Skip to main content

Spinodal Crystallization of Polymers: Crystallization from the Unstable Melt

  • Chapter
  • First Online:
Interphases and Mesophases in Polymer Crystallization III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 191))

Abstract

This paper reviews the authors' investigation into polymer crystallization, especially involving a spinodal decomposition (SD) type phase separation due to the orientation fluctuation of stiff segments prior to crystal nucleation. Evidences for SD obtained from small-angle X-ray and neutron scattering (SAXS and SANS), depolarized light scattering (DPLS), Fourier-transform infrared spectroscopy (FT-IR) are discussed in detail in the case of the glass crystallization of poly(ethylene terephthalate) (PET) just above Tg. SD-like optical micrographs are also shown as a function of crystallization temperature for the melt crystallization of PET; their characteristic wavelengths Λ, which are of the order of μm above 120 °C, follow a van Aartsen equation derived from the Cahn–Hilliard theory for SD. By fitting the equation to the observed characteristic wavelengths the spinodal temperature Ts was determined to be Ts = 213 ± 5 °Cfor the PET melt, above which the SD pattern suddenly changed to the usual spherulite pattern. On the basis of a theory by Olmsted et al. [4], the general mechanisms of polymer crystallization are also discussed; the crystallization from the metastable melt causes the nucleation and growth (N&G) of dense (nematic) domains while that from the unstable melt causes SD into the dense (nematic) and less dense (isotropic) domains. Furthermore, the secondary phase separation of the SD-type phase separation into smectic and amorphous domains subsequently occurs inside the nematic domain for both these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassett DC (1981) Principles of Polymer Morphology. Cambridge Univ Press, Cambridge

    Google Scholar 

  2. Lauritzen Jr JI, Hoffman JD (1973) J Appl Phys 44:4340–4352

    Google Scholar 

  3. Hoffman JD, Thomas Davis G, Lauritzen Jr JI (1976) In: Hannay NB (ed) Treatise on Solid State Chemistry, vol 3. Plenum Press, New York, p 497–614

    Google Scholar 

  4. Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ (1998) Phys Rev Lett 81:373–376

    Article  CAS  Google Scholar 

  5. ten Wolde PR, Frenkel D (1997) Science 277:1975–1978

    Article  Google Scholar 

  6. Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Polymer 33:4451–4456

    CAS  Google Scholar 

  7. Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Polymer 33:4457–4462

    CAS  Google Scholar 

  8. Imai M, Kaji K, Kanaya T (1993) Phys Rev Lett 71:4162–4165

    CAS  Google Scholar 

  9. Imai M, Kaji K, Kanaya T (1994) Macromolecules 27:7103–7108

    Article  CAS  Google Scholar 

  10. Imai M, Kaji K, Kanaya T, Sakai Y (1995) Physica B 213/214:718–720

    Google Scholar 

  11. Imai M, Kaji K, Kanaya T, Sakai Y (1995) Phys Rev B 52:12696–12704

    Article  CAS  Google Scholar 

  12. Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M (1999) Macromolecules 32:8932–8937

    Article  CAS  Google Scholar 

  13. Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M (1999) Polymer J 31:722–727

    CAS  Google Scholar 

  14. Matsuba G, Kanaya T, Saito M, Kaji K, Nishida K (2000) Phys Rev E 62:R1497–R1500

    Article  CAS  Google Scholar 

  15. Matsuba G, Kaji K, Kanaya T, Nishida K (2002) Phys Rev E 65:061801–1∼7

    Google Scholar 

  16. Nishida K, Kaji K, Kanaya T, Matsuba G, Konishi T (2004) J Polym Sci B Polym Phys 42:1817–1822

    CAS  Google Scholar 

  17. Nishida K, Konishi T, Kanaya T, Kaji K (2004) Polymer 45:1417–1421

    Article  Google Scholar 

  18. Kaji K, Imai M (1998) In: Yonezawa F, Tsuji K, Kaji K, Doi M, Fujiwara T (eds) The Physics of Complex Liquids. World Scientific, Singapore, p 258–273

    Google Scholar 

  19. Kaji K (2002) In: Fakirov S (ed) Handbook of Thermoplastic Polyesters, vol 1. Wiley, Weinheim, p 225–251

    Google Scholar 

  20. Kaji K, Nishida K, Matsuba G, Kanaya T, Imai M (2003) J Macromol Sci B42:709–715

    Google Scholar 

  21. van Krevelen DW (1990) Properties of Polymers. Elsevier, Amsterdam, p 585–623

    Google Scholar 

  22. van Aartsen JJ (1970) Eur Polym J 6:919–924

    Google Scholar 

  23. Smolders CA, van Aartsen JJ, Steenberger A (1971) Kolloid-Z u Z Polymere 243:14–20

    Google Scholar 

  24. Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Oxford University Press, Oxford, Chapters 9, 10, p 350–380

    Google Scholar 

  25. Shimada T, Doi M, Okano K (1988) J Chem Phys 88:7181–7186

    CAS  Google Scholar 

  26. Strobl G (2000) Eur Phys J E3:165–183

    Article  CAS  Google Scholar 

  27. Wang Z-G, Hsiao BS, Sirota EB, Agarwal P, Srinivas S (2000) Macromolecules 33:978–989

    CAS  Google Scholar 

  28. Wang Z-G, Hsiao BS, Srinivas S, Brown GM, Tsou AH, Chen SZD, Stein RS (2001) Polymer 42:7561–7566

    CAS  Google Scholar 

  29. Ryan AJ, Fairclough JPA, Terrill NJ, Olmsted PD, Poon WCK (1999) Faraday Disccus 112:13–29

    CAS  Google Scholar 

  30. Heeley EL, Kit Poh C, Li W, Maidens A, Bras W, Dolbnya IP, Gleeson AJ, Terrill NJ, Fairclough JPA, Olmsted PD, Ristic RI, Hounslow MJ, Ryan AJ (2002) Faraday Discuss 122:343–361

    Google Scholar 

  31. Heeley EL, Maidens AV, Olmsted PD, Bras W, Dolbnya IP, Fairclough JPA, Terrill NJ, Ryan AJ (2003) Macromolecules 36:3656–3665

    Article  CAS  Google Scholar 

  32. Muthukumar M, Welch P (2000) Polymer 41:8833–8837

    Article  CAS  Google Scholar 

  33. Muthukumar M (2003) Phil Trans R Soc London A 361:539–556

    CAS  Google Scholar 

  34. Li L, de Jeu WH (2003) Macromolecules 36:4862–4867

    CAS  Google Scholar 

  35. Li L, de Jeu WH (2004) Phys Rev Lett 92:075506-1–075506-3

    Google Scholar 

  36. Imai M (1993) PhD Thesis, Kyoto University; Imai M, Kaji K, Polymer (in press)

    Google Scholar 

  37. Yeh GSY, Geil PH (1967) J Macromol Sci Phys B1:235–249

    Google Scholar 

  38. Yeh GSY (1972) J Macromol Sci Phys B6:465–478

    Google Scholar 

  39. Uhlmann DR (1979) Faraday Disc Chem Soc 68:87–95

    Article  Google Scholar 

  40. Geil PH (1979) Faraday Disc Chem Soc 68:141–144

    Article  Google Scholar 

  41. Flory PJ (1956) Proc Roy Soc A 234:60–73

    Google Scholar 

  42. See for example, Kaji K (2000) In: Gabrys BJ (ed) Applications of Neutron Scattering to Soft Condensed Matter. Gordon and Breach Science Publisher, Amsterdam, p 107–161

    Google Scholar 

  43. Geil PH (2002) In: Fakirov S (ed) Handbook of Thermoplastic Polyesters. Wiley, Weinheim p 105–224

    Google Scholar 

  44. Lee S, Miyaji H, Geil PH (1983) J Macromol Sci Phys B22:489–496

    CAS  Google Scholar 

  45. Fischer EW (1990) In: Colmenero J, Alegra A (eds) Basic Features of the Glassy State. World Scientific, Singapore p 172–191

    Google Scholar 

  46. Fischer EW (1993) Physica A 201:183–206

    Article  CAS  Google Scholar 

  47. Cahn J, Hilliard JE (1958) J Chem Phys 28:258–267

    Article  CAS  Google Scholar 

  48. Binder K (1974) Phys Rev B 15:4425–4447

    Google Scholar 

  49. Furukawa H (1984) Physica 123A:497–515

    Google Scholar 

  50. Debye P, Bueche AM (1949) J Appl Phys 20:518–525

    Article  CAS  Google Scholar 

  51. Komura S, Osamura K, Fujii H, Takeda T (1985) Phys Rev B31:1278–1301

    Google Scholar 

  52. Strobl GR, Schneider M (1980) J Polym Sci Polym Phys Ed 18:1348–1359

    Google Scholar 

  53. Flory PJ (1969) Statistical Mechanics of Chain Molecules. Interscience, New York, Chapter, 1, p 1–29

    Google Scholar 

  54. Stein RS, Wilson PR (1962) J Appl Phys 33:1914–1922

    Article  CAS  Google Scholar 

  55. Koberstein J, Russel TP, Stein RS (1979) J Polym Sci Polym Phys Ed 17:1719–1730

    CAS  Google Scholar 

  56. Kobayashi M, Nakaoki T, Ishihara N (1989) Macromolecules 22:4377–4382

    CAS  Google Scholar 

  57. Greis O, Xu Y, Asano T, Petermann J (1989) Polymer 30:590–594

    Article  CAS  Google Scholar 

  58. Natta G, Corradini P, Bassi IW (1960) Nuovo Simmento, Suppl 15:68–70

    Google Scholar 

  59. Kobayashi M, Akita K, Tadokoro (1968) Makromol Chem 118:324

    Article  CAS  Google Scholar 

  60. Einaga Y, Koyama H, Konishi T, Yamakawa H (1989) Macromolecules 22:3419–3424

    Article  CAS  Google Scholar 

  61. Ediger MD, Angell CA, Nagel SR (1996) J Chem Phys 100:13200–13212

    CAS  Google Scholar 

  62. Matsuoka S and Quan X (1991) Macromolecules 24:2770–2779

    Google Scholar 

  63. Kanaya T, Patkowski A, Fischer EW, Seils J, Glaeser H, Kaji K (1994) Acta Polymer 45:137–142

    Article  CAS  Google Scholar 

  64. Gehrke R, Riekel C, Zachmann HG (1989) Polymer 30:1582–1590

    Article  CAS  Google Scholar 

  65. Donth E (2001) The Glass Transition: relaxation dynamics in liquids and disordered materials. Springer, Berlin, p 1–418

    Google Scholar 

  66. Kanaya T, Kaji K (2001) Adv Polym Sci 154:87–141

    CAS  Google Scholar 

  67. Goetze W (1991) In: Hansen JP, Levesque D, Zinn-Justin (eds) Liquids, Freezing and Glass Transition. Elsevier Science Publishers BV, Amsterdam, p 287–503

    Google Scholar 

  68. Perez J (1998) Physics and Mechanics of Amorphous Polymers. AA Balkema Publishers, Rotterdam, p 280–285

    Google Scholar 

  69. Kanig G (1983) Colloid Polym Sci 261:373–374

    CAS  Google Scholar 

  70. Bonart R (1966) Kolloid-Z Z Polym 213:1–11

    CAS  Google Scholar 

  71. Asano T, Balta-Calleja FJ, Flores A, Tanigami M, Mini MN, Sawatari C, Itagaki H, Takahashi H, Hatta I (1999) Polymer 40:6475–6484

    Article  CAS  Google Scholar 

  72. Mahendrasingam A, Martin C, Fuller W, Blundell DJ, Oldham RJ, MacKerron DH, Harvie JL, Riekel C (2000) Polymer 41:1217–1221

    CAS  Google Scholar 

  73. Fukao K (2003) Macromol Sci-Phys 42:717–731

    Google Scholar 

  74. Kelton KF (1991) Crystal Nucleation in Liquids and Glasses. Solid State Physics, vol 45. Academic Press, New York

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Grant-in-Aid for Scientific Research on Priority Area “Cooperative Phenomena in Complex Liquids” (1995–1997), Grant-in-Aid for Scientific Research on Fundamental Research (A-2) (1998–2001), and Grant-in-Aid for Scientific Research on Priority Area “Mechanism of Polymer Crystallization” (2000–2002) from the Ministry of Education, Science, Sports and Culture of Japan, and by the International Joint Research Grant for the Project “Fundamental Studies on Crystallization of Polymers” (1995–1998) and Industrial Technology Research Grant (ITRG) Program “Control of Higher Order Structure of Polymer Materials” (2001–2004) of the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Kaji .

Editor information

Giuseppe Allegra

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Kaji, K., Nishida, K., Kanaya, T., Matsuba, G., Konishi, T., Imai, M. Spinodal Crystallization of Polymers: Crystallization from the Unstable Melt. In: Allegra, G. (eds) Interphases and Mesophases in Polymer Crystallization III. Advances in Polymer Science, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_013

Download citation

Publish with us

Policies and ethics