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Bae, H., Jeong, J., Lee, J.Y., Yang, Y.Y., Hwang, I., Martinoia, E. and Lee, Y. (2003). Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol. 133, 589–596.

    PubMed  CAS  Google Scholar 

  • Lee, J., Reeves, R.D., Brooks, R.R. and Jaffré, T. (1977). Isolation and identification of a citratocomplex of nickel from nickel-accumulating plants. Phytochem. 16, 1503–1505.

    CAS  Google Scholar 

  • Lee, S. and Korban, S.S. (2002). Transcriptional regulation of, Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development., Planta 215, 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., Moon, J.S., Domier, L.L. and Korban, S.S. (2002). Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiol. Biochem. 40, 727–733.

    Article  CAS  Google Scholar 

  • Lee, S., Moon, J.S., Ko, T.S., Petros, D., Goldsbrough, P.B. and Korban, S. (2003a). Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol. 131, 656–663.

    CAS  Google Scholar 

  • Lee, S., Petros, D., Moon, J.S., Ko, T.S., Goldsbrough, P.B. and Korban, S. (2003b). Higher levels of ectopic expression of Arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol. Biochem. 41, 903–910.

    Article  CAS  Google Scholar 

  • Leopold, I., Günther, D., Schmidt, J. and Neumann, D. (1999). Phytochelatins and heavy metal tolerance. Phytochem. 50, 1323–1328.

    Article  CAS  Google Scholar 

  • Li, X.F., Ma, J.F. and Matsumoto, H. (2000). Pattern of Al-induced secretion of organic acids differ between rye and wheat. Plant Physiol. 123, 1537–1544.

    PubMed  CAS  Google Scholar 

  • Liao, M.T., Hedley, M.J., Woolley, D.J., Brooks, R.R. and Nichols, M.A. (2000). Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. Cv Rondy) plants grown in NFT system: II. The role of nicotianamine and histidine in xylem sap copper transport. Plant, Soil 223, 243–252.

    Article  CAS  Google Scholar 

  • Lombi, E.L., Tearall, K.L., Howarth, J.R., Zhao, F.J., Hawkesford, M.J. and McGrath, S.P. (2002). Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Phys. 128, 1359–1367.

    Article  CAS  Google Scholar 

  • Ma, J.F., Ryan, P.R. and Delhaize, E. (2001). Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6, 273–278.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.F., Taketa, S. and Yang, Z.M. (2000). Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol. 122, 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Ma, J.F., Zheng, S.J., Hiradate, S. and Matsumoto, H. (1997a). Detoxifying aluminum with buckwheat. Nature, 390, 569–570.

    Article  Google Scholar 

  • Ma, J.F., Zheng, S.J. and Matsumoto, H. (1997b). Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol. 38, 1019–1025.

    CAS  Google Scholar 

  • Ma, M., Lau, P.S., Jia, Y.T., Tsang, W.K., Lam, S.K.S., Tam, N.F.Y. and Wong, Y.S. (2003). The isolation and characterization of type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Sci. 164, 51–60.

    CAS  Google Scholar 

  • Ma, Z. and Miyasaka, S.C. (1998). Oxalate exudation by taro in response to Al. Plant Physiol. 118, 861–865.

    Article  PubMed  Google Scholar 

  • Macnair, M.R. (1993). The genetics of metal tolerance in vascular plants. New Phytol. 124, 541–559.

    CAS  Google Scholar 

  • Macnair, M.R. (2002). Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol. 15, 59–66.

    Google Scholar 

  • Martinoia, E., Massonneau, A. and Frangne, N. (2000). Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Rep. 41, 1175–1186.

    CAS  Google Scholar 

  • Mäser, P., Thomine, S., Schroeder, J.I, Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J.M., Sanders, D., Harper, J.F., Tchieu, J., Gribskov, M., Persans, M.W., Salt, D.E., Kim, S.A. and Guerinot, M.L. (2001). Phylogenetic relationship within cation transporter families of Arabidopsis. Plant Physiol. 126, 1646–1667.

    PubMed  Google Scholar 

  • Masters, B. A.; Kelly, E. J.; Quaife, C. J.; Brinster, R. L.; Palmiter, R. D. (1994). Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc. Nat. Acad. Sci. USA, 91, 584–588, 1994.

    PubMed  CAS  Google Scholar 

  • May, M.J. and Leaver, C.J. (1995). Arabidopsis thaliana γ-glutamil-cysteine synthetase is structurally unrelated to mammalian, yeast, and Escherichia coli homologues. Proc. Natl. Acad. Sci. USA, 91, 10059–10063.

    Google Scholar 

  • Meuwly, P., Thibault, P. and Rauser, W.E. (1993). γ-Glutamylcysteinylglutamic acid - a new homologue of glutathione in maize seedlings exposed to cadmium. FEBS Lett. 336, 472–476.

    Article  PubMed  CAS  Google Scholar 

  • Meuwly, P., Thibault, P., Schwan, A.L. and Rauser, W.E. (1995). Three families of thiol peptides by are induced cadmium in maize. Plant J. 7, 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Mira, H., Martinez-Garzia, F. and Penarrubia, L. (2001). Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J. 25, 521–528.

    Article  PubMed  CAS  Google Scholar 

  • Misra, S. and Gedamu, L. (1989). Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor. Appl. Genet. 78, 161–168.

    Article  CAS  Google Scholar 

  • Mizuno, D., Higuchi, K., Sakamoto, T., Nakanishi, H., Mori, S. and Nishizawa, N.K. (2003). Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status. Plant Physiol. 132, 1989–1997.

    Article  PubMed  CAS  Google Scholar 

  • Moreau, S., Thomson, R.M., Kaiser, B.N., Trevaskik, B., Guerinot, M.L., Udvardi, M.K., Puppo, A. and Day, D.A. (2002). GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J. Biol. Chem. 277, 4738–4746.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, A., Zhou, J., Goldsbrough, P.B. and Taiz, L. (1997). Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiol. 113, 12931301.

    Article  PubMed  CAS  Google Scholar 

  • Nies, D.H. (1992). Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid, 27, 17–28.

    Article  PubMed  CAS  Google Scholar 

  • Noji, M., Saito, M., Nakamura, M., Aono, M., Saji, H. and Saito, K. (2001). Cysteine synthase overexpression in tobacco confers tolerance to sulfur-containing environmental pollutants. Plant Physiol. 126, 973–980.

    Article  PubMed  CAS  Google Scholar 

  • Oven, M., Grill, E., Golan-Goldhirsh, A., Kutchan, T.M. and Zenk, M.H. (2002a). Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry, 60, 467–474.

    Article  CAS  Google Scholar 

  • Oven, M., Page, J.E., Zenk, M.H. and Kutchan, T.M. (2002b). Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max. J. Biol. Chem. 277, 4747–4754.

    Article  CAS  Google Scholar 

  • Oven, M., Raith, K., Neubert, R.H.H., Kutchan, T.M. and Zenk, M.H. (2001). Homo-phytochleatins are synthesized in response to cadmium in Azuki beans. Plant Physiol. 126, 1275–1280.

    Article  PubMed  CAS  Google Scholar 

  • Palmgren, M.G. and Axelsen, K.B. (1998). Evolution of P-type ATPases. Biochim. Biophys. Acta, 1365, 37–45.

    PubMed  CAS  Google Scholar 

  • Pan, A., Tie, F., Zhenwen, D., Yang, M., Wang, Z., Li, L., Chen, Z. and Ru, B. (1994a). Alpha-domain of human metallothionein I-A can bind to metals in transgenic tobacco plants. Mol. Gen. Genet. 242, 666–674.

    Article  CAS  Google Scholar 

  • Pan, A., Yang, M., Tie, F., Li, L., Chen, Z. and Ru, B. (1994b). Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants. Plant Mol. Biol. 24, 341–352.

    Article  CAS  Google Scholar 

  • Peer, W.A., Mamoudian, M., Lahner, B., Reeves, R.D., Murphy, A.S. and Salt, D.E. (2003). Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytol. 159, 421–430.

    Article  CAS  Google Scholar 

  • Pedersen, P. and Carafoli, E. (1987). Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 4, 146–150.

    Google Scholar 

  • Pellet, D.M., Grunes, D.L. and Kochian, L.V. (1995). Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta, 196, 788–795.

    CAS  Google Scholar 

  • Peña, M.M.O., Lee, J. and Thiele, D. (1999). A delicate balance: homeostatic control of copper uptake and distribution. Amer. Soc. Nutr. Sci. 1251–1260.

    Google Scholar 

  • Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., Eide, D. and Kochian, L.V. (2000). The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Natl. Acad. Sci. USA, 97, 4956–4960.

    Article  PubMed  CAS  Google Scholar 

  • Persans, M.W., Nieman, K. and Salt, D.E. (2001). Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl. Acad. Sci. USA, 98, 9995–10000.

    Article  PubMed  CAS  Google Scholar 

  • Pich, A., Scholz, G. and Stephan, U.W. (1994). Iron-dependent changes of heavy metals, nicotianamine, and citrate in different plant organs and in the xylem exudate of two tomato genotypes. Nicotianamine as possible copper translocator. Plant Soil, 165, 189–196.

    Article  CAS  Google Scholar 

  • Pich, A., Manteuffel, R., Hillmer, S., Scholz, G., and Schmidt, W. (2001). Fe homeostasis in plant cells: Does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration Planta, 213, 967–976.

    Article  PubMed  CAS  Google Scholar 

  • Piechalak, A., Tomaszewska, B., Baralkiewicz, D. and Malecka, A. (2002). Accumulation and detoxification of lead ions in legumes. Phytochemistry, 60, 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Pilon, M., Owen, J.D., Garifullina, G.F., Kurihara, T., Mihara, H., Esaki, N. and Pilon-Smits, E.A.H. (2003). Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol. 131, 1250–1257.

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits, E.A.H. and Pilon, M. (2000). Breeding mercury-breathing plants for environmental clean-up. Trends Plant Sci. 5, 235–236.

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits, E.A.H., Hwang, S., Lytle, C.M., Zhu, Y., Tai, J.C., Bravo, R.C., Chen, Y., Leustek, T. and Terry, N. (1999). Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol. 119, 123–132.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, E., Sigaud-Kunter, T.C.S., Leitao, M.A.S., Okamoto, O.K., Morse, D. and Colepicolo, P. (2003). Heavy metal-induced oxidative stress in algae. J. Physiol. 39, 1008–1018.

    CAS  Google Scholar 

  • Quaghebeur, M. and Rengel, Z. (2004). Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiol. Plant. 120, 280–286.

    Article  PubMed  CAS  Google Scholar 

  • Rai, V.K. (2002). Role of amino acids in plant responses to stresses. Biol. Plant. 45, 481–487.

    Article  CAS  Google Scholar 

  • Ramesh ,S.A., Shin, R., Eide, D.J. and Schachtman, D.P. (2003). Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 133, 126–134.

    Article  PubMed  CAS  Google Scholar 

  • Rauser, W.E. (1990). Phytochelatins. Annu. Rev. Biochem. 59, 61–86.

    Article  PubMed  CAS  Google Scholar 

  • Rauser, W.E. (1999). Structure and function of metal chelators produced by plants. Cell Biochem. Biophys. 31, 19–48.

    PubMed  CAS  Google Scholar 

  • Rea, P.A. (1999). MRO subfamily of ABC transporters from plants and yeast. J. Exp. Bot. 50, 895–913.

    Article  CAS  Google Scholar 

  • Rea, P.A., Li, Z.S., Lu, Y.P. and Drozdowicz, Y.M. (1998). From vacuolar GS-X pumps to multispecific ABC transporters. Ann. Rev. Plant Phys. Plant Mol. Biol. 49, 727–760.

    CAS  Google Scholar 

  • Richards, K.D., Schott, E.J., Sharma, Y.K., Davis, K.R. and Gardner, R.C. (1998). Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 116, 409–418.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, N.J., Procter, C.M., Connolly, E.L. and Guerinot, M.L. (1999). A ferric-chelate reductase fro iron uptake from soils. Nature, 397, 694–697.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, N.J., Sadjuga, and Groom, Q.J. (1997). The froh gene family from Arabidopsis thaliana: putative iron-chelate reductases. Plant and Soil, 196, 245–248.

    Article  CAS  Google Scholar 

  • Robinson, N.J., Tommey, A.M., Kuske, C. and Jackson, P.J. (1993). Plant metallothioneins. Biochem. J. 295, 1–10.

    PubMed  CAS  Google Scholar 

  • Rogers, E.E., Eide, D.J. and Guerinot, M.L. (2000). Altered selectivity in an Arabidopsis metal transporter. Proc. Natl. Acad. Sci. USA, 97, 12356–12360.

    PubMed  CAS  Google Scholar 

  • Römheld, V. and Awad, F. (2000). Significance of root exudates in acquisition of heavy metals from a contaminated calcareous soil by graminaceous species. J. Plant Nutr. 23, 1875–1866.

    Google Scholar 

  • Rugh, C.L., Senecoff, J., Meagher, R.B. and Merkle, S.A. (1998). Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotech. 16, 925–928.

    Article  CAS  Google Scholar 

  • Ruiz, O.N., Hussein, H.S., Terry, N. and Daniell, H. (2003). Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol. 132, 1344–1352.

    Article  PubMed  CAS  Google Scholar 

  • Rutolo, R., Peracchi, A., Bolchi, A., Infusini, G., Amoresano, A. and Ottonello, S. (2004). Domain organization of phytochelatin synthase: functional properties of truncated enzyme species identified by limited proteolysis. J. Biol. Chem. (in press on-line)

    Google Scholar 

  • Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D.J. and Peñarrubia, L. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J. Biol. Chem. 279, 15348–15355.

    PubMed  Google Scholar 

  • Sancenón, V., Puig, S., Mira, H., Thiele, D.J. and Peñarrubia, L. (2003). Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol. Biol. 51, 557–587.

    Google Scholar 

  • Sanchez-Fernandez, R., Davies, T.G.E., Coleman, J.O.D. and Rea, P.A. (2001). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 276, 30231–30244.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E. and Matsumoto, H. (2004). A wheat gene encoding an aluminum-activated malate transporter. Plant J. 37, 645653.

    Article  CAS  Google Scholar 

  • Sauge-Merle, S., Cuiné, S., Carrier, P., Lecomte-Pradines, C., Luu, D.T. and Peltier, G. (2003). Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. App. Environ. Microb. 69, 490–494.

    CAS  Google Scholar 

  • Schaaf, G., Ludewig, U., Erenoglu, B.E., Mori, S., Kitahara, T. and von Wiren, N. (2004). ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J. Biol. Chem. 279, 9091–9096.

    Article  PubMed  CAS  Google Scholar 

  • Schat, H., Liugany, M., Voojis, R., Hartley-Whitaker, J. and Bleeker, P.M. (2002). The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes J. Exp. Bot. 53, 2381–2392.

    Article  PubMed  CAS  Google Scholar 

  • Schûtzendûbel, A. and Polle, A. (2002). Plant responsive to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 372, 1351–1365.

    Google Scholar 

  • Senden, M.H.M.N. and Wolterbeek, H.T. (1992). Effect of citric acid on the transport of cadmium through xylem vessels of excised tomato stem-leaf systems. Acta Bot. Neerl. 39, 297–303.

    Google Scholar 

  • Shikanai, T., Müller-Moulé, P., Munekage, Y., Niyogi, K.K. and Pilon, M. (2003). PAA1, a P-Type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell, 15, 1333–1346.

    Article  PubMed  CAS  Google Scholar 

  • Siripornadulsil, S., Traina, S., Verna, D.P.S. and Sayre, R.T. (2002). Molecular mechanisms of pra-line-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell, 14, 2837–2847.

    Article  PubMed  CAS  Google Scholar 

  • Strohm, M., Jouanin, L., Kunert, K.J., Pruvost, C., Polle, A., Foyer, C.H. and Rennenberg, H. (1995). Regulation of gluthatione synthesis in leaves of transgenic poplar (Populus tremula X P. alba) overexpressing gluthatione synthetase. Plant J. 7, 141–145.

    Article  CAS  Google Scholar 

  • Takahashi, M., Terada, Y., Nakai, I., Nakanishi, H., Yoshimura, E., Mori, S. and Nishizawa, N.K. (2003). Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell, 15, 1263–1280.

    Article  PubMed  CAS  Google Scholar 

  • Talanova, V.V., Titov, A.F. and Boeva, N.P. (2000). Effect of increasing concentration of lead and cadmium on cucumber seedlings. Biol. Plant. 43, 441–444.

    Article  CAS  Google Scholar 

  • Theodoulou, F.L. (2000). Plant ABC transporters. Biochim. Biophys. Acta, 1465, 79–103.

    PubMed  CAS  Google Scholar 

  • Thomine, S., Wang, R., Ward, J.M., Crawford, N.M. and Schroeder, J.I. (2000). Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Nat. Acad. Sci. USA, 97, 49991–4996.

    Article  Google Scholar 

  • Tolay, I., Erenoglu, B., Römheld, V., Braun, H.J. and Cakmak, I. (2001). Phytosiderophore release in Aegilops tauschii and Triticum species under zinc and iron deficiencies. J. Exp. Bot. 52, 1093–1099.

    Article  PubMed  CAS  Google Scholar 

  • Treeby, M., Marschner, H. and Römheld, V. (1989). Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant Soil, 114, 217–226.

    Article  CAS  Google Scholar 

  • Trindade, L.M., Horvath, B.M., Bergervoet, M.J.E. and Visser, R.G.F. (2003). Isolation of a gene encoding a copper chaperone for the copper/zinc superoxide dismutase and characterization of its promoter in potato. Plant Physiol. 133, 618–629.

    Article  PubMed  CAS  Google Scholar 

  • Van der Zaal, B.J., Neuteboom, L.W., Pinas, J.E., Chardonnens, A.N., Schat, H., Verkleij, J.A. and Hooykaas, P.J. (1999). Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 119, 1047–1056.

    PubMed  Google Scholar 

  • van Hoof, N.A.L.M., Hassinen, V.H., Hakvoort, H.W.J., Ballintijn, K.F., Schat, H., Verkleij, J.A.C., Ernst, W.H.O., Karenlampi, S.O. and Tervahauta, A.I. (2001). Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothioneine gene. Plant Physiol. 126, 1519–1526.

    Article  PubMed  CAS  Google Scholar 

  • van Huysen, T., Abdel-Ghany, S., Hale, K.L., LeDuc, D., Terry, N. and Pilon-Smits, E.A. (2003). Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brasica juncea. Planta, 218, 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk, O.K., Mari, S., Lu, Y.P. and Rea, P.A. (1999). AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc. Natl. Acad. Sci. USA, 96, 7110–7115.

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk, O.K., Mari, S., Lu, Y.P. and Rea, P.A. (2000). Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J. Biol. Chem. 275, 31451–31459.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, J.A.C. and Schat, H. (1990). Mechanisms of metal tolerance in higher plants. In: Shaw J, ed. Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL, USA: CRC Press LLC, pp. 179–193.

    Google Scholar 

  • Vernoux, T., Wilson, R.C., Seely, K.A., Reichheld, J.P., Muroy, S., Brown, S., Maughan, S.C., Cobbett, C.S., Van Montagu, M., Inze, D., May, M.J. and Sung, Z.R. (2000). The ROOT MERISTEMLESS1/ CADMIUM SENSITIVE2 gene defines a gluthatione: dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell, 12, 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Wangeline, A.L., Burkhead, J.L., Hale, K.L., Lindblom, S.D., Terry, N., Pilon, M. and Pilon-Smits, E.A.H. (2004). Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J. Environ. Qual. 33, 54–60.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C-L. and Oliver, D.J.(1996). Cloning of the cDNA and genomic clones for glutathione synthetase from Arabidopsis thaliana and complementation of a gsh2 mutant in fission yeast. Plant Mol. Biol. 31, 1093–1104.

    PubMed  CAS  Google Scholar 

  • Wang, J.R., Zhao, F.J., Meharg, A.A., Raab, A., Feldmann, J. and McGrath, S.P. (2002). Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol. 130, 1552–1561.

    PubMed  CAS  Google Scholar 

  • Waters, B.M., Blevis, D.G. and Eide, D.J. (2002). Characterization of FRO1, a pea reffic-chelate reductase involved in root iron acquisition. Plant Physiol. 129, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., Harada, E., Vess, C., v. Roepenack-Lahaye, E. and Clemens, S. (2004). Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J. 37, 269–281.

    Article  PubMed  CAS  Google Scholar 

  • White, M.C., Baker, F.D., Chaney, R.L. and Decker, A.M. (1981). Metal complexation in xylem fluid: I. Chemical composition of tomato and soybean stem exudates. Plant Physiol. 67, 292–300.

    CAS  PubMed  Google Scholar 

  • Williams, L.E., Pittman, J.K. and Hall, J.L. (2000). Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta, 1465, 104–126.

    PubMed  CAS  Google Scholar 

  • Wintz, H., Fox, T., Wu, Y.Y., Feng, V., Chen, W., Chang, H.S., Zhu, T. and Vulpe, C. (2003). Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J. Biol. Chem. 278, 47644–47653.

    Article  PubMed  CAS  Google Scholar 

  • Wintz, H. and Vulpe, C. (2002). Plant copper chaperones. Biochem. Soc. Trans. 30, 732–735.

    PubMed  CAS  Google Scholar 

  • Woeste, K.E. and Kieber, J.J. (2000). A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as rosette-lethal phenotype. Plant Cell, 12, 443–455.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z., Liang, F., Hong, B., Young, J.C., Sussman, M.R., Harper, J.F and Sze, H. (2002). An endoplasmatic reticulum-bound Ca2+/Mn2+ pump, ECA1, supports plant growth and confers tolerance to Mn2+ stress. Plant Physiol. 130, 128–137.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, H., Nishizawa, N.K., Nakanishi, H. and Mori, S. (2002). IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast. J. Exp. Bot. 53, 727–735.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C-H. and Crowley, D.E. (2000). Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. App. Environ. Microb. 66, 345–351.

    CAS  Google Scholar 

  • Yang, Z.M., Sivaguru, M., Horst, W.J. and Matsumoto, H. (2001). Aluminum tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol. Plant. 110, 72–74.

    Google Scholar 

  • Youssefian, S., Nakamura, M., Orudgev, E. and Kondo, N. (2001). Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine(thiol) lyase modifies plant responses to oxidative stress. Plant Physiol. 126, 1001–1011.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W., Santhanagopalan, V., Sewell, A.K. Jensen, L.T. and Winge, D.R. (1994). Dominance of metallothioenin in metal buffering in yeast capable of synthesis of (gamma EC)nG ispeptides. J. Biol. Chem. 269, 21010–21015.

    PubMed  CAS  Google Scholar 

  • Zheng, S.J., Ma, J.F. and Matsumoto, H. (1998). Continuous secretion of organic acids is related to aluminum resistance during relatively long-term exposure to aluminum stress. Physiol. Plant. 103, 209–214.

    Article  CAS  Google Scholar 

  • Zhu, H., Shipp, E., Sanchez, R.J., Liba, A., Stine, J.E., Hart, P.J., Gralla, E.B., Nersissian, A.M. and Valentine, J.S. (2000). Cobalt (2+) binding to human and tomato copper chaperone for superoxide dismutase: implications for the metal ion transfer mechanism. Biochemistry, 39, 5413–5421.

    PubMed  CAS  Google Scholar 

  • Zhu, Y.L., Pilon-Smits, E.A.H., Jouanin, L. and Terry, N. (1999a). Overexpression of gluthatione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119, 73–79.

    CAS  Google Scholar 

  • Zhu, Y.L., Pilon-Smits, E.A.H., Tarun, A.S., Weber, S.U., Jouanin, L. and Terry, N. (1999b). Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamilcysteine synthetase. Plant Physiol. 121, 1169–1177.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

GASIC, K., KORBAN, S.S. (2006). HEAVY METAL STRESS. In: Madhava Rao, K., Raghavendra, A., Janardhan Reddy, K. (eds) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4225-6_8

Download citation

Publish with us

Policies and ethics