Skip to main content

Modeling Medical Treatment Using Markov Decision Processes

  • Chapter
Operations Research and Health Care

Summary

Medical treatment decisions are often sequential and uncertain. Markov decision processes (MDPs) are an appropriate technique for modeling and solving such stochastic and dynamic decisions. This chapter gives an overview of MDP models and solution techniques. We describe MDP modeling in the context of medical treatment and discuss when MDPs are an appropriate technique. We review selected successful applications of MDPs to treatment decisions in the literature. We conclude with a discussion of the challenges and opportunities for applying MDPs to medical treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morris, A.H. (2000). Developing and implementing computerized protocols for standardization of clinical decisions. Annals of Internal Medicine, 132, 373–83.

    PubMed  CAS  Google Scholar 

  2. Tversky, A. and D. Kahneman (1982). Availability: a heuristic for judging frequency and probability. In Judgment Under Uncertainty: Heuristics and Biases, D. Kahneman, P. Slovic and A. Tversky, (Eds.), Cambridge University Press, New York.

    Google Scholar 

  3. Pilote, L., R.M. Califf, S. Sapp, D.P. Miller, D.B. Mark, W.D. Weaver, J.M. Gore, P.W. Armstrong, E.M. Ohman and E.J. Topol for the GUSTO-1 Investigators (1995). Regional variation across the United States in the management of acute myocardial infarction. New England Journal of Medicine, 333, 565–572.

    Article  PubMed  CAS  Google Scholar 

  4. Nattinger, A.B., M.S. Gottlieb, J. Veum, D. Yahnke and J.S. Goodwin (1992). Geographic variation in the use of breast-conserving treatment for breast cancer. New England Journal of Medicine, 326, 1102–7.

    Article  PubMed  CAS  Google Scholar 

  5. Wennberg, J. and A. Gittelsohn (1973). Small area variations in health care delivery. Science, 182, 1102–1108.

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Van Roy, B. (2002). Neuro-dynamic programming: Overview and recent trends. In Handbook of Markov Decision Processes: Methods and Applications, E. Feinberg and A. Schwartz, (Eds.), Kluwer Academic Press, Boston, MA.

    Google Scholar 

  7. de Farias, D.P. and B. Van Roy (2003). The linear programming approach to approximate dynamic programming. Operations Research 51, 850–856.

    Article  MathSciNet  Google Scholar 

  8. Tierney, W.M., J.M. Overhage and C.J. McDonald (1995). Toward electronic medical records that improve care. Annals of Internal Medicine, 122, 725–726.

    PubMed  CAS  Google Scholar 

  9. Puterman, M.L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, New York.

    Google Scholar 

  10. Bertsekas, D.P. (2001). Dynamic Programming and Optimal Control. Athena Scientific Press, Belmont, MA.

    Google Scholar 

  11. Bellman, R.E. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

    Google Scholar 

  12. Arapostathis, A., V. Borkar, E. Fernandez-Gaucherand, M.K. Ghosh and S.I. Marcus (1993). Discrete-time controlled Markov processes with average cost criterion: a survey. SIAM Journal on Control and Optimization, 31, 282–344.

    Article  MathSciNet  Google Scholar 

  13. Shapley, L.S. (1953). Stochastic games. Proceedings of the National Academy of Sciences of the United States of America, 39, 1095–1100.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Howard, R.A. (1960). Dynamic Programming and Markov Processes. Technology Press of Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  15. Lovejoy, W.S. (1991). A survey of algorithmic methods for partially observed Markov decision problems. Annals of Operations Research, 28, 47–66.

    Article  MATH  MathSciNet  Google Scholar 

  16. White, C.C. and W.T. Scherer (1989). Solution procedures for partially observed Markov decision processes. Operations Research, 37, 791–797.

    Article  MathSciNet  Google Scholar 

  17. Streibel, C.T. (1965). Sufficient statistics in the optimal control of stochastic systems. Journal of Mathematical Analysis and Applications, 12, 576–592.

    Article  MathSciNet  Google Scholar 

  18. Jewell, W.S. (1963). Markov-renewal programming I: Formulation, finite return models; Markov-renewal programming II, infinite return models, example. Operations Research, 11, 938–971.

    Article  MATH  MathSciNet  Google Scholar 

  19. Serfozo, R. (1979). An equivalence between continuous and discrete time Markov decision processes. Operations Research, 27, 616–620.

    Article  MATH  MathSciNet  Google Scholar 

  20. Roberts, M.S. and F.A. Sonnenberg (2000). Decision modeling techniques. In Decision Making in Health Care, F. A. Sonnenberg and G. Chapman, (Eds.), Cambridge University Press, Cambridge, UK.

    Google Scholar 

  21. Magni, P., S. Quaglini, M. Marchetti and G. Barosi (2000). Deciding when to intervene: a Markov decision process approach. International Journal of Medical Informatics, 60, 237–253.

    Article  PubMed  CAS  Google Scholar 

  22. Torrance, G.W. (1976). Social preferences for health states: an empirical evaluate of three measurement techniques. Socio-Economic Planning Sciences, 10, 129–136.

    Article  Google Scholar 

  23. Torrance, G.W., D.H. Feeny, W.J. Furlong, R.D. Barr, Y. Zhang and Q. Wang (1996). Multiattribute utility function for a comprehensive health status classification system. Health Utilities Index Mark 2. Medical Care, 34, 702–722.

    Article  PubMed  CAS  Google Scholar 

  24. Drummond, M.F., B. O’Brien, G.W. Stoddart and G.W. Torrance (1997). Methods for the Economic Evaluation of Health Care Programmes. Oxford University Press, Oxford.

    Google Scholar 

  25. Ahn, J.H. and J.C. Hornberger (1996). Involving patients in the cadaveric kidney transplant allocation process: A decision-theoretic perspective. Management Science, 42, 629–641.

    Article  Google Scholar 

  26. Samuelson, P. (1937). A note on measurement of utility. Review of Economic Studies, 4, 155–161.

    Article  Google Scholar 

  27. Frederick, S., G. Loewenstein and T. O’Donoghue (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, XL, 351–401.

    Article  Google Scholar 

  28. Christensen-Szalanski, J.J. (1984). Discount functions and the measurement of patients’ values. Women’s decisions during childbirth. Medical Decision Making, 4, 47–58.

    Article  PubMed  CAS  Google Scholar 

  29. Kirby, K.N. and N.N. Markovic (1995). Modeling myopic decisions: Evidence for hyperbolic delay-discounting within subjects and amounts. Organizational Behavior and Human Decision Processes, 64, 22–30.

    Article  Google Scholar 

  30. Gold, M.R., J. Siegel, L. Russell and M. Weinstein, Eds. (1996). Cost-Effectiveness in Health and Medicine. Oxford University Press, New York.

    Google Scholar 

  31. Chapman, G.B. (2003). Time discounting of health outcomes. In Time and Decision: Economic and Psychological Perspectives on Intertemporal Choice, G. Loewenstein, D. Read and R. F. Baumeister, (Eds.), Russell Sage Foundation, New York.

    Google Scholar 

  32. Pflug, G. and U. Dieter (1992). Simulation and Optimization: Proceedings of the International Workshop on Computationally Intensive Methods in Simulation and Optimization, held at the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria, August 23–25, 1990. Springer-Verlag, Berlin.

    Google Scholar 

  33. Lefevre, C. (1981). Optimal control of a birth and death epidemic process. Operations Research, 29, 971–982.

    Article  MATH  PubMed  MathSciNet  CAS  Google Scholar 

  34. Lippman, S. (1973). Applying a new technique in the optimization of exponential systems. Operations Research, 23, 687–710.

    Article  MathSciNet  Google Scholar 

  35. Hu, C., W.S. Lovejoy and S.L. Shafer (1993). Comparison of some suboptimal control policies in medical drug therapy. Operations Research, 44, 696–709.

    Article  Google Scholar 

  36. Hauskrecht, M. and H. Fraser (2000). Planning treatment of ischemic heart disease with partially observable Markov decision processes. Artificial Intelligence in Medicine, 18, 221–244.

    Article  PubMed  CAS  Google Scholar 

  37. Ivy, J.S. (2002). A maintenance model for breast cancer detection and treatment. Submitted for publication.

    Google Scholar 

  38. Alagoz, O., A.J. Schaefer, L.M. Maillart and M.S. Roberts (2002). Determining the optimal timing of living-donor liver transplantation using a Markov decision process (MDP) model. Medical Decision Making, 22, 558 (abstract).

    Google Scholar 

  39. Roberts, M.S. and D.C. Angus (2002). The optimal timing of liver transplantation: Final report R01 HS09694. University of Pittsburgh, Pittsburgh, PA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Schaefer, A.J., Bailey, M.D., Shechter, S.M., Roberts, M.S. (2005). Modeling Medical Treatment Using Markov Decision Processes. In: Brandeau, M.L., Sainfort, F., Pierskalla, W.P. (eds) Operations Research and Health Care. International Series in Operations Research & Management Science, vol 70. Springer, Boston, MA. https://doi.org/10.1007/1-4020-8066-2_23

Download citation

  • DOI: https://doi.org/10.1007/1-4020-8066-2_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7629-9

  • Online ISBN: 978-1-4020-8066-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics