Skip to main content

Intraguild Predation Usually does not Disrupt Biological Control

  • Chapter

Part of the book series: Progress in Biological Control ((PIBC,volume 3))

Abstract

Intraguild predation is claimed to be ubiquitous in nature. It also occurs among natural enemies in biological control systems, where one natural enemy (the intraguild predator) attacks another species of natural enemy (the intraguild prey), whereas they also compete for the same pest. We review the theory of intraguild predation and its consequences for biological control for two different scenarios. 1. The intraguild predator is the superior natural enemy ($i.e.$ reduces the pest population the most). In this case, the intraguild predator will exclude the intraguild prey, thus there will be no intraguild predation in the long term. 2. The intraguild prey is the superior natural enemy. In this case, the intraguild predator and intraguild prey may coexist or the intraguild predator can exclude the intraguild prey. Theory predicts for this scenario that pest numbers will always be lowest when only the intraguild prey is present. Hence, the occurrence of intraguild predation in cropping systems would never result in increased control, but can result in decreased control. We subsequently review experimental tests of the effect of intraguild predation among natural enemies on the population dynamics of pests. Contrary to expectations, we find that intraguild predation often did not result in an increase of pest populations, even when the intraguild predator was the inferior natural enemy. Often, the presence of the intraguild predator had no effect or even resulted in a decrease of pest populations. Although the number of studies was limited, we scanned the literature to identify possible causes for the discrepancy of experimental results with theoretical predictions. We specifically evaluated trends in the effects with respect to the length of the study period, the spatial scale at which experiments were carried out, the number of species involved in the studies and the spatial complexity of the experimental arenas. There was a slight trend towards experiments of longer duration showing less positive effects on pest densities, but no clear effect of spatial scale. All studies that showed positive effects on pest densities were studies with 3 species, but the number of studies with more than 3 species was small. Spatial complexity had mixed effects on experimental results. In conclusion, it is clear that intraguild predation most often does not increase pest densities as was predicted from theory, but more research is needed to reveal why theory does not meet practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, R. A. and McGehee, R., 1980. Competitive exclusion. Am. Nat. 115: 151-170.

    Article  Google Scholar 

  • Borer, E. T., Briggs, C. J., Murdoch, W. W. and Swarbrick, S. L., 2003. Testing intraguild predation theory in a field system: does numerical dominance shift along a gradient of productivity? Ecol. Lett. 6: 929-935.

    Article  Google Scholar 

  • Briggs, C. J. and Borer, E. T., 2005. Why short-term experiments may not allow long-term predictions about intraguild predation. Ecol. Appl. 15: 1111-1117.

    Google Scholar 

  • Chang, G. C., 1996. Comparison of single versus multiple species of generalist predators for biological control. Environ. Entomol. 25: 207-212.

    Google Scholar 

  • Colfer, R. G. and Rosenheim, J. A., 2001. Predation on immature parasitoids and its impact on aphid suppression. Oecologia 126: 292-304.

    Article  Google Scholar 

  • Colfer, R. G., Rosenheim, J. A., Godfrey, L. D. and Hsu, C. L., 2003. Interactions between the augmentatively released predaceous mite Galendromus occidentalis (Acari: Phytoseiidae) and naturally occurring generalist predators. Environ. Entomol. 32: 840-852.

    Article  Google Scholar 

  • Croft, B. A. and McRae, I. V., 1992a. Biological control of apple mites by mixed populations of Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Environ. Entomol. 21: 202-209.

    Google Scholar 

  • Croft, B. A. and McRae, I. V., 1992b. Persistence of Typhlodromus pyri and Metaseiulus occidentalis(Acari: Phytoseiidae) on apple after inoculative release and competition with Zetzellia mali (Acari: Stigmatidae). Environ. Entomol. 21: 1168-1177.

    Google Scholar 

  • Denno, R. F., Mitter, M. S., Langellotto, G. A., Gratton, C. and Finke, D. L., 2004. Interactions between a hunting spider and a web-builder: consequences of intraguild predation and cannibalism for prey suppression. Ecol. Entomol. 29: 566-577.

    Article  Google Scholar 

  • Diehl, S. and Feissel, M., 2000. Effects of enrichment on three-level food chains with omnivory. Am. Nat. 155: 200-218.

    Article  PubMed  Google Scholar 

  • Diehl, S. and Feissel, M., 2001. Intraguild prey suffer from enrichment of their resources: A microcosm experiment with ciliates. Ecology 82: 2997-2983.

    Article  Google Scholar 

  • Dinter, A., 2002. Microcosm studies on intraguild predation between female erigonid spiders and lacewing larvae and influence of single versus multiple predators on cereal aphids. J. Appl. Entomol. 126: 249-257.

    Google Scholar 

  • Ellner, S. P., McCauley, E., Kendall, B. E., Briggs, C. J., Hosseini, P. R., Wood, S. N., Janssen, A., Sabelis, M. W., Turchin, P., Nisbet, R. M. and Murdoch, W. W., 2001. Habitat structure and population persistence in an experimental community. Nature 412: 538-543.

    Article  PubMed  CAS  Google Scholar 

  • Emmerson, M. and Yearsley, J. M., 2004. Weak interactions, omnivory and emergent food-web properties. Proc. Roy. Soc. B. 271: 397-405.

    Article  Google Scholar 

  • Erbilgin, N., Dahlsten, D. L. and Chen, P. Y., 2004. Intraguild interactions between generalist predators and an introduced parasitold of Glycaspis brimblecombei (Homoptera: Psylloidea). Biol. Contr. 31: 329-337.

    Article  Google Scholar 

  • Eubanks, M. D., 2001. Estimates of the direct and indirect effects of red imported fire ants on biological control in field crops. Biol. Contr. 21: 35-43.

    Article  Google Scholar 

  • Ferguson, K. I. and Stiling, P., 1996. Non additive effects of multiple natural enemies on aphid populations. Oecologia 108: 375-379.

    Google Scholar 

  • Heinz, K. M. and Nelson, J. M., 1996. Interspecific interactions among natural enemies of Bemisia tabaciin an inundative biological control program. Biol. Contr. 6: 384-393.

    Article  Google Scholar 

  • Heithaus, M. R., 2001. Habitat selection by predators and prey in communities with asymmetric intraguild predation. Oikos 92: 542-554.

    Article  Google Scholar 

  • HilleRisLambers, R. and de Roos, A. M., in prep. Community structure, species coexistence, and the balance between direct and indirect interactions.

    Google Scholar 

  • HilleRisLambers, R. and Dieckmann, U., 2003. Competition and predation in simple food webs: intermediately strong trade-offs maximize coexistence. Proc. Roy. Soc. B. 270: 2591-2598.

    Article  Google Scholar 

  • Holt, R. D. and Polis, G. A., 1997. A theoretical framework for intraguild predation. Am. Nat. 149: 745-764.

    Article  Google Scholar 

  • Holyoak, M. and Sachdev, S., 1998. Omnivory and the stability of simple food webs. Oecologia 117: 413-419.

    Article  Google Scholar 

  • Huisman, J. and Weissing, F. J., 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407-410.

    Article  Google Scholar 

  • Janssen, A., van Gool, E., Lingeman, R., Jacas, J. and van de Klashorst, G., 1997. Metapopulation dynamics of a persisting predator-prey system in the laboratory: time series analysis. Exp. Appl. Acarol. 21: 415-430.

    Article  Google Scholar 

  • Janssen, A., Faraji, F., van der Hammen, T., Magalhães, S. and Sabelis, M. W., 2002. Interspecific infanticide deters predators. Ecol. Lett. 5: 490-494.

    Article  Google Scholar 

  • Janssen, A., Willemse, E. and van der Hammen, T., 2003. Poor host plant quality causes omnivore to consume predator eggs. J. Anim. Ecol. 72: 478-483.

    Article  Google Scholar 

  • Kakehashi, N., Suzuki, Y. and Iwasa, Y., 1984. Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control. J. Appl. Ecol. 21: 115-131.

    Article  Google Scholar 

  • Krivan, V., 2000. Optimal intraguild foraging and population stability. Theor. Popul. Biol. 58: 79-94.

    Article  PubMed  CAS  Google Scholar 

  • Krivan, V. and Diehl, S., 2005. Adaptive omnivory and species coexistence in tri-trophic food webs. Theor. Popul. Biol. 67: 85-99.

    Article  PubMed  Google Scholar 

  • Kuijper, L. D. J., Kooi, B. W., Zonneveld, C. and Kooijman, S., 2003. Omnivory and food web dynamics. Ecol. Model. 163: 19-32.

    Article  Google Scholar 

  • Law, R. and Blackford, J. C., 1992. Self-assembling food webs: a global viewpoint of coesistence of species in Lotka-Volterra communities. Ecology 73: 567-578.

    Article  Google Scholar 

  • Lawler, S. P. and Morin, P. J., 1993. Food web architecture and population dynamics in laboratory microcosms of protists. Am. Nat. 141: 675-686.

    Article  PubMed  CAS  Google Scholar 

  • Lima, S. L., 1998. Nonlethal effects in the ecology of predator-prey interactions - What are the ecological effects of anti-predator decision- making? Bioscience 48: 25-34.

    Article  Google Scholar 

  • Lima, S. L. and Dill, L. M., 1990. Behavioral decisions made under the risk of predation - a review and prospectus. Can. J. Zool. 68: 619-640.

    Article  Google Scholar 

  • Lima, S. L. and Bednekoff, P. A., 1999. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153: 649-659.

    Article  Google Scholar 

  • Lucas, E. and Alomar, O., 2002. Impact of the presence of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on whitefly (Homoptera: Aleyrodidae) predation by Macrolophus caliginosus (Wagner) (Heteroptera: Miridae). Biol. Control 25: 123-128.

    Article  Google Scholar 

  • Magalhães, S., Janssen, A., Hanna, R. and Sabelis, M. W., 2002. Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia 132: 143-149.

    Article  Google Scholar 

  • Magalhães, S., Tudorache, C., Montserrat, M., van Maanen, R., Sabelis, M. W. and Janssen, A., 2004. Diet of intraguild predators affects antipredator behavior in intraguild prey. Behav. Ecol. 16: 364-370.

    Article  Google Scholar 

  • Mallampalli, N., Castellanos, I. and Barbosa, P., 2002. Evidence for intraguild predation by Podisus maculiventris on a ladybeetle, Coleomegilla maculata: Implications for biological control of Colorado potato beetle, Leptinotarsa decemlineata. Biocontr. 47: 387-398.

    Article  Google Scholar 

  • May, R. M. and Hassell, M. P., 1981. The dynamics of multiparasitoid-host interactions. Am. Nat. 117: 234-261.

    Article  Google Scholar 

  • May, R. M., 1973. Stability and complexity in model ecosystems. Princeton, New Jersey, USA: Princeton University Press.

    Google Scholar 

  • McCann, K., Hastings, A. and Huxel, G. R., 1998. Weak trophic interactions and the balance of nature. Nature 395: 794-798.

    Article  CAS  Google Scholar 

  • Morin, P. J., 1999. Productivity, intraguild predation, and population dynamics in experimental food webs. Ecology 80: 752-760.

    Article  Google Scholar 

  • Mylius, S. D., Klumpers, K., de Roos, A. M. and Persson, L., 2001. Impact of omnivory and stage structure on food web composition along a productivity gradient. Am. Nat. 158: 259-276.

    Article  PubMed  CAS  Google Scholar 

  • Nomikou, M., Janssen, A. and Sabelis, M. W., 2003. Herbivore host plant selection: whitefly learns to avoid host plants that harbour predators of her offspring. Oecologia 136: 484-488.

    Article  PubMed  Google Scholar 

  • Pallini, A., Janssen, A. and Sabelis, M. W., 1998. Predators induce interspecific herbivore competition for food in refuge space. Ecol. Lett. 1: 171-177.

    Article  Google Scholar 

  • Pallini, A., Janssen, A. and Sabelis, M. W., 1999. Spider mites avoid plants with predators. Exp. Appl. Acarol. 23: 803-815.

    Article  Google Scholar 

  • Parrella, M. P., McCaffrey, J. P. and Horsburgh, R. L., 1980. Compatibility of Leptothrips mali with Stethorus punctum and Orius insidiosus: predators of Panonychus ulmi. Environ. Entomol. 9: 694-696.

    Google Scholar 

  • Pimm, S. L. and Lawton, J. H., 1978. On feeding on more than one trophic level. Nature 333.

    Google Scholar 

  • Polis, G. A. and Holt, R. D., 1992. Intraguild predation - the dynamics of complex trophic interactions. Trends Ecol. Evol. 7: 151-154.

    Article  Google Scholar 

  • Polis, G. A. and Winemiller, K. O., 1996. Food webs. Integration of patterns and dynamics. New York, USA: Chapman and Hall.

    Google Scholar 

  • Polis, G. A., Myers, C. A. and Holt, R. D., 1989. The ecology and evolution of intraguild predation - potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20: 297-330.

    Article  Google Scholar 

  • Price, J. E. and Morin, P. J., 2004. Colonization history determines alternate community states in a food web of intraguild predators. Ecology 85: 1017-1028.

    Google Scholar 

  • Rosenheim, J. A., 2001. Source-sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecol. Monogr. 71: 93-116.

    Article  Google Scholar 

  • Rosenheim, J. A., Wilhoit, L. R. and Armer, C. A., 1993. Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96: 439-449.

    Article  Google Scholar 

  • Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J. and Jaffee, B. A., 1995. Intraguild predation among biological control agents - Theory and evidence. Biol. Contr. 5: 303-335.

    Article  Google Scholar 

  • Rosenheim, J. A., Glik, T. E., Goeriz, R. E. and Rämert, B., 2004a. Linking a predator’s foraging behavior with its effects on herbivore population suppression. Ecology 85: 3362-3372.

    Google Scholar 

  • Rosenheim, J. A., Limburg, D. D., Colfer, R. G., Fournier, V., Hsu, C. L., Leonardo, T. E., et al., 2004b. Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size? Oecologia 140: 577-585.

    Article  Google Scholar 

  • Schausberger, P. and Walzer, A., 2001. Combined versus single species release of predaceous mites: Predator-predator interactions and pest suppression. Biol. Contr. 20: 269-278.

    Article  Google Scholar 

  • Schröder, A., Persson, L. and de Roos, A. M., 2005. Direct experimental evidence for alternative stable states: a review. Oikos 110: 3-19.

    Article  Google Scholar 

  • Sher, R. B., Parrella, M. P. and Kaya, H. K., 2000. Biological control of the leafminer Liriomyza trifolii(Burgess): Implications for intraguild predation between Diglyphus begini Ashmead and Steinernema carpocapsae (Weiser). Biol. Contr. 17: 155-163.

    Article  Google Scholar 

  • Sih, A., 1980. Optimal behavior: can foragers balance two conflicting needs? Science 210: 1041-1043.

    Article  PubMed  Google Scholar 

  • Snyder, W. E. and Ives, A. R., 2001. Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82: 705-716.

    Article  Google Scholar 

  • Snyder, W. E. and Ives, A. R., 2003. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 84: 91-107.

    Google Scholar 

  • Snyder, W. E. and Wise, D. H., 1999. Predator interference and the establishment of generalist predator populations for biocontrol. Biol. Contr. 15: 283-292.

    Article  Google Scholar 

  • Snyder, W. E., Ballard, S. N., Yang, S., Clevenger, G. M., Miller, T. D., Ahn, J. J., Hatten, T. D. and Berryman, A. A., 2004. Complementary biocontrol of aphids by the ladybird beetle Harmonia axyridis and the parasitoid Aphelinus asychis on greenhouse roses. Biol. Contr. 30: 229-235.

    Article  Google Scholar 

  • van Lenteren, J. C., Babendreier, D., Bigler, F., Burgio, G., Hokkanen, H. M. T., Kuske, S., Loomans, A. J. M., Menzler-Hokkanen, I., Van Rijn, P. C. J., Thomas, M. B., Tommasini, M. G. and Zeng, Q. Q., 2003. Environmental risk assessment of exotic natural enemies used in inundative biological control. Biocontr. 48: 3-38.

    Article  Google Scholar 

  • Venzon, M., Janssen, A., Pallini, A. and Sabelis, M. W., 2000. Diet of a polyphagous arthropod predator affects refuge seeking of its thrips prey. Anim. Behav. 60: 369-375.

    Article  PubMed  Google Scholar 

  • Venzon, M., Janssen, A. and Sabelis, M. W., 2001. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Exp. Appl. Acarol. 25: 785-808.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Janssen, A., Montserrat, M., HilleRisLambers, R., Roos, A.M.d., Pallini, A., Sabelis, M.W. (2006). Intraguild Predation Usually does not Disrupt Biological Control. In: Brodeur, J., Boivin, G. (eds) Trophic and Guild in Biological Interactions Control. Progress in Biological Control, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4767-3_2

Download citation

Publish with us

Policies and ethics