Skip to main content

2011 | OriginalPaper | Buchkapitel

Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms

verfasst von : Shengchao Zhu, Tobias Fischer, Wei Wan, Ana B. Descalzo, Knut Rurack

Erschienen in: Luminescence Applied in Sensor Science

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The amplification of luminescence signals is often the key to sensitive and powerful detection protocols. Besides optimized fluorescent probes and labels, functionalized nano- and microparticles have received strongly increasing attention in this context during the past decade. This contribution introduces the main signalling concepts for particle-based amplification strategies and stresses, especially the important role that metal and semiconductor nanoparticles play in this field. Besides resonance energy transfer, metal-enhanced emission and the catalytic generation of luminescence, the impact of multi-chromophoric objects such as dye nanocrystals, dendrimers, conjugated polymers or mesoporous hybrid materials is assessed. The representative examples discussed cover a broad range of analytes from metal ions and small organic molecules to oligonucleotides and enzyme activity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The IUPAC-approved term for FRET is Förster RET [14]. ‘Fluorescence resonance energy transfer’ is commented on as the: Term frequently and inappropriately applied to resonance energy transfer in the sense of Förster-resonance energy transfer (FRET), which does not involve the emission of radiation. In contrast, the literature uses both terms Förster RET and fluorescence RET with the latter even dominating in the biochemical and bioanalytical communities. Despite the correct classification by the IUPAC, the scientist is in a dilemma when trying to distinguish between FRET, BRET and CRET, all Förster-type processes which differ only in the properties of the donor. Interestingly, BRET and CRET are not included in the IUPAC Photochemistry Commission’s recommendations. In the present case, it seems more appropriate for us to use FRET for a RET involving a potentially fluorescent donor and BRET (CRET) for a RET involving a potentially bioluminescent (chemiluminescent) donor here.
 
Literatur
1.
Zurück zum Zitat Lakowicz JR (ed) (1992–2006) Topics in fluorescence spectroscopy series, vols 1–11. Plenum, New York and Springer, Berlin Lakowicz JR (ed) (1992–2006) Topics in fluorescence spectroscopy series, vols 1–11. Plenum, New York and Springer, Berlin
2.
Zurück zum Zitat Wolfbeis OS (ed) (2001–2008) Springer series on fluorescence, vols 1–6. Springer, Berlin Wolfbeis OS (ed) (2001–2008) Springer series on fluorescence, vols 1–6. Springer, Berlin
3.
Zurück zum Zitat Demchenko A (2009) Introduction to fluorescence sensing. Springer, Berlin Demchenko A (2009) Introduction to fluorescence sensing. Springer, Berlin
4.
Zurück zum Zitat Seidel M, Gauglitz G (2003) Miniaturization and parallelization of fluorescence immunoassays in nanotiter plates. Trends Anal Chem 22:385–394 Seidel M, Gauglitz G (2003) Miniaturization and parallelization of fluorescence immunoassays in nanotiter plates. Trends Anal Chem 22:385–394
5.
Zurück zum Zitat LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637 LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108:614–637
6.
Zurück zum Zitat Hunt HC, Wilkinson JS (2008) Optofluidic integration for microanalysis. Microfluid Nanofluid 4:53–79 Hunt HC, Wilkinson JS (2008) Optofluidic integration for microanalysis. Microfluid Nanofluid 4:53–79
7.
Zurück zum Zitat Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8:2015–2031 Myers FB, Lee LP (2008) Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8:2015–2031
8.
Zurück zum Zitat Rurack K, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling – the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31:116–127 Rurack K, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling – the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31:116–127
9.
Zurück zum Zitat Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies – a review. Nucleosides Nucleotides Nucleic Acids 27:224–243 Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies – a review. Nucleosides Nucleotides Nucleic Acids 27:224–243
10.
Zurück zum Zitat Descalzo AB, Zhu S, Fischer T et al (2010) Optimization of the coupling of target recognition and signal generation. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Molecular constructions, polymers and nanoparticles. Springer, Berlin, pp 41–106 Descalzo AB, Zhu S, Fischer T et al (2010) Optimization of the coupling of target recognition and signal generation. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Molecular constructions, polymers and nanoparticles. Springer, Berlin, pp 41–106
11.
Zurück zum Zitat Roda A, Guardigli M, Michelini E et al (2009) Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal Bioanal Chem 393:109–123 Roda A, Guardigli M, Michelini E et al (2009) Nanobioanalytical luminescence: Förster-type energy transfer methods. Anal Bioanal Chem 393:109–123
12.
Zurück zum Zitat Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45:4562–4588 Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angew Chem Int Ed 45:4562–4588
13.
Zurück zum Zitat Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75 Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55–75
14.
Zurück zum Zitat Braslavsky SE (2007) Glossary of terms used in photochemistry. 3rd edition (IUPAC Recommendations 2006). Pure Appl Chem 79:293–465 Braslavsky SE (2007) Glossary of terms used in photochemistry. 3rd edition (IUPAC Recommendations 2006). Pure Appl Chem 79:293–465
15.
Zurück zum Zitat Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354 Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354
16.
Zurück zum Zitat Eidne KA, Kroeger KM, Hanyaloglu AC (2002) Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab 13:415–421 Eidne KA, Kroeger KM, Hanyaloglu AC (2002) Applications of novel resonance energy transfer techniques to study dynamic hormone receptor interactions in living cells. Trends Endocrinol Metab 13:415–421
17.
Zurück zum Zitat Chen J, Zeng F, Wu S et al (2009) A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles. Nanotechnology 20:365502 Chen J, Zeng F, Wu S et al (2009) A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles. Nanotechnology 20:365502
18.
Zurück zum Zitat Roberts DV, Wittmershaus BP, Zhang YZ et al (1998) Efficient excitation energy transfer among multiple dyes in polystyrene microspheres. J Lumin 79:225–231 Roberts DV, Wittmershaus BP, Zhang YZ et al (1998) Efficient excitation energy transfer among multiple dyes in polystyrene microspheres. J Lumin 79:225–231
19.
Zurück zum Zitat Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317 Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317
20.
Zurück zum Zitat Wang L, Tan W (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6:84–88 Wang L, Tan W (2006) Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett 6:84–88
21.
Zurück zum Zitat Chen X, Estevez MC, Zhu Z et al (2009) Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem 81:7009–7014 Chen X, Estevez MC, Zhu Z et al (2009) Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. Anal Chem 81:7009–7014
22.
Zurück zum Zitat Bünzli JCG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077 Bünzli JCG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048–1077
23.
Zurück zum Zitat Härmä H, Soukka T, Lövgren T (2001) Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem 47:561–568 Härmä H, Soukka T, Lövgren T (2001) Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin Chem 47:561–568
24.
Zurück zum Zitat Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346 Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346
25.
Zurück zum Zitat Wei Q, Wei A (2010) Signal generation with gold nanoparticles: photophysical properties for sensor and imaging applications. In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, Hoboken, NJ, pp 319–349 Wei Q, Wei A (2010) Signal generation with gold nanoparticles: photophysical properties for sensor and imaging applications. In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, Hoboken, NJ, pp 319–349
26.
Zurück zum Zitat Dulkeith E, Ringler M, Klar TA et al (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589 Dulkeith E, Ringler M, Klar TA et al (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5:585–589
27.
Zurück zum Zitat Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution. Anal Chem 78:8332–8338 Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution. Anal Chem 78:8332–8338
28.
Zurück zum Zitat He X, Liu H, Li Y et al (2005) Gold nanoparticle-based fluorometric and colorimetric sensing of copper(II) ions. Adv Mater 17:2811–2815 He X, Liu H, Li Y et al (2005) Gold nanoparticle-based fluorometric and colorimetric sensing of copper(II) ions. Adv Mater 17:2811–2815
29.
Zurück zum Zitat Mayilo S, Kloster MA, Wunderlich M et al (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac tropnini T. Nano Lett 9:4558–4563 Mayilo S, Kloster MA, Wunderlich M et al (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac tropnini T. Nano Lett 9:4558–4563
30.
Zurück zum Zitat Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based FRET assay for the detection of DNA cleavage. J Phys Chem B 110:20745–20748 Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based FRET assay for the detection of DNA cleavage. J Phys Chem B 110:20745–20748
31.
Zurück zum Zitat Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625 Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625
32.
Zurück zum Zitat Frasco MF, Chaniotakis N (2010) Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 396:229–240 Frasco MF, Chaniotakis N (2010) Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Anal Bioanal Chem 396:229–240
33.
Zurück zum Zitat Jorge PAS, Martins MA, Trindade T et al (2007) Optical fiber sensing using quantum dots. Sensors 7:3489–3534 Jorge PAS, Martins MA, Trindade T et al (2007) Optical fiber sensing using quantum dots. Sensors 7:3489–3534
34.
Zurück zum Zitat Han M, Gao X, Su JZ et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635 Han M, Gao X, Su JZ et al (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635
35.
Zurück zum Zitat Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7:47–57 Clapp AR, Medintz IL, Mattoussi H (2006) Förster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 7:47–57
36.
Zurück zum Zitat Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618 Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–1618
37.
Zurück zum Zitat Lee S, Park K, Kim K et al (2008) Activatable imaging probes with amplified fluorescent signals. Chem Commun 4250–4260 Lee S, Park K, Kim K et al (2008) Activatable imaging probes with amplified fluorescent signals. Chem Commun 4250–4260
38.
Zurück zum Zitat Hering VR, Gibson G, Schumacher RI et al (2007) Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins. Bioconjug Chem 18:1705–1708 Hering VR, Gibson G, Schumacher RI et al (2007) Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins. Bioconjug Chem 18:1705–1708
39.
Zurück zum Zitat Willard DM, Mutschler T, Yu M et al (2006) Directing energy flow through quantum dots: towards nanoscale sensing. Anal Bioanal Chem 384:564–571 Willard DM, Mutschler T, Yu M et al (2006) Directing energy flow through quantum dots: towards nanoscale sensing. Anal Bioanal Chem 384:564–571
40.
Zurück zum Zitat Tomczak N, Janczewski D, Han MY et al (2009) Designer polymer-quantum dot architectures. Prog Polym Sci 34:393–430 Tomczak N, Janczewski D, Han MY et al (2009) Designer polymer-quantum dot architectures. Prog Polym Sci 34:393–430
41.
Zurück zum Zitat Freeman R, Li Y, Tel-Vered R et al (2009) Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 134:653–656 Freeman R, Li Y, Tel-Vered R et al (2009) Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst 134:653–656
42.
Zurück zum Zitat Goldman ER, Medintz IL, Whitley JL et al (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127:6744–6751 Goldman ER, Medintz IL, Whitley JL et al (2005) A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J Am Chem Soc 127:6744–6751
43.
Zurück zum Zitat Wang X, Guo X (2009) Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst 134:1348–1354 Wang X, Guo X (2009) Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Analyst 134:1348–1354
44.
Zurück zum Zitat Tang B, Cao L, Xu K et al (2008) A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem Eur J 14:3637–3644 Tang B, Cao L, Xu K et al (2008) A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chem Eur J 14:3637–3644
45.
Zurück zum Zitat Jiang G, Susha AS, Lutich AA et al (2009) Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano 12:4127–4131 Jiang G, Susha AS, Lutich AA et al (2009) Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano 12:4127–4131
46.
Zurück zum Zitat So MK, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343 So MK, Xu C, Loening AM et al (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol 24:339–343
47.
Zurück zum Zitat Huang X, Li L, Qian H et al (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143 Huang X, Li L, Qian H et al (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45:5140–5143
48.
Zurück zum Zitat Zhao S, Huang Y, Shi M et al (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82:2036–2041 Zhao S, Huang Y, Shi M et al (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82:2036–2041
49.
Zurück zum Zitat Naruke H, Mori T, Yamase T (2009) Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor. Opt Mater 31:1483–1487 Naruke H, Mori T, Yamase T (2009) Luminescence properties and excitation process of a near-infrared to visible up-conversion color-tunable phosphor. Opt Mater 31:1483–1487
50.
Zurück zum Zitat Wang X, Li YD (2007) Monodisperse nanocrystals: general synthesis, assembly, and their applications. Chem Commun 2901–2910 Wang X, Li YD (2007) Monodisperse nanocrystals: general synthesis, assembly, and their applications. Chem Commun 2901–2910
51.
Zurück zum Zitat Jalil RA, Zhang Y (2008) Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29:4122–4128 Jalil RA, Zhang Y (2008) Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29:4122–4128
52.
Zurück zum Zitat Wang L, Yan R, Huo Z et al (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057 Wang L, Yan R, Huo Z et al (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057
53.
Zurück zum Zitat Kuningas K, Ukonaho T, Päkkilä H et al (2006) Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal Chem 78:4690–4696 Kuningas K, Ukonaho T, Päkkilä H et al (2006) Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. Anal Chem 78:4690–4696
54.
Zurück zum Zitat Rantanen T, Päkkilä H, Jämsen L et al (2007) Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays. Anal Chem 79:6312–6318 Rantanen T, Päkkilä H, Jämsen L et al (2007) Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays. Anal Chem 79:6312–6318
55.
Zurück zum Zitat Bonacchi S, Genovese D, Juris R et al (2010) Luminescent chemosensors based on silica nanoparticles. Top Curr Chem [this volume] Bonacchi S, Genovese D, Juris R et al (2010) Luminescent chemosensors based on silica nanoparticles. Top Curr Chem [this volume]
56.
Zurück zum Zitat Zhou Q, Swager TM (1995) Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity. J Am Chem Soc 117:12593–12602 Zhou Q, Swager TM (1995) Fluorescent chemosensors based on energy migration in conjugated polymers: the molecular wire approach to increased sensitivity. J Am Chem Soc 117:12593–12602
57.
Zurück zum Zitat Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386 Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386
58.
Zurück zum Zitat Baier MC, Huber J, Mecking S (2009) Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion. J Am Chem Soc 131:14267–14273 Baier MC, Huber J, Mecking S (2009) Fluorescent conjugated polymer nanoparticles by polymerization in miniemulsion. J Am Chem Soc 131:14267–14273
59.
Zurück zum Zitat Wu C, Szymanski C, Cain Z et al (2007) Conjugated polymer dots for multiphoton fluorescence imaging. J Am Chem Soc 129:12904–12905 Wu C, Szymanski C, Cain Z et al (2007) Conjugated polymer dots for multiphoton fluorescence imaging. J Am Chem Soc 129:12904–12905
60.
Zurück zum Zitat Wu C, Bull B, Szymanski C et al (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423 Wu C, Bull B, Szymanski C et al (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423
61.
Zurück zum Zitat Moon JH, McDaniel W, MacLean P et al (2007) Live-cell-permeable poly(p-phenylene ethynylene). Angew Chem Int Ed 46:8223–8225 Moon JH, McDaniel W, MacLean P et al (2007) Live-cell-permeable poly(p-phenylene ethynylene). Angew Chem Int Ed 46:8223–8225
62.
Zurück zum Zitat Howes P, Thorogate R, Green M et al (2009) Synthesis, characterisation and intracellular imaging of PEG capped BEHP-PPV nanospheres. Chem Commun 2490–2492 Howes P, Thorogate R, Green M et al (2009) Synthesis, characterisation and intracellular imaging of PEG capped BEHP-PPV nanospheres. Chem Commun 2490–2492
63.
Zurück zum Zitat Wosnick JH, Liao JH, Swager TM (2005) Layer-by-layer poly(phenylene ethynylene) films on silica microspheres for enhanced sensory amplification. Macromolecules 38:9287–9290 Wosnick JH, Liao JH, Swager TM (2005) Layer-by-layer poly(phenylene ethynylene) films on silica microspheres for enhanced sensory amplification. Macromolecules 38:9287–9290
64.
Zurück zum Zitat McQuade DT, Hegedus AH, Swager TM (2000) Signal amplification of a “turn-on” sensor: harvesting the light captured by a conjugated polymer. J Am Chem Soc 122:12389–12390 McQuade DT, Hegedus AH, Swager TM (2000) Signal amplification of a “turn-on” sensor: harvesting the light captured by a conjugated polymer. J Am Chem Soc 122:12389–12390
65.
Zurück zum Zitat Liu B, Bazan GC (2004) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16:4467–4476 Liu B, Bazan GC (2004) Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem Mater 16:4467–4476
66.
Zurück zum Zitat Wang Y, Liu B (2009) Conjugated polymer as a signal amplifier for novel silica nanoparticle-based fluoroimmunoassay. Biosens Bioelectron 24:3293–3298 Wang Y, Liu B (2009) Conjugated polymer as a signal amplifier for novel silica nanoparticle-based fluoroimmunoassay. Biosens Bioelectron 24:3293–3298
67.
Zurück zum Zitat Wang Y, Liu B (2007) Silica nanoparticle assisted DNA assays for optical signal amplification of conjugated polymer based fluorescent sensors. Chem Commun 3553–3555 Wang Y, Liu B (2007) Silica nanoparticle assisted DNA assays for optical signal amplification of conjugated polymer based fluorescent sensors. Chem Commun 3553–3555
68.
Zurück zum Zitat Wang Y, Liu B (2009) Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25:12787–12793 Wang Y, Liu B (2009) Conjugated polyelectrolyte-sensitized fluorescent detection of thrombin in blood serum using aptamer-immobilized silica nanoparticles as the platform. Langmuir 25:12787–12793
69.
Zurück zum Zitat Pu KY, Li K, Liu B (2010) Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv Mater 22:643–646 Pu KY, Li K, Liu B (2010) Cationic oligofluorene-substituted polyhedral oligomeric silsesquioxane as light-harvesting unimolecular nanoparticle for fluorescence amplification in cellular imaging. Adv Mater 22:643–646
70.
Zurück zum Zitat Lowe M, Spiro A, Zhang YZ et al (2004) Multiplexed, particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification. Cytometry A 60A:135–144 Lowe M, Spiro A, Zhang YZ et al (2004) Multiplexed, particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification. Cytometry A 60A:135–144
71.
Zurück zum Zitat Wängler C, Moldenhauer G, Saffrich R et al (2008) PAMAM structure-based multifunctional fluorescent conjugates for improved fluorescent labelling of biomacromolecules. Chem Eur J 14:8116–8130 Wängler C, Moldenhauer G, Saffrich R et al (2008) PAMAM structure-based multifunctional fluorescent conjugates for improved fluorescent labelling of biomacromolecules. Chem Eur J 14:8116–8130
72.
Zurück zum Zitat Balzani V, Ceroni P, Gestermann S et al (2000) Dendrimers as fluorescent sensors with signal amplification. Chem Commun 853–854 Balzani V, Ceroni P, Gestermann S et al (2000) Dendrimers as fluorescent sensors with signal amplification. Chem Commun 853–854
73.
Zurück zum Zitat Balzani V, Ceroni P, Gestermann S et al (2000) Effect of protons and metal ions on the fluorescence properties of a polylysin dendrimer containing twenty four dansyl units. J Chem Soc Dalton Trans 3765–3771 Balzani V, Ceroni P, Gestermann S et al (2000) Effect of protons and metal ions on the fluorescence properties of a polylysin dendrimer containing twenty four dansyl units. J Chem Soc Dalton Trans 3765–3771
74.
Zurück zum Zitat Vögtle F, Gestermann S, Kauffmann C et al (2000) Coordination of Co2+ ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J Am Chem Soc 122:10389–10404 Vögtle F, Gestermann S, Kauffmann C et al (2000) Coordination of Co2+ ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J Am Chem Soc 122:10389–10404
75.
Zurück zum Zitat Pugh VJ, Hu QS, Zuo X et al (2001) Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols. J Org Chem 66:6136–6140 Pugh VJ, Hu QS, Zuo X et al (2001) Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols. J Org Chem 66:6136–6140
76.
Zurück zum Zitat Xu MH, Lin J, Hu QS et al (2002) Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching. J Am Chem Soc 124:14239–14246 Xu MH, Lin J, Hu QS et al (2002) Fluorescent sensors for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching. J Am Chem Soc 124:14239–14246
77.
Zurück zum Zitat Guo M, Varnavski O, Narayanan A et al (2009) Investigations of energy migration in an organic dendrimer macromolecule for sensory signal amplification. J Phys Chem A 113:4763–4771 Guo M, Varnavski O, Narayanan A et al (2009) Investigations of energy migration in an organic dendrimer macromolecule for sensory signal amplification. J Phys Chem A 113:4763–4771
78.
Zurück zum Zitat Trau D, Yang W, Seydack M et al (2002) Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal Chem 74:5480–5486 Trau D, Yang W, Seydack M et al (2002) Nanoencapsulated microcrystalline particles for superamplified biochemical assays. Anal Chem 74:5480–5486
79.
Zurück zum Zitat Chan CP, Bruemmel Y, Seydack M et al (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645 Chan CP, Bruemmel Y, Seydack M et al (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76:3638–3645
80.
Zurück zum Zitat Sin KK, Chan CPY, Pang TH et al (2006) A highly sensitive fluorescent immunoassay based on avidin-labeled nanocrystals. Anal Bioanal Chem 384:638–644 Sin KK, Chan CPY, Pang TH et al (2006) A highly sensitive fluorescent immunoassay based on avidin-labeled nanocrystals. Anal Bioanal Chem 384:638–644
81.
Zurück zum Zitat Chan CP, Tzang LC, Sin K et al (2007) Biofunctional organic nanocrystals for quantitative detection of pathogen deoxyribonucleic acid. Anal Chim Acta 584:7–11 Chan CP, Tzang LC, Sin K et al (2007) Biofunctional organic nanocrystals for quantitative detection of pathogen deoxyribonucleic acid. Anal Chim Acta 584:7–11
82.
Zurück zum Zitat Truneh A, Machy P, Horan PK (1987) Antibody-bearing liposomes as multicolor immunofluorescence markers for flow cytometry and imaging. J Immunol Methods 100:59–71 Truneh A, Machy P, Horan PK (1987) Antibody-bearing liposomes as multicolor immunofluorescence markers for flow cytometry and imaging. J Immunol Methods 100:59–71
83.
Zurück zum Zitat Schott H, Von Cunow D, Langhals H (1992) Labeling of liposomes with intercalating perylene fluorescent dyes. Biochim Biophys Acta 1110:151–157 Schott H, Von Cunow D, Langhals H (1992) Labeling of liposomes with intercalating perylene fluorescent dyes. Biochim Biophys Acta 1110:151–157
84.
Zurück zum Zitat Edwards KA, Baeumner AJ (2006) Optimization of DNA-tagged liposomes for use in microtiter plate analyses. Anal Bioanal Chem 386:1613–1623 Edwards KA, Baeumner AJ (2006) Optimization of DNA-tagged liposomes for use in microtiter plate analyses. Anal Bioanal Chem 386:1613–1623
85.
Zurück zum Zitat Rongen HAH, Bult A, van Bennekom WP (1997) Liposomes and immunoassays. J Immunol Methods 204:105–133 Rongen HAH, Bult A, van Bennekom WP (1997) Liposomes and immunoassays. J Immunol Methods 204:105–133
86.
Zurück zum Zitat Anraku Y, Kishimura A, Oba M et al (2010) Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties. J Am Chem Soc 132:1631–1636 Anraku Y, Kishimura A, Oba M et al (2010) Spontaneous formation of nanosized unilamellar polyion complex vesicles with tunable size and properties. J Am Chem Soc 132:1631–1636
87.
Zurück zum Zitat Slowing II, Trewyn BG, Lin VSY (2010) Nanogated mesoporous silica materials. In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, Hoboken, NJ, pp 479–502 Slowing II, Trewyn BG, Lin VSY (2010) Nanogated mesoporous silica materials. In: Rurack K, Martínez-Máñez R (eds) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, Hoboken, NJ, pp 479–502
88.
Zurück zum Zitat Patel K, Angelos S, Dichtel WR et al (2008) Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 130:2382–2383 Patel K, Angelos S, Dichtel WR et al (2008) Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 130:2382–2383
89.
Zurück zum Zitat Bernardos A, Aznar E, Marcos MD et al (2009) Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angew Chem Int Ed 48:5884–5887 Bernardos A, Aznar E, Marcos MD et al (2009) Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angew Chem Int Ed 48:5884–5887
90.
Zurück zum Zitat Climent E, Marcos M, Martínez-Máñez R et al (2009) The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification. Angew Chem Int Ed 48:8519–8522 Climent E, Marcos M, Martínez-Máñez R et al (2009) The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification. Angew Chem Int Ed 48:8519–8522
91.
Zurück zum Zitat Ros-Lis JV, García B, Jiménez D et al (2004) Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols. J Am Chem Soc 126:4064–4065 Ros-Lis JV, García B, Jiménez D et al (2004) Squaraines as fluoro-chromogenic probes for thiol-containing compounds and their application to the detection of biorelevant thiols. J Am Chem Soc 126:4064–4065
92.
Zurück zum Zitat Ros-Lis JV, Marcos MD, Martínez-Máñez R et al (2005) A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions. Angew Chem Int Ed 44:4405–4407 Ros-Lis JV, Marcos MD, Martínez-Máñez R et al (2005) A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions. Angew Chem Int Ed 44:4405–4407
93.
Zurück zum Zitat Cho DG, Sessler JL (2009) Modern reaction-based indicator systems. Chem Soc Rev 38:1647–1662 Cho DG, Sessler JL (2009) Modern reaction-based indicator systems. Chem Soc Rev 38:1647–1662
94.
Zurück zum Zitat Zhao L, Sun L, Chu X (2009) Chemiluminescence immunoassay. Trends Anal Chem 28:404–415 Zhao L, Sun L, Chu X (2009) Chemiluminescence immunoassay. Trends Anal Chem 28:404–415
95.
Zurück zum Zitat Lin J, Liu M (2008) Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. J Phys Chem B 112:7850–7855 Lin J, Liu M (2008) Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. J Phys Chem B 112:7850–7855
96.
Zurück zum Zitat Duan C, Cui H, Zhang Z et al (2007) Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. J Phys Chem C 111:4561–4566 Duan C, Cui H, Zhang Z et al (2007) Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence. J Phys Chem C 111:4561–4566
97.
Zurück zum Zitat Safavi A, Absalan G, Bamdad F (2008) Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application. Anal Chim Acta 610:243–248 Safavi A, Absalan G, Bamdad F (2008) Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application. Anal Chim Acta 610:243–248
98.
Zurück zum Zitat Zhang Z, Cui H, Lai C et al (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77:3324–3329 Zhang Z, Cui H, Lai C et al (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77:3324–3329
99.
Zurück zum Zitat Crumbliss AL, Perine SC, Stonehuerner J et al (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 40:483–490 Crumbliss AL, Perine SC, Stonehuerner J et al (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 40:483–490
100.
Zurück zum Zitat Lan D, Li B, Zhang Z (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24:934–938 Lan D, Li B, Zhang Z (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24:934–938
101.
Zurück zum Zitat Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036 Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036
102.
Zurück zum Zitat Cui H, Xu Y, Zhang Z (2004) Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal Chem 76:4002–4010 Cui H, Xu Y, Zhang Z (2004) Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode. Anal Chem 76:4002–4010
103.
Zurück zum Zitat Zanarini S, Rampazzo E, Della Ciana L et al (2009) Ru(bpy)3 covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification. J Am Chem Soc 131:2260–2267 Zanarini S, Rampazzo E, Della Ciana L et al (2009) Ru(bpy)3 covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification. J Am Chem Soc 131:2260–2267
104.
Zurück zum Zitat Li M, Chen Z, Yam VWW et al (2008) Multi functional ruthenium(II) polypyridine complex-based core-shell magnetic silica nanocomposites: magnetism, luminescence, and electrochemiluminescence. ACS Nano 2:905–912 Li M, Chen Z, Yam VWW et al (2008) Multi functional ruthenium(II) polypyridine complex-based core-shell magnetic silica nanocomposites: magnetism, luminescence, and electrochemiluminescence. ACS Nano 2:905–912
105.
Zurück zum Zitat Das P, Metiu H (1985) Enhancement of molecular fluorescence and photochemistry by small metal particles. J Phys Chem 89:4680–4687 Das P, Metiu H (1985) Enhancement of molecular fluorescence and photochemistry by small metal particles. J Phys Chem 89:4680–4687
106.
Zurück zum Zitat Lakowicz JR, Ray K, Chowdhury M et al (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308–1346 Lakowicz JR, Ray K, Chowdhury M et al (2008) Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133:1308–1346
107.
Zurück zum Zitat Morawitz H, Philpott MR (1974) Coupling of an excited molecule to surface plasmons. Phys Rev B 10:4863–4868 Morawitz H, Philpott MR (1974) Coupling of an excited molecule to surface plasmons. Phys Rev B 10:4863–4868
108.
Zurück zum Zitat Philpott MR (1975) Effect of surface plasmons on transitions in molecules. J Chem Phys 62:1812–1817 Philpott MR (1975) Effect of surface plasmons on transitions in molecules. J Chem Phys 62:1812–1817
109.
Zurück zum Zitat Weber WH, Eagen CF (1979) Energy-transfer from an excited dye molecule to the surface-plasmons of an adjacent metal. Opt Lett 4:236–238 Weber WH, Eagen CF (1979) Energy-transfer from an excited dye molecule to the surface-plasmons of an adjacent metal. Opt Lett 4:236–238
110.
Zurück zum Zitat Benner RE, Dornhaus R, Chang RK (1979) Angular emission profiles of dye molecules excited by surface-plasmon waves at a metal-surface. Opt Commun 30:145–149 Benner RE, Dornhaus R, Chang RK (1979) Angular emission profiles of dye molecules excited by surface-plasmon waves at a metal-surface. Opt Commun 30:145–149
111.
Zurück zum Zitat Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical application. Anal Biochem 298:1–24 Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical application. Anal Biochem 298:1–24
112.
Zurück zum Zitat Weitz DA, Garoff S, Hanson CD et al (1982) Fluorescent lifetimes of molecules on silver-island films. Opt Lett 7:89–91 Weitz DA, Garoff S, Hanson CD et al (1982) Fluorescent lifetimes of molecules on silver-island films. Opt Lett 7:89–91
113.
Zurück zum Zitat Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf 171:115–130 Liebermann T, Knoll W (2000) Surface-plasmon field-enhanced fluorescence spectroscopy. Colloids Surf 171:115–130
114.
Zurück zum Zitat Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139–1152 Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139–1152
115.
Zurück zum Zitat Wokaun A, Lutz HP, King AP et al (1983) Energy-transfer in surface enhanced luminescence. J Chem Phys 79:509–514 Wokaun A, Lutz HP, King AP et al (1983) Energy-transfer in surface enhanced luminescence. J Chem Phys 79:509–514
116.
Zurück zum Zitat Kümmerlen J, Leitner A, Brunner H et al (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80:1031–1046 Kümmerlen J, Leitner A, Brunner H et al (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Mol Phys 80:1031–1046
117.
Zurück zum Zitat Ford GW, Weber WH (1984) Electromagnetic-interactions of molecules with metal-surfaces. Phys Rep 113:195–287 Ford GW, Weber WH (1984) Electromagnetic-interactions of molecules with metal-surfaces. Phys Rep 113:195–287
118.
Zurück zum Zitat Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905 Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905
119.
Zurück zum Zitat Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638 Knoll W (1998) Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem 49:569–638
120.
Zurück zum Zitat Lakowicz JR, Malicka J, Gryczynski I (2003) Silver particles enhance emission of fluorescent DNA oligomers. Biotechniques 34:62–68 Lakowicz JR, Malicka J, Gryczynski I (2003) Silver particles enhance emission of fluorescent DNA oligomers. Biotechniques 34:62–68
121.
Zurück zum Zitat Mafuné F, Kohno J, Takeda Y et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117 Mafuné F, Kohno J, Takeda Y et al (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117
122.
Zurück zum Zitat Lakowicz JR, Shen B, Gryczynski Z et al (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem Biophys Res Commun 286:875–879 Lakowicz JR, Shen B, Gryczynski Z et al (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles. Biochem Biophys Res Commun 286:875–879
123.
Zurück zum Zitat Diaspro A (1999) Introduction to two-photon microscopy. Microsc Res Tech 47:163–164 Diaspro A (1999) Introduction to two-photon microscopy. Microsc Res Tech 47:163–164
124.
Zurück zum Zitat Gryczynski I, Malicka J, Shen Y et al (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106:2191–2195 Gryczynski I, Malicka J, Shen Y et al (2002) Multiphoton excitation of fluorescence near metallic particles: enhanced and localized excitation. J Phys Chem B 106:2191–2195
125.
Zurück zum Zitat Lukomska J, Gryczynski I, Malicka J et al (2005) Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films. Biochem Biophys Res Commun 328:78–84 Lukomska J, Gryczynski I, Malicka J et al (2005) Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films. Biochem Biophys Res Commun 328:78–84
126.
Zurück zum Zitat De Beuckeleer K, Volckaert G, Engelborghs Y (1999) Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions. Proteins 36:42–53 De Beuckeleer K, Volckaert G, Engelborghs Y (1999) Time resolved fluorescence and phosphorescence properties of the individual tryptophan residues of barnase: evidence for protein-protein interactions. Proteins 36:42–53
127.
Zurück zum Zitat Prochniewicz E, Janson N, Thomas DD et al (2005) Cofilin increases the torsional flexibility and dynamics of actin filaments. J Mol Biol 353:990–1000 Prochniewicz E, Janson N, Thomas DD et al (2005) Cofilin increases the torsional flexibility and dynamics of actin filaments. J Mol Biol 353:990–1000
128.
Zurück zum Zitat Lettinga MP, van Kats CM, Philipse AP (2000) Rotational diffusion of tracer spheres in packings and dispersions of colloidal spheres studied with time-resolved phosphorescence anisotropy. Langmuir 16:6166–6172 Lettinga MP, van Kats CM, Philipse AP (2000) Rotational diffusion of tracer spheres in packings and dispersions of colloidal spheres studied with time-resolved phosphorescence anisotropy. Langmuir 16:6166–6172
129.
Zurück zum Zitat Zhang Y, Aslan K, Previte MJR et al (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110:25108–25114 Zhang Y, Aslan K, Previte MJR et al (2006) Metal-enhanced phosphorescence: interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110:25108–25114
130.
Zurück zum Zitat Gersten J, Nitzan A (1984) Accelerated energy transfer between molecules near a solid particle. Chem Phys Lett 104:31–37 Gersten J, Nitzan A (1984) Accelerated energy transfer between molecules near a solid particle. Chem Phys Lett 104:31–37
131.
Zurück zum Zitat Hua XM, Gersten J, Nitzan A (1985) Theory of energy transfer between molecules near solid state particles. J Chem Phys 83:3650–3659 Hua XM, Gersten J, Nitzan A (1985) Theory of energy transfer between molecules near solid state particles. J Chem Phys 83:3650–3659
132.
Zurück zum Zitat Lakowicz JR, Kuśba J, Shen Y et al (2003) Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA. J Fluoresc 13:69–77 Lakowicz JR, Kuśba J, Shen Y et al (2003) Effects of metallic silver particles on resonance energy transfer between fluorophores bound to DNA. J Fluoresc 13:69–77
133.
Zurück zum Zitat Zhang J, Fu Y, Lakowicz JR (2007) Enhanced Förster resonance energy transfer (FRET) on a single metal particle. J Phys Chem C 111:50–56 Zhang J, Fu Y, Lakowicz JR (2007) Enhanced Förster resonance energy transfer (FRET) on a single metal particle. J Phys Chem C 111:50–56
134.
Zurück zum Zitat Zhang J, Fu Y, Chowdhury MH et al (2007) Enhanced Förster resonance energy transfer on single metal particle. 2. Dependence on donor-acceptor separation distance, particle size, and distance from metal surface. J Phys Chem C 111:11784–11792 Zhang J, Fu Y, Chowdhury MH et al (2007) Enhanced Förster resonance energy transfer on single metal particle. 2. Dependence on donor-acceptor separation distance, particle size, and distance from metal surface. J Phys Chem C 111:11784–11792
135.
Zurück zum Zitat Lessard-Viger M, Rioux M, Rainville L et al (2009) FRET enhancement in multilayer core-shell nanoparticles. Nano Lett 9:3066–3071 Lessard-Viger M, Rioux M, Rainville L et al (2009) FRET enhancement in multilayer core-shell nanoparticles. Nano Lett 9:3066–3071
136.
Zurück zum Zitat Govorov AO, Lee J, Kotov NA (2007) Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys Rev B 76:125308 Govorov AO, Lee J, Kotov NA (2007) Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles. Phys Rev B 76:125308
137.
Zurück zum Zitat Komarala VK, Bradley AL, Rakovich YP et al (2008) Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Appl Phys Lett 93:123102 Komarala VK, Bradley AL, Rakovich YP et al (2008) Surface plasmon enhanced Förster resonance energy transfer between the CdTe quantum dots. Appl Phys Lett 93:123102
138.
Zurück zum Zitat Chan YH, Chen J, Wark SE et al (2009) Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots. ACS Nano 3:1735–1744 Chan YH, Chen J, Wark SE et al (2009) Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots. ACS Nano 3:1735–1744
139.
Zurück zum Zitat Lee A, Coombs NA, Gourevich I et al (2009) Lamellar envelopes of semiconductor nanocrystals. J Am Chem Soc 131:10182–10188 Lee A, Coombs NA, Gourevich I et al (2009) Lamellar envelopes of semiconductor nanocrystals. J Am Chem Soc 131:10182–10188
140.
Zurück zum Zitat Govorov AO (2008) Enhanced optical properties of a photosynthetic system conjugated with semiconductor nanoparticles: the role of Förster transfer. Adv Mater 20:4330–4335 Govorov AO (2008) Enhanced optical properties of a photosynthetic system conjugated with semiconductor nanoparticles: the role of Förster transfer. Adv Mater 20:4330–4335
141.
Zurück zum Zitat Shan Y, Xu JJ, Chen HY (2009) Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS: Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 905–907 Shan Y, Xu JJ, Chen HY (2009) Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS: Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA. Chem Commun 905–907
142.
Zurück zum Zitat Shegai T, Huang Y, Xu H et al (2010) Coloring fluorescence emission with silver nanowires. Appl Phys Lett 96:103114 Shegai T, Huang Y, Xu H et al (2010) Coloring fluorescence emission with silver nanowires. Appl Phys Lett 96:103114
Metadaten
Titel
Luminescence Amplification Strategies Integrated with Microparticle and Nanoparticle Platforms
verfasst von
Shengchao Zhu
Tobias Fischer
Wei Wan
Ana B. Descalzo
Knut Rurack
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/128_2010_99

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.