Skip to main content

2015 | OriginalPaper | Buchkapitel

Shape Memory Polymer–Inorganic Hybrid Nanocomposites

verfasst von : Radu Reit, Benjamin Lund, Walter Voit

Erschienen in: Organic-Inorganic Hybrid Nanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shape memory polymers (SMPs) have been the focus of much research over the last few decades. From the novelty of temporarily fixing a three-dimensional shape from a planar polymer sheet, to the uses that SMPs are seeing today as softening biomedical implants and self-deploying hinges, this class of smart materials has successfully been used to tackle a variety of biological, electrical, and mechanical problems. However, the properties of these networks are limited by the organic nature of the SMPs. To enhance their properties, researchers across the globe have looked into imparting the desirable properties of inorganic composite materials to these polymer networks. As the field of shape memory polymer composites began to grow, researchers quantified the unique enhancements that came at varying filler loading levels as a result of controlled material interface interactions. Specifically, the incorporation of nanofillers of various shapes and sizes leads to increased internal interfacial area relative to micro- and macrocomposites at identical loading fractions and imparts interesting mechanical, optical, electrical, thermal, and magnetic properties to these emerging nanocomposites. This new class of material, referred to in this review as shape memory polymer–inorganic nanocomposites (SMPINCs), allows a host of new interactions between the smart polymer and its surrounding environment as a result of the ability to control the internal environment of the polymer network and nanofiller. In this work, the reader is introduced to both the methods of preparing these composites and the effects the fillers have on the biological, electromagnetic, and mechanical properties of the resulting composite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Huang W et al (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20(17):3367–3381 Huang W et al (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20(17):3367–3381
2.
Zurück zum Zitat Liu C, Qin H, Mather P (2007) Review of progress in shape-memory polymers. J Mater Chem 17(16):1543–1558 Liu C, Qin H, Mather P (2007) Review of progress in shape-memory polymers. J Mater Chem 17(16):1543–1558
3.
Zurück zum Zitat Lu H, Huang W, Yao Y (2013) Review of chemo-responsive shape change/memory polymers. Pigment Resin Technol 42(4):237–246 Lu H, Huang W, Yao Y (2013) Review of chemo-responsive shape change/memory polymers. Pigment Resin Technol 42(4):237–246
4.
Zurück zum Zitat Mather PT, Luo X, Rousseau IA (2009) Shape memory polymer research. Annu Rev Mater Res 39:445–471 Mather PT, Luo X, Rousseau IA (2009) Shape memory polymer research. Annu Rev Mater Res 39:445–471
5.
Zurück zum Zitat Behl M, Zotzmann J, Lendlein A (2010) Shape-memory polymers and shape-changing polymers. In: Lendlein A (ed) Shape-memory polymers. Advances in Polymer Science, vol 226. Springer, Berlin, pp 1–40 Behl M, Zotzmann J, Lendlein A (2010) Shape-memory polymers and shape-changing polymers. In: Lendlein A (ed) Shape-memory polymers. Advances in Polymer Science, vol 226. Springer, Berlin, pp 1–40
6.
Zurück zum Zitat Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221 Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221
7.
Zurück zum Zitat Xie T (2011) Recent advances in polymer shape memory. Polymer 52(22):4985–5000 Xie T (2011) Recent advances in polymer shape memory. Polymer 52(22):4985–5000
8.
Zurück zum Zitat Santhosh Kumar K, Biju R, Reghunadhan Nair C (2013) Progress in shape memory epoxy resins. React Funct Polym 73(2):421–430 Santhosh Kumar K, Biju R, Reghunadhan Nair C (2013) Progress in shape memory epoxy resins. React Funct Polym 73(2):421–430
9.
Zurück zum Zitat Anis A et al (2013) Developments in shape memory polymeric materials. Polym Plast Technol Eng 52(15):1574–1589 Anis A et al (2013) Developments in shape memory polymeric materials. Polym Plast Technol Eng 52(15):1574–1589
10.
Zurück zum Zitat Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40(11):1661–1672 Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A Appl Sci Manuf 40(11):1661–1672
11.
Zurück zum Zitat Leng J, Lan X, Du S (2010) Shape-memory polymer composites. In: Leng J, Du S (eds) Shape-memory polymers and multifunctional composites. CRC, Boca Raton, p 203 Leng J, Lan X, Du S (2010) Shape-memory polymer composites. In: Leng J, Du S (eds) Shape-memory polymers and multifunctional composites. CRC, Boca Raton, p 203
12.
Zurück zum Zitat Leng J et al (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135 Leng J et al (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135
13.
Zurück zum Zitat Madbouly SA, Lendlein A (2010) Shape-memory polymer composites. In: Lendlein A (ed) Shape-memory polymers. Advances in Polymer Science, vol 226. Springer, Berlin, pp 41–95 Madbouly SA, Lendlein A (2010) Shape-memory polymer composites. In: Lendlein A (ed) Shape-memory polymers. Advances in Polymer Science, vol 226. Springer, Berlin, pp 41–95
14.
Zurück zum Zitat Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269 Ratna D, Karger-Kocsis J (2008) Recent advances in shape memory polymers and composites: a review. J Mater Sci 43(1):254–269
15.
Zurück zum Zitat Wei Z, Sandstroröm R, Miyazaki S (1998) Shape-memory materials and hybrid composites for smart systems: part I shape-memory materials. J Mater Sci 33(15):3743–3762 Wei Z, Sandstroröm R, Miyazaki S (1998) Shape-memory materials and hybrid composites for smart systems: part I shape-memory materials. J Mater Sci 33(15):3743–3762
16.
Zurück zum Zitat Zhang L, Brostowitz NR, Cavicchi KA, Weiss RA (2014) Perspective: ionomer research and applications. Macromol React Eng 8:81–99 Zhang L, Brostowitz NR, Cavicchi KA, Weiss RA (2014) Perspective: ionomer research and applications. Macromol React Eng 8:81–99
17.
Zurück zum Zitat Silverstein MS (2014) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39(1):199–234 Silverstein MS (2014) PolyHIPEs: recent advances in emulsion-templated porous polymers. Prog Polym Sci 39(1):199–234
18.
Zurück zum Zitat Zhang W, Müller AH (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38(8):1121–1162 Zhang W, Müller AH (2013) Architecture, self-assembly and properties of well-defined hybrid polymers based on polyhedral oligomeric silsequioxane (POSS). Prog Polym Sci 38(8):1121–1162
19.
Zurück zum Zitat Park D-H et al (2013) Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog Polym Sci 38(10):1442–1486 Park D-H et al (2013) Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog Polym Sci 38(10):1442–1486
20.
Zurück zum Zitat Kango S et al (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261 Kango S et al (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261
21.
Zurück zum Zitat Miaudet P et al (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854):1294–1296 Miaudet P et al (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854):1294–1296
22.
Zurück zum Zitat Lu H et al (2010) Mechanical and shape‐memory behavior of shape‐memory polymer composites with hybrid fillers. Polymer Int 59(6):766–771 Lu H et al (2010) Mechanical and shape‐memory behavior of shape‐memory polymer composites with hybrid fillers. Polymer Int 59(6):766–771
23.
Zurück zum Zitat Nji J, Li G (2010) A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. Smart Mater Struct 19(3):035007 Nji J, Li G (2010) A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation. Smart Mater Struct 19(3):035007
24.
Zurück zum Zitat Nji J, Li G (2010) A biomimic shape memory polymer based self-healing particulate composite. Polymer 51(25):6021–6029 Nji J, Li G (2010) A biomimic shape memory polymer based self-healing particulate composite. Polymer 51(25):6021–6029
25.
Zurück zum Zitat Kohlmeyer RR, Lor M, Chen J (2012) Remote, local, and chemical programming of healable multishape memory polymer nanocomposites. Nano Lett 12(6):2757–2762 Kohlmeyer RR, Lor M, Chen J (2012) Remote, local, and chemical programming of healable multishape memory polymer nanocomposites. Nano Lett 12(6):2757–2762
26.
Zurück zum Zitat Tridech C et al (2013) High performance composites with active stiffness control. ACS Appl Mater Interfaces 5(18):9111–9119 Tridech C et al (2013) High performance composites with active stiffness control. ACS Appl Mater Interfaces 5(18):9111–9119
27.
Zurück zum Zitat Fonseca M et al (2013) Shape memory polyurethanes reinforced with carbon nanotubes. Compos Struct 99:105–111 Fonseca M et al (2013) Shape memory polyurethanes reinforced with carbon nanotubes. Compos Struct 99:105–111
28.
Zurück zum Zitat Li H et al (2013) The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites. Compos B Eng 44(1):508–516 Li H et al (2013) The reinforcement efficiency of carbon nanotubes/shape memory polymer nanocomposites. Compos B Eng 44(1):508–516
29.
Zurück zum Zitat Ratna D, Jagtap SB, Abraham T (2013) Nanocomposites of poly(ethylene oxide) and multiwall carbon nanotube prepared using an organic salt‐assisted dispersion technique. Polymer Eng Sci 53(3):555–563 Ratna D, Jagtap SB, Abraham T (2013) Nanocomposites of poly(ethylene oxide) and multiwall carbon nanotube prepared using an organic salt‐assisted dispersion technique. Polymer Eng Sci 53(3):555–563
30.
Zurück zum Zitat Yang J-P et al (2012) Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone). Compos B Eng 43(1):22–26 Yang J-P et al (2012) Cryogenic mechanical behaviors of carbon nanotube reinforced composites based on modified epoxy by poly(ethersulfone). Compos B Eng 43(1):22–26
31.
Zurück zum Zitat Kausar A, Hussain ST (2013) Effect of modified filler surfaces and filler tethered polymer chains on morphology and physical properties of poly(azo-pyridylurethane)/multi-walled carbon nanotube nanocomposites. J Plast Film Sheeting 30: 181–204. doi:10.1177/8756087913493633 Kausar A, Hussain ST (2013) Effect of modified filler surfaces and filler tethered polymer chains on morphology and physical properties of poly(azo-pyridylurethane)/multi-walled carbon nanotube nanocomposites. J Plast Film Sheeting 30: 181–204. doi:10.​1177/​8756087913493633​
32.
Zurück zum Zitat Jiang L et al (2014) Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids. Compos Sci Technol 91:98–103 Jiang L et al (2014) Simultaneous reinforcement and toughening of polyurethane composites with carbon nanotube/halloysite nanotube hybrids. Compos Sci Technol 91:98–103
33.
Zurück zum Zitat Yoonessi M et al (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6(9):7644–7655 Yoonessi M et al (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6(9):7644–7655
34.
Zurück zum Zitat Choi JT et al (2012) Shape memory polyurethane nanocomposites with functionalized graphene. Smart Mater Struct 21(7):075017 Choi JT et al (2012) Shape memory polyurethane nanocomposites with functionalized graphene. Smart Mater Struct 21(7):075017
35.
Zurück zum Zitat Liang J et al (2014) Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8:1590 Liang J et al (2014) Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8:1590
36.
Zurück zum Zitat Iyengar PK et al (2013) Polymethyl methacrylate nanofiber-reinforced epoxy composite for shape-memory applications. High Perform Polymer 25(8):1000–1006 Iyengar PK et al (2013) Polymethyl methacrylate nanofiber-reinforced epoxy composite for shape-memory applications. High Perform Polymer 25(8):1000–1006
37.
Zurück zum Zitat Lu H, Huang WM, Leng J (2014) Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites. Compos B Eng 62:1–4 Lu H, Huang WM, Leng J (2014) Functionally graded and self-assembled carbon nanofiber and boron nitride in nanopaper for electrical actuation of shape memory nanocomposites. Compos B Eng 62:1–4
38.
Zurück zum Zitat Lu H, Lei M, Leng J (2014) Significantly improving electro‐activated shape recovery performance of shape memory nanocomposite by self‐assembled carbon nanofiber and hexagonal boron nitride. J Appl Polym Sci 131:40506 Lu H, Lei M, Leng J (2014) Significantly improving electro‐activated shape recovery performance of shape memory nanocomposite by self‐assembled carbon nanofiber and hexagonal boron nitride. J Appl Polym Sci 131:40506
39.
Zurück zum Zitat Hollaway L (2011) Thermoplastic–carbon fiber composites could aid solar-based power generation: possible support system for solar power satellites. J Compos Construct 15(2):239–247 Hollaway L (2011) Thermoplastic–carbon fiber composites could aid solar-based power generation: possible support system for solar power satellites. J Compos Construct 15(2):239–247
40.
Zurück zum Zitat Wu T, O’Kelly K, Chen B (2014) Poly (vinyl alcohol) particle-reinforced elastomer composites with water-active shape-memory effects. Eur Polym J 53:230–237 Wu T, O’Kelly K, Chen B (2014) Poly (vinyl alcohol) particle-reinforced elastomer composites with water-active shape-memory effects. Eur Polym J 53:230–237
41.
Zurück zum Zitat Yang B et al (2005) Qualitative separation of the effects of carbon nano-powder and moisture on the glass transition temperature of polyurethane shape memory polymer. Scr Mater 53(1):105–107 Yang B et al (2005) Qualitative separation of the effects of carbon nano-powder and moisture on the glass transition temperature of polyurethane shape memory polymer. Scr Mater 53(1):105–107
42.
Zurück zum Zitat Dorigato A et al (2013) Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles. Express Polym Lett 7(8):673 Dorigato A et al (2013) Electrically conductive epoxy nanocomposites containing carbonaceous fillers and in-situ generated silver nanoparticles. Express Polym Lett 7(8):673
43.
Zurück zum Zitat Garle A et al (2012) Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl Mater Interfaces 4(2):645–657 Garle A et al (2012) Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory. ACS Appl Mater Interfaces 4(2):645–657
44.
Zurück zum Zitat Chang L, Read T (1951) Behavior of the elastic properties of AuCd. Trans Met Soc AIME 189:47 Chang L, Read T (1951) Behavior of the elastic properties of AuCd. Trans Met Soc AIME 189:47
45.
Zurück zum Zitat Sillion B (2002) Shape memory polymers. Actual Chim 3:182–188 Sillion B (2002) Shape memory polymers. Actual Chim 3:182–188
46.
Zurück zum Zitat Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63 Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63
47.
Zurück zum Zitat Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(varepsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA 98(3):842–847 Lendlein A, Schmidt AM, Langer R (2001) AB-polymer networks based on oligo(varepsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci USA 98(3):842–847
48.
Zurück zum Zitat Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676 Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676
49.
Zurück zum Zitat Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034 Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034
50.
Zurück zum Zitat Voit W, Ware T, Gall K (2011) Shape memory polymers and process for preparing. WO Patent 2,011,049,879 Voit W, Ware T, Gall K (2011) Shape memory polymers and process for preparing. WO Patent 2,011,049,879
51.
Zurück zum Zitat Wischke C, Lendlein A (2010) Shape-memory polymers as drug carriers—a multifunctional system. Pharm Res 27(4):527–529 Wischke C, Lendlein A (2010) Shape-memory polymers as drug carriers—a multifunctional system. Pharm Res 27(4):527–529
52.
Zurück zum Zitat Yakacki CM et al (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28(14):2255–2263 Yakacki CM et al (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28(14):2255–2263
53.
Zurück zum Zitat Gall K et al (2005) Thermomechanics of the shape memory effect in polymers for biomedical applications. J Biomed Mater Res A 73A(3):339–348 Gall K et al (2005) Thermomechanics of the shape memory effect in polymers for biomedical applications. J Biomed Mater Res A 73A(3):339–348
54.
Zurück zum Zitat Sharp AA et al (2006) Toward a self-deploying shape memory polymer neuronal electrode. J Neural Eng 3(4):L23 Sharp AA et al (2006) Toward a self-deploying shape memory polymer neuronal electrode. J Neural Eng 3(4):L23
55.
Zurück zum Zitat Ware T et al (2012) Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol Mater Eng 297 Ware T et al (2012) Three-dimensional flexible electronics enabled by shape memory polymer substrates for responsive neural interfaces. Macromol Mater Eng 297
56.
Zurück zum Zitat Baer G et al (2007) Shape-memory behavior of thermally stimulated polyurethane for medical applications. J Appl Polym Sci 103(6):3882–3892 Baer G et al (2007) Shape-memory behavior of thermally stimulated polyurethane for medical applications. J Appl Polym Sci 103(6):3882–3892
57.
Zurück zum Zitat Small IVW et al (2010) Biomedical applications of thermally activated shape memory polymers. J Mater Chem 20(17):3356–3366 Small IVW et al (2010) Biomedical applications of thermally activated shape memory polymers. J Mater Chem 20(17):3356–3366
58.
Zurück zum Zitat Gall K et al (2002) Shape memory polymer nanocomposites. Acta Mater 50(20):5115–5126 Gall K et al (2002) Shape memory polymer nanocomposites. Acta Mater 50(20):5115–5126
59.
Zurück zum Zitat Gall K et al (2004) Internal stress storage in shape memory polymer nanocomposites. Appl Phys Lett 85(2):290–292 Gall K et al (2004) Internal stress storage in shape memory polymer nanocomposites. Appl Phys Lett 85(2):290–292
60.
Zurück zum Zitat Liu Y et al (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36(10):929–940 Liu Y et al (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36(10):929–940
61.
Zurück zum Zitat Cho JW, Lee SH (2004) Influence of silica on shape memory effect and mechanical properties of polyurethane–silica hybrids. Eur Polym J 40:1343–1348 Cho JW, Lee SH (2004) Influence of silica on shape memory effect and mechanical properties of polyurethane–silica hybrids. Eur Polym J 40:1343–1348
62.
Zurück zum Zitat Koerner H et al (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3(2):115–120 Koerner H et al (2004) Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3(2):115–120
63.
Zurück zum Zitat Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734 Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734
64.
Zurück zum Zitat Vaia RA et al (1997) Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly(ethylene oxide) intercalated in montmorillonite. J Polym Sci B 35(1):59–67 Vaia RA et al (1997) Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly(ethylene oxide) intercalated in montmorillonite. J Polym Sci B 35(1):59–67
65.
Zurück zum Zitat Arzberger SC et al (2005) Elastic memory composites (EMC) for deployable industrial and commercial applications. In: White EV (ed) Proceedings of the SPIE 5762: Smart structures and materials 2005:Industrial and commercial applications of smart structures technologies. International Society for Optics and Photonics, Bellingham. doi:10.1117/12.600583 Arzberger SC et al (2005) Elastic memory composites (EMC) for deployable industrial and commercial applications. In: White EV (ed) Proceedings of the SPIE 5762: Smart structures and materials 2005:Industrial and commercial applications of smart structures technologies. International Society for Optics and Photonics, Bellingham. doi:10.​1117/​12.​600583
66.
Zurück zum Zitat Ohki T et al (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos A Appl Sci Manuf 35(9):1065–1073 Ohki T et al (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos A Appl Sci Manuf 35(9):1065–1073
67.
Zurück zum Zitat Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172 Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172
68.
Zurück zum Zitat Schulz MJ, Kelkar AD, Sundaresan MJ (eds) (2004) Nanoengineering of structural, functional and smart materials, CRC, Boca Raton Schulz MJ, Kelkar AD, Sundaresan MJ (eds) (2004) Nanoengineering of structural, functional and smart materials, CRC, Boca Raton
69.
Zurück zum Zitat Utracki LA (2004) Clay-containing polymeric nanocomposites, vol 1. Smithers Rapra Technology, Shawbury, UK Utracki LA (2004) Clay-containing polymeric nanocomposites, vol 1. Smithers Rapra Technology, Shawbury, UK
70.
Zurück zum Zitat Cao F, Jana SC (2007) Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48(13):3790–3800 Cao F, Jana SC (2007) Nanoclay-tethered shape memory polyurethane nanocomposites. Polymer 48(13):3790–3800
71.
Zurück zum Zitat Razzaq MY, Frormann L (2007) Thermomechanical studies of aluminum nitride filled shape memory polymer composites. Polym Compos 28(3):287–293 Razzaq MY, Frormann L (2007) Thermomechanical studies of aluminum nitride filled shape memory polymer composites. Polym Compos 28(3):287–293
72.
Zurück zum Zitat Rezanejad S, Kokabi M (2007) Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polym J 43(7):2856–2865 Rezanejad S, Kokabi M (2007) Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur Polym J 43(7):2856–2865
73.
Zurück zum Zitat Kim MS, Jun JK, Jeong HM (2008) Shape memory and physical properties of poly(ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Compos Sci Technol 68(7):1919–1926 Kim MS, Jun JK, Jeong HM (2008) Shape memory and physical properties of poly(ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Compos Sci Technol 68(7):1919–1926
74.
Zurück zum Zitat Ratna D (2011) Processing and characterization of poly(ethylene oxide)/clay nanocomposites. J Polymer Eng 31(4):323–327 Ratna D (2011) Processing and characterization of poly(ethylene oxide)/clay nanocomposites. J Polymer Eng 31(4):323–327
75.
Zurück zum Zitat Ali ES, Zubir SA, Ahmad S (2012) Clay reinforced hyperbranched polyurethane nanocomposites based on palm oil polyol as shape memory materials. Adv Mater Res 548:115–118 Ali ES, Zubir SA, Ahmad S (2012) Clay reinforced hyperbranched polyurethane nanocomposites based on palm oil polyol as shape memory materials. Adv Mater Res 548:115–118
76.
Zurück zum Zitat Cuevas J et al (2012) Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater Struct 21(3):035004 Cuevas J et al (2012) Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater Struct 21(3):035004
77.
Zurück zum Zitat George G (2012) Self-healing supramolecular polymer nanocomposites. PhD thesis, Deakin University, Melbourne George G (2012) Self-healing supramolecular polymer nanocomposites. PhD thesis, Deakin University, Melbourne
78.
Zurück zum Zitat Greil P (2012) Generic principles of crack-healing ceramics. J Adv Ceram 1(4):249–267 Greil P (2012) Generic principles of crack-healing ceramics. J Adv Ceram 1(4):249–267
79.
Zurück zum Zitat Han Y et al (2012) Zinc ion uniquely induced triple shape memory effect of dipole–dipole reinforced ultra‐high strength hydrogels. Macromol Rapid Commun 33(3):225–231 Han Y et al (2012) Zinc ion uniquely induced triple shape memory effect of dipole–dipole reinforced ultra‐high strength hydrogels. Macromol Rapid Commun 33(3):225–231
80.
Zurück zum Zitat Gao F (ed) (2012) Advances in polymer nanocomposites: types and applications. Woodhead, Cambridge Gao F (ed) (2012) Advances in polymer nanocomposites: types and applications. Woodhead, Cambridge
81.
Zurück zum Zitat Martin DJ, Osman AF, Andriani Y, Edwards GA (2012) Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In: Gao F (ed) Advances in polymer nanocomposites: types and applications. Woodhead, Cambridge, pp 321–350 Martin DJ, Osman AF, Andriani Y, Edwards GA (2012) Thermoplastic polyurethane (TPU)-based polymer nanocomposites. In: Gao F (ed) Advances in polymer nanocomposites: types and applications. Woodhead, Cambridge, pp 321–350
82.
Zurück zum Zitat LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1):11–29 LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1):11–29
83.
Zurück zum Zitat Padmanabhan K (2001) Mechanical properties of nanostructured materials. Mater Sci Eng A 304:200–205 Padmanabhan K (2001) Mechanical properties of nanostructured materials. Mater Sci Eng A 304:200–205
84.
Zurück zum Zitat James Korley LT et al (2006) Preferential association of segment blocks in polyurethane nanocomposites. Macromolecules 39(20):7030–7036 James Korley LT et al (2006) Preferential association of segment blocks in polyurethane nanocomposites. Macromolecules 39(20):7030–7036
85.
Zurück zum Zitat Edwards GA (2007) Optimisation of organically modified layered silicate based nanofillers for thermoplastic polyurethanes. PhD thesis. University of Queensland, Brisbane Edwards GA (2007) Optimisation of organically modified layered silicate based nanofillers for thermoplastic polyurethanes. PhD thesis. University of Queensland, Brisbane
86.
Zurück zum Zitat Quadrini F, Santo L, Squeo EA (2012) Solid-state foaming of nano–clay-filled thermoset foams with shape memory properties. Polym Plast Technol Eng 51(6):560–567 Quadrini F, Santo L, Squeo EA (2012) Solid-state foaming of nano–clay-filled thermoset foams with shape memory properties. Polym Plast Technol Eng 51(6):560–567
87.
Zurück zum Zitat Tan H et al (2012) Effect of clay modification on the morphological, mechanical, and thermal properties of epoxy/polypropylene/montmorillonite shape memory materials. In: Proceedings of the SPIE 8409: Third international conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics, Bellingham. doi:10.1117/12.923306 Tan H et al (2012) Effect of clay modification on the morphological, mechanical, and thermal properties of epoxy/polypropylene/montmorillonite shape memory materials. In: Proceedings of the SPIE 8409: Third international conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics, Bellingham. doi:10.​1117/​12.​923306
88.
Zurück zum Zitat Tarablsi B et al (2012) Maghemite intercalated montmorillonite as new nanofillers for photopolymers. Nanomaterials 2(4):413–427 Tarablsi B et al (2012) Maghemite intercalated montmorillonite as new nanofillers for photopolymers. Nanomaterials 2(4):413–427
89.
Zurück zum Zitat Chiu C-W, Huang T-K, Wang Y-C, Alamani BG, Lin J-J (2013) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39:443–485 Chiu C-W, Huang T-K, Wang Y-C, Alamani BG, Lin J-J (2013) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39:443–485
90.
Zurück zum Zitat Zhang D, Petersen KM, Grunlan MA (2012) Inorganic–organic shape memory polymer (SMP) foams with highly tunable properties. ACS Appl Mater Interfaces 5(1):186–191 Zhang D, Petersen KM, Grunlan MA (2012) Inorganic–organic shape memory polymer (SMP) foams with highly tunable properties. ACS Appl Mater Interfaces 5(1):186–191
91.
Zurück zum Zitat Zhang M, Rong M (2012) Design and synthesis of self-healing polymers. Sci China Chem 55(5):648–676 Zhang M, Rong M (2012) Design and synthesis of self-healing polymers. Sci China Chem 55(5):648–676
92.
Zurück zum Zitat Basit A et al (2013) Thermally activated composite with two-way and multi-shape memory effects. Materials 6(9):4031–4045 Basit A et al (2013) Thermally activated composite with two-way and multi-shape memory effects. Materials 6(9):4031–4045
93.
Zurück zum Zitat Jumahat A et al (2013) Fracture toughness of nanomodified-epoxy systems. Appl Mech Mater 393:206–211 Jumahat A et al (2013) Fracture toughness of nanomodified-epoxy systems. Appl Mech Mater 393:206–211
94.
Zurück zum Zitat Senses E, Akcora P (2013) An interface-driven stiffening mechanism in polymer nanocomposites. Macromolecules 46(5):1868–1874 Senses E, Akcora P (2013) An interface-driven stiffening mechanism in polymer nanocomposites. Macromolecules 46(5):1868–1874
95.
Zurück zum Zitat Xu B et al (2013) Nanocomposite hydrogels with high strength cross-linked by titania. RSC Adv 3(20):7233–7236 Xu B et al (2013) Nanocomposite hydrogels with high strength cross-linked by titania. RSC Adv 3(20):7233–7236
96.
Zurück zum Zitat Kang JH et al (2014) Enhanced adhesive strength between shape memory polymer nanocomposite and titanium alloy. Compos Sci Technol 96:23 Kang JH et al (2014) Enhanced adhesive strength between shape memory polymer nanocomposite and titanium alloy. Compos Sci Technol 96:23
97.
Zurück zum Zitat Stribeck N et al (2014) Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle X-ray scattering. Sci Tech Adv Mater 15(1):015004 Stribeck N et al (2014) Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle X-ray scattering. Sci Tech Adv Mater 15(1):015004
98.
Zurück zum Zitat Kazakevic̆iūtė-Makovska R, Steeb H (2013) Hierarchical architecture and modeling of bio-inspired mechanically adaptive polymer nanocomposites. In: Altenbach H, Forest S, Krivtsov A (eds) Generalized continua as models for materials. Advanced structured materials, vol 22. Springer, Berlin, pp 199–215 Kazakevic̆iūtė-Makovska R, Steeb H (2013) Hierarchical architecture and modeling of bio-inspired mechanically adaptive polymer nanocomposites. In: Altenbach H, Forest S, Krivtsov A (eds) Generalized continua as models for materials. Advanced structured materials, vol 22. Springer, Berlin, pp 199–215
99.
Zurück zum Zitat Zheng X et al (2006) Shape memory properties of poly(d, l-lactide)/hydroxyapatite composites. Biomaterials 27(24):4288–4295 Zheng X et al (2006) Shape memory properties of poly(d, l-lactide)/hydroxyapatite composites. Biomaterials 27(24):4288–4295
100.
Zurück zum Zitat Du K, Gan Z (2014) Shape memory behavior of HA-g-PDLLA nanocomposites prepared via in-situ polymerization. J Mater Chem B 2:3340 Du K, Gan Z (2014) Shape memory behavior of HA-g-PDLLA nanocomposites prepared via in-situ polymerization. J Mater Chem B 2:3340
101.
Zurück zum Zitat Liu X et al (2014) Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 15:1019 Liu X et al (2014) Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 15:1019
102.
Zurück zum Zitat Pielichowska K, Blazewicz S (2010) Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration. In: Abe A, Dusek K, Kobayashi S (eds) Biopolymers. Springer, Berlin, pp 97–207 Pielichowska K, Blazewicz S (2010) Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration. In: Abe A, Dusek K, Kobayashi S (eds) Biopolymers. Springer, Berlin, pp 97–207
103.
Zurück zum Zitat Guo W et al (2012) Stronger and faster degradable biobased poly(propylene sebacate) as shape memory polymer by incorporating boehmite nanoplatelets. ACS Appl Mater Interfaces 4(8):4006–4014 Guo W et al (2012) Stronger and faster degradable biobased poly(propylene sebacate) as shape memory polymer by incorporating boehmite nanoplatelets. ACS Appl Mater Interfaces 4(8):4006–4014
104.
Zurück zum Zitat Zheng X et al (2008) Effect of In vitro degradation of poly(d, l-lactide)/β-tricalcium composite on its shape-memory properties. J Biomed Mater Res B Appl Biomater 86B(1):170–180 Zheng X et al (2008) Effect of In vitro degradation of poly(d, l-lactide)/β-tricalcium composite on its shape-memory properties. J Biomed Mater Res B Appl Biomater 86B(1):170–180
105.
Zurück zum Zitat Yu X et al (2009) Influence of in vitro degradation of a biodegradable nanocomposite on its shape memory effect. J Phys Chem C 113(41):17630–17635 Yu X et al (2009) Influence of in vitro degradation of a biodegradable nanocomposite on its shape memory effect. J Phys Chem C 113(41):17630–17635
106.
Zurück zum Zitat Saralegi A et al (2013) Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment. Biomacromolecules 14(12):4475–4482 Saralegi A et al (2013) Shape-memory bionanocomposites based on chitin nanocrystals and thermoplastic polyurethane with a highly crystalline soft segment. Biomacromolecules 14(12):4475–4482
108.
Zurück zum Zitat Lahiri D et al (2010) Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6(9):3524–3533 Lahiri D et al (2010) Boron nitride nanotube reinforced polylactide–polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater 6(9):3524–3533
109.
Zurück zum Zitat Kalita H, Karak N (2013) Hyperbranched polyurethane/Fe3O4 thermosetting nanocomposites as shape memory materials. Polym Bull 70(11):2953–2965 Kalita H, Karak N (2013) Hyperbranched polyurethane/Fe3O4 thermosetting nanocomposites as shape memory materials. Polym Bull 70(11):2953–2965
110.
Zurück zum Zitat Das B et al (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8(3):035003 Das B et al (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8(3):035003
111.
Zurück zum Zitat Kalita H, Karak N (2013) Bio‐based hyperbranched polyurethane/Fe3O4 nanocomposites as shape memory materials. Polymer Adv Technol 24(9):819–823 Kalita H, Karak N (2013) Bio‐based hyperbranched polyurethane/Fe3O4 nanocomposites as shape memory materials. Polymer Adv Technol 24(9):819–823
112.
Zurück zum Zitat Lu X-L et al (2013) Preparation and shape memory properties of TiO2/PLCL biodegradable polymer nanocomposites. Trans Nonferr Metal Soc China 23(1):120–127 Lu X-L et al (2013) Preparation and shape memory properties of TiO2/PLCL biodegradable polymer nanocomposites. Trans Nonferr Metal Soc China 23(1):120–127
113.
Zurück zum Zitat Seyedjamali H, Pirisedigh A (2014) L-cysteine-induced fabrication of spherical titania nanoparticles within poly(ether-imide) matrix. Amino Acids 46:1321-1331 Seyedjamali H, Pirisedigh A (2014) L-cysteine-induced fabrication of spherical titania nanoparticles within poly(ether-imide) matrix. Amino Acids 46:1321-1331
114.
Zurück zum Zitat Wang W, Liu Y, Leng J (2013) Influence of the ultraviolet irradiation on the properties of TiO2-polystyrene shape memory nanocomposites. In: Proceedings of the SPIE 8793: Fourth international conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics, Bellingham. doi:10.1117/12.2027860 Wang W, Liu Y, Leng J (2013) Influence of the ultraviolet irradiation on the properties of TiO2-polystyrene shape memory nanocomposites. In: Proceedings of the SPIE 8793: Fourth international conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics, Bellingham. doi:10.​1117/​12.​2027860
115.
Zurück zum Zitat Rodriguez JN et al (2012) Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms. Ann Biomed Eng 40(4):883–897 Rodriguez JN et al (2012) Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms. Ann Biomed Eng 40(4):883–897
116.
Zurück zum Zitat Bothe M et al (2012) Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks. Soft Matter 8(4):965–972 Bothe M et al (2012) Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks. Soft Matter 8(4):965–972
117.
Zurück zum Zitat Ishida K et al (2012) Soft bacterial polyester‐based shape memory nanocomposites featuring reconfigurable nanostructure. J Polym Sci B 50(6):387–393 Ishida K et al (2012) Soft bacterial polyester‐based shape memory nanocomposites featuring reconfigurable nanostructure. J Polym Sci B 50(6):387–393
118.
Zurück zum Zitat Xu J, Shi W, Pang W (2006) Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47(1):457–465 Xu J, Shi W, Pang W (2006) Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47(1):457–465
119.
Zurück zum Zitat Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2012) Stress-induced bimodal ordering in POSS/PCL biodegradable shape memory nanocomposites. MRS Proc 1450:3–23. doi:10.1557/opl.2012.1327 Alvarado-Tenorio B, Romo-Uribe A, Mather PT (2012) Stress-induced bimodal ordering in POSS/PCL biodegradable shape memory nanocomposites. MRS Proc 1450:3–23. doi:10.​1557/​opl.​2012.​1327
120.
Zurück zum Zitat Buckley PR et al (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53(10):2075–2083 Buckley PR et al (2006) Inductively heated shape memory polymer for the magnetic actuation of medical devices. IEEE Trans Biomed Eng 53(10):2075–2083
121.
Zurück zum Zitat Weigel T, Mohr R, Lendlein A (2009) Investigation of parameters to achieve temperatures required to initiate the shape-memory effect of magnetic nanocomposites by inductive heating. Smart Mater Struct 18(2):025011 Weigel T, Mohr R, Lendlein A (2009) Investigation of parameters to achieve temperatures required to initiate the shape-memory effect of magnetic nanocomposites by inductive heating. Smart Mater Struct 18(2):025011
122.
Zurück zum Zitat Mohr R et al (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA 103(10):3540–3545 Mohr R et al (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci USA 103(10):3540–3545
123.
Zurück zum Zitat Razzaq MY et al (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 444(1):227–235 Razzaq MY et al (2007) Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 444(1):227–235
124.
Zurück zum Zitat Yakacki CM et al (2009) Shape‐memory polymer networks with Fe3O4 nanoparticles for remote activation. J Appl Polym Sci 112(5):3166–3176 Yakacki CM et al (2009) Shape‐memory polymer networks with Fe3O4 nanoparticles for remote activation. J Appl Polym Sci 112(5):3166–3176
125.
Zurück zum Zitat Nguyen T et al (2011) Characterisation of mechanical properties of magnetite‐polymer composite films. Strain 47(s1):e467–e473 Nguyen T et al (2011) Characterisation of mechanical properties of magnetite‐polymer composite films. Strain 47(s1):e467–e473
126.
Zurück zum Zitat Mosleh Y et al (2014) TPU/PCL/nanomagnetite ternary shape memory composites: studies on their thermal, dynamic-mechanical, rheological and electrical properties. Iranian Polym J 23(2):137–145 Mosleh Y et al (2014) TPU/PCL/nanomagnetite ternary shape memory composites: studies on their thermal, dynamic-mechanical, rheological and electrical properties. Iranian Polym J 23(2):137–145
127.
Zurück zum Zitat Yang D et al (2012) Electromagnetic activation of a shape memory copolymer matrix incorporating ferromagnetic nanoparticles. Polym Int 61(1):38–42 Yang D et al (2012) Electromagnetic activation of a shape memory copolymer matrix incorporating ferromagnetic nanoparticles. Polym Int 61(1):38–42
128.
Zurück zum Zitat Puig J et al (2012) Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol a-based epoxy matrix: magnetic hyperthermia and shape memory. J Phys Chem C 116(24):13421–13428 Puig J et al (2012) Superparamagnetic nanocomposites based on the dispersion of oleic acid-stabilized magnetite nanoparticles in a diglycidylether of bisphenol a-based epoxy matrix: magnetic hyperthermia and shape memory. J Phys Chem C 116(24):13421–13428
129.
Zurück zum Zitat Xiao Z et al (2013) Shape matters: a gold nanoparticle enabled shape memory polymer triggered by laser irradiation. Part Part Syst Char 30(4):338–345 Xiao Z et al (2013) Shape matters: a gold nanoparticle enabled shape memory polymer triggered by laser irradiation. Part Part Syst Char 30(4):338–345
130.
Zurück zum Zitat Haberl JM et al (2014) Light‐controlled actuation, transduction, and modulation of magnetic strength in polymer nanocomposites. Adv Funct Mater 24:3179 Haberl JM et al (2014) Light‐controlled actuation, transduction, and modulation of magnetic strength in polymer nanocomposites. Adv Funct Mater 24:3179
131.
Zurück zum Zitat Xu B et al (2012) Electro-responsive polystyrene shape memory polymer nanocomposites. Nanosci Nanotechnol Lett 4(8):814–820 Xu B et al (2012) Electro-responsive polystyrene shape memory polymer nanocomposites. Nanosci Nanotechnol Lett 4(8):814–820
132.
Zurück zum Zitat Matteo C et al (2012) Current and future nanotech applications in the oil industry. Am J Appl Sci 9(6):784 Matteo C et al (2012) Current and future nanotech applications in the oil industry. Am J Appl Sci 9(6):784
133.
Zurück zum Zitat Mofarah SS, Moghaddam S (2013) Application of smart polymers in fabrics. J Am Sci 9(4s):282 Mofarah SS, Moghaddam S (2013) Application of smart polymers in fabrics. J Am Sci 9(4s):282
134.
Zurück zum Zitat Akhras G (2012) Smart and nano systems – applications for NDE and perspectives. In: Proceedings of the 4th international CANDU in-service inspection workshop and NDT in Canada 2012 conference. e-J Nondestruct Test 17(09):13118 Akhras G (2012) Smart and nano systems – applications for NDE and perspectives. In: Proceedings of the 4th international CANDU in-service inspection workshop and NDT in Canada 2012 conference. e-J Nondestruct Test 17(09):13118
135.
Zurück zum Zitat Carrell J et al (2013) Shape memory polymer nanocomposites for application of multiple-field active disassembly: experiment and simulation. Environ Sci Technol 47(22):13053–13059 Carrell J et al (2013) Shape memory polymer nanocomposites for application of multiple-field active disassembly: experiment and simulation. Environ Sci Technol 47(22):13053–13059
136.
Zurück zum Zitat Holdren JP (2011) Materials genome initiative for global competitiveness. Executive Office of the President, National Science and Technology Council, Washington, p 18 Holdren JP (2011) Materials genome initiative for global competitiveness. Executive Office of the President, National Science and Technology Council, Washington, p 18
137.
Zurück zum Zitat Hachmann J et al (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251 Hachmann J et al (2011) The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid. J Phys Chem Lett 2(17):2241–2251
138.
Zurück zum Zitat Hawkins AM, Puleo DA, Hilt JZ (2012) Magnetic nanocomposites for remote controlled responsive therapy and in vivo tracking. In: Bhattacharyya D, Schäfer T, Wickramasinghe SR, Daunert S (eds) Responsive membranes and materials. Wiley, Chichester, p 211 Hawkins AM, Puleo DA, Hilt JZ (2012) Magnetic nanocomposites for remote controlled responsive therapy and in vivo tracking. In: Bhattacharyya D, Schäfer T, Wickramasinghe SR, Daunert S (eds) Responsive membranes and materials. Wiley, Chichester, p 211
139.
Zurück zum Zitat Jung YC, Goo NS, Cho JW (2004) Electrically conducting shape memory polymer composites for electroactive actuator. In: Bar-Chen Y (ed) Proceedings of the SPIE 5385: Smart structures and materials 2004: Electroactive polymer actuators and devices. International Society for Optics and Photonics, Bellingham. doi: 10.1117/12.540228 Jung YC, Goo NS, Cho JW (2004) Electrically conducting shape memory polymer composites for electroactive actuator. In: Bar-Chen Y (ed) Proceedings of the SPIE 5385: Smart structures and materials 2004: Electroactive polymer actuators and devices. International Society for Optics and Photonics, Bellingham. doi: 10.​1117/​12.​540228
140.
Zurück zum Zitat Kim SH et al (2013) Conductive functional biscrolled polymer and carbon nanotube yarns. RSC Adv 3(46):24028–24033 Kim SH et al (2013) Conductive functional biscrolled polymer and carbon nanotube yarns. RSC Adv 3(46):24028–24033
141.
Zurück zum Zitat Perets YS et al (2014) The effect of boron nitride on electrical conductivity of nanocarbon-polymer composites. J Mater Sci 49(5):2098–2105 Perets YS et al (2014) The effect of boron nitride on electrical conductivity of nanocarbon-polymer composites. J Mater Sci 49(5):2098–2105
142.
Zurück zum Zitat Xu J, Song J (2010) High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci 107(17):7652–7657 Xu J, Song J (2010) High performance shape memory polymer networks based on rigid nanoparticle cores. Proc Natl Acad Sci 107(17):7652–7657
Metadaten
Titel
Shape Memory Polymer–Inorganic Hybrid Nanocomposites
verfasst von
Radu Reit
Benjamin Lund
Walter Voit
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/12_2014_290

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.