Skip to main content

Ferromagnetic Resonance Force Microscopy

  • Chapter
  • First Online:
Book cover Spin Dynamics in Confined Magnetic Structures III

Part of the book series: Topics in Applied Physics ((TAP,volume 101))

Abstract

The magnetic resonance force microscope (MRFM) is a novel scanning probe instrument that combines the three-dimensional imaging capabilities of magnetic resonance imaging (MRI) with the high sensitivity and resolution of atomic force microscopy (AFM). In the nuclear magnetic resonance (NMR) mode or the electron spin resonance (ESR) mode it will enable nondestructive, chemical-specific, high-resolution microscopic studies and imaging of subsurface properties of a broad range of materials. In its most successful application to date, MRFM has been used to study microscopic ferromagnets. In ferromagnets the long-range spin–spin couplings preclude localized excitation of individual spins. Rather, the excitations employed in ferromagnetic resonance (FMR) are the normal magnetostatic wave (or spin-wave) modes determined by the geometry of the sample. In this case the response of the cantilever will be a measure of the amplitude of the FMR signal integrated over the volume where the magnetic field gradient of the tip magnet is significant. Thus, as the magnetic tip is scanned across the material under study, the signal intensity will be proportional to the local amplitude of the normal modes. In addition, the MRFM technique has proven useful for the observation of relaxation processes in microscopic samples. The MRFM will also enable the microscopic investigations of the nonequilibrium spin polarization resulting from spin injection. Microscopic MRFM studies will provide unprecedented insight into the physics of magnetic and spin-based materials at micrometer and submicrometer dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S.-C. Lee, C. P. Vlahacos, B. J. Feenstra, A. Schwartz, D. E. Steinhauer, F. C. Wellstood, S. M. Anlage: Magnetic permeability imaging of metals with a scanning near-field microwave microscope, Appl. Phys. Lett. 77, 4404 (2000)

    Article  ADS  Google Scholar 

  • S. E. Lofland, S. M. Bhagat, Q. Q. Shu, M. C. Robsen, R. Ramesh: Magnetic imaging of perovskite thin films by ferromagnetic resonance microscopy-La0.7Sr0.3MnO3, Appl. Phys. Lett. 75, 1947 (1999)

    Article  ADS  Google Scholar 

  • J. A. H. Stotz, M. R. Freeman: A stroboscopic scanning solid emersion lens microscope, Rev. Sci. Instrum. 68, 4468 (1997)

    Article  ADS  Google Scholar 

  • K. Perzlmaier, M. Buess, C. H. Back, V. E. Demidov, B. Hillebrands, S. O. Demokritov: Spin-wave eigenmodes of permalloy squares with closure domain structure, Phys. Rev. Lett. 94, 057202 (2005)

    Article  ADS  Google Scholar 

  • V. E. Demidov, S. O. Demokritov, B. Hillebrands, M. Laufenberg: Radiation of spin waves by a single micrometer-sized magnetic element, Appl. Phys. Lett. 85, 2866 (2004)

    Article  ADS  Google Scholar 

  • D. Rugar, R. Budakian, H. J. Mamin, B. W. Chui: Single spin detection by magnetic resonance force microscopy, Nature 430, 329 (2004)

    Article  ADS  Google Scholar 

  • J. A. Sidles: Noninductive detection of single-proton magnetic resonance, Appl. Phys. Lett. 58, 2854 (1991)

    Article  ADS  Google Scholar 

  • D. Rugar, C. S. Yannoni, J. A. Sidles: Mechanical detection of magnetic resonance, Nature 360, 563 (1992)

    Article  ADS  Google Scholar 

  • J. A. Sidles, d. Rugar: Signal-to-noise ratios in inductive and merchanical detection of magnetic resonance, Phys. Rev. Lett. 70, 3506 (1993)

    Article  ADS  Google Scholar 

  • B. C. Choi, M. Belov, W. K. Heibert, G. E. Ballentine, M. R. Freeman: Ultrafast reversal magnetization dynamics investigated by time domain imaging, Phys. Rev. Lett. 86, 728 (2001)

    Article  ADS  Google Scholar 

  • J. P. Park, P. Eames, D. M. Engebretson, J. Berezovsky, P. A. Crowell: Spatially resolved spin dynamics of localized spin-wave modes in ferromagnetic wires, Phys. Rev. Lett. 89, 277201 (2002)

    Article  ADS  Google Scholar 

  • P. C. Hammel, Z. Zhang, G. J. Moore, M. L. Roukes: Subsurface imaging with the magnetic resonance force microscope, J. Low Temp. Phys. 101, 59 (1995)

    Article  ADS  Google Scholar 

  • D. Rugar, O. Zugar, S. T. Hoen, C. S. Yannoni, H. M. Vieth, R. D. Kendrick: Force detection of nuclear magnetic resonance, Science 264, 1560 (1994)

    Article  ADS  Google Scholar 

  • T. A. Barrett, C. R. Miers, H. A. Sommer, K. Mochizuki, J. T. Merkert: Design and construction of a sensitive nuclear magnetic resonance force microscope, J. Appl. Phys. 83, 6235 (1999)

    Article  ADS  Google Scholar 

  • Z. Zhang, P. C. Hammel, P. E. Wigen: Observation of ferromagnetic resonance using magnetic resonance force microscopy, Appl. Phys. Lett. 68, 2005 (1996)

    Article  ADS  Google Scholar 

  • D. Rugar, C. S. Yannoni, J. A. Sidles: Mechanical detection of magnetic resonance, Nature 360, 563 (1992)

    Article  ADS  Google Scholar 

  • K. J. Bruland, J. Krzystek, J. L. Garbini, J. A. Sidles: Anharmonic modulation for noise reduction in magnetic resonance force microscopy, Rev. Sci. Instrum. 66, 2853 (1994)

    Article  ADS  Google Scholar 

  • P. C. Hammel, D. V. Pelekov, P. E. Wigen, T. R. Gosnell, M. M. Midzor, M. L. Roukes: The magnetic-resonance force microscope: A new tool for high-resolution, 3-D, subsurface scanned probe imaging, Proc. IEEE 91, 789 (2003)

    Article  Google Scholar 

  • Z. Zhang, M. L. Roukes, P. C. Hammel: Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy, J. Appl. Phys. 80, 6931 (1996)

    Article  ADS  Google Scholar 

  • A. Suter, D. V. Pelekov, M. L. Roukes, P. C. Hammel: Probe sample coupling in the magnetic resonance force microscope, J. Magn. Reson. 154, 210 (2002)

    Article  ADS  Google Scholar 

  • O. Zugar, D. Rugar: First images from a magntic resonance force microscope, Appl. Phys. Lett. 63, 2496 (1993)

    Article  ADS  Google Scholar 

  • R. C. Puetter: Pixon-based multiresolution image reconstruction and the quantification of picture information content, Int. J. Syst. Tech. 6, 314 (1995)

    Article  Google Scholar 

  • R. K. Pina, R. C. Puetter: Bayesian image reconstruction: The pixon method and optimal image modeling, Publ. Astron. Soc. Pac. 105, 630 (1993)

    Article  ADS  Google Scholar 

  • R. C. Ruetter, A. Yahil: Astronomical data analysis software and systems VIII, in D. M. Mehringer, R. L. Plante, D. A. Roberts (Eds.): Astron. Soc. Pac. Conf. Ser., vol. 172 (San Francisco, CA 1999) p. 307

    Google Scholar 

  • M. M. Midzor, P. E. Wigen, D. Pelekov, W. Chen, P. C. Hammel, M. L. Roukes: Imaging mechanisms of force detected FMR microscopy, J. Appl. Phys. 87, 6493 (2000)

    Article  ADS  Google Scholar 

  • M. M. Midzor: Ferromagnetic Resonance Force Microscopy, Ph.D. dissertation, California Institute of Technology, Pasadena, CA (2000)

    Google Scholar 

  • R. Urban, A. Putilin, P. E. Wigen, M. Cross, M. L. Roukes: Perturbation of the magnetostatic modes observed by FMRFM, Phys. Rev. B 73, 212410 (2006)

    Article  ADS  Google Scholar 

  • V. Charbois, V. V. Naletov, J. Ben Joussef, O. Klein: Mechanical detection of ferromagnetic resonance spectrum in a normally magnetized yttrium-iron-garnet disk, J. Appl. Phys. 91, 7337 (2002)

    Article  ADS  Google Scholar 

  • V. Charbois, V. V. Naletov, J. Ben Joussef, O. Klein: Influence of the magnetic tip in ferromgnetic resonance force microscopy, Appl. Phys. Lett. 80, 4795 (2002)

    Article  ADS  Google Scholar 

  • V. V. Naletov, V. Charbois, O. Klein, C. Fermon: Quantitative measurement of the ferromagnetic resonance signal by force detection, Appl. Phys. Lett. 83, 3132 (2003)

    Article  ADS  Google Scholar 

  • O. Klein, V. Cahrbois, V. V. Naletov, C. Fermon: Measurement of the ferromagnetic relaxation in a micron-size sample, Phys. Rev. B Rap. Commun. 67, 220407 (2003)

    Article  ADS  Google Scholar 

  • V. V. Naletov, V. Charbois, O. Klein, C. Fermon: Quantitative measurement of the ferromagnetic resonance signal by force detection, Appl. Phys. Lett. 83, 3132 (2003)

    Article  ADS  Google Scholar 

  • V. V. Naletov, G. deLoudens, O. Klein: Magnetization reduction induced by non-linear effects, Phys. Rev. B 71, 180411 (2005)

    Article  Google Scholar 

  • K. Wago, D. Botkin, C. S. Yannoni, D. Rugar: Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic force microscope, Appl. Phys. Lett. 72, 2757 (1998)

    Article  ADS  Google Scholar 

  • J. F. Dillon: J. Appl. Phys. 31, 1605 (1960)

    Article  ADS  Google Scholar 

  • R. C. LeCraw, E. G. Spencer: J. Phys. Soc. Jpn., Suppl. (B1) 17, 401 (1962)

    Google Scholar 

  • H. Suhl: J. Phys. Chem. Solids 1, 209 (1957)

    Article  ADS  Google Scholar 

  • R. W. Damon, J. R. Eshbach: Magnetostatic modes of a ferromagnetic slab, J. Phys. Chem. Solids 19, 308 (1961)

    Article  ADS  Google Scholar 

  • B. A. Kalinikos: Excitation of propagating spin waves in ferromagnetic films, IEE Proc. 127 H, 4 (1980)

    Google Scholar 

  • B. J. Suh, P. C. Hammel, Z. Zhang, M. M. Midzor, M. L. Roukes, J. R. Childress: Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy, J. Vac. Sci. Technol. B 16, 2275 (1998)

    Article  Google Scholar 

  • J. W. Feng, S. S. Kang, F. M. Pan, G. J. Jin, A. Hu, S. S. Jiang, D. Feng: Magnetic anisotropy and interlayer exchange coupling in the sputtered Co/Ag multilayers, J. Appl. Phys. 78, 5549 (1995)

    Article  ADS  Google Scholar 

  • F. J. A. Den Broeder, W. Having, P. J. H. Bloeman: Magnetic anisotropy of multilayers, J. Magn. Mater. 93, 562 (1994)

    Article  ADS  Google Scholar 

  • J. Moreland, P. Kabos, A. Jander, M. Lohndorf, M. R. McMichael, C.-G. Lee: Micromechanical detectors for ferromagnetic resonance spectroscopy, in E. Peters, O. Paul (Eds.): Micromachined Devices and Components VI, vol. 4176, Proc. SPIE (2000) pp. 84--95

    Google Scholar 

  • M. Lohndorf, J. Moreland, P. Kabos, N. Rizzo: Microcantilever torque magnetometery of thin magnetic films, J. Appl. Phys. 87, 5995 (2000)

    Article  ADS  Google Scholar 

  • M. Lohndorf, J. Moreland, P. Kabos: Ferromagnetic resonance detection with a torsion-mode atomic-force microscope, Appl. Phys. Lett. 76, 1176 (2000)

    Article  ADS  Google Scholar 

  • A. Jander, J. Moreland, P. Kabos: Angular momentum and energy transferred through ferromagnetic resonce, Appl. Phys. Lett. 78, 2348 (2001)

    Article  ADS  Google Scholar 

  • J. Moreland, M. Lohndorf, P. Kabos, R. D. McMichael: Ferromagnetic resonance spectroscopy with a micromechanical calorimeter sensor, Rev. Sci. Instrum. 71, 3099 (2000)

    Article  ADS  Google Scholar 

  • Z. Zhang, P. C. Hammel, M. M. Midzor, M. L. Roukes, J. R. Childress: Ferromagnetic resonance force microscopy an microscopic Co single layer films, Appl. Phys. Lett. 73, 2036 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Burkard Hillebrands André Thiaville

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Wigen, P.E., Roukes, M.L., Hammel, P.C. Ferromagnetic Resonance Force Microscopy. In: Hillebrands, B., Thiaville, A. (eds) Spin Dynamics in Confined Magnetic Structures III. Topics in Applied Physics, vol 101. Springer, Berlin, Heidelberg . https://doi.org/10.1007/10938171_3

Download citation

Publish with us

Policies and ethics