Skip to main content

General Requirements of MRI of the Lung and Suggested Standard Protocol

  • Chapter
MRI of the Lung

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. MRI is taking its place as an alternative and supplementary, third method for the assessment of pulmonary diseases besides chest radiography (the most commonly employed first line test for chest disorders) and computed tomography (CT, so far the most comprehensive and detailed modality for cross-sectional and three-dimensional imaging of the lung). Once broadly available and sufficiently robust, it will likely become a modality of choice for cases in which exposure to ionizing radiation should be strictly avoided. Moreover, lung MRI offers particular advantages beyond the scope of CT such as dynamic studies of respiratory mechanics and first pass perfusion imaging. This chapter discusses the strategies to overcome major challenges for lung MRI such as motion artifacts and low signal. A set of protocols for different clinical applications to be used as a “starter kit” by any interested reader of this book will be suggested. This comprises a basic selection of non-contrast-enhanced sequences and can be extended by contrast-enhanced series: Breath-hold T1-weighted 3D gradient echo sequences (3D-GRE) are applied for the detection of solid lesions and airways. T2-weighted fast spin echo sequences (FSE) contribute to detection of infiltrates and soft lesions, T2-weighted FSE with fat suppression or inversion recovery series visualize enlarged lymph nodes and skeletal lesions. Steady-state free precession sequences (SSFP) in free breathing contribute to the detection of pulmonary embolism, cardiac dysfunction, and impairment of respiratory mechanics. Tumors, suspicious pleural effusions, and inflammatory diseases warrant additional contrast-enhanced sequences. Fast gradient echo imaging with dynamic contrast enhancement (DCE) for the assessment of lung and tumor perfusion contributes to imaging of thromboembolic vascular and obstructive airway diseases and characterization of lung lesions. Additional diffusion weighted imaging (DWI) with fat signal suppression can be applied for the assessment of lymph nodes and lung lesion characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abolmaali ND, Schmitt J, Krauss S, Bretz F, Deimling M, Jacobi V, Vogl TJ (2004) MR imaging of lung parenchyma at 0.2 T: evaluation of imaging techniques, comparative study with chest radiography and interobserver analysis. Eur Radiol 14:703–708

    Article  Google Scholar 

  • Albertin K (1996) Structural organization and quantitative morphology of the lung. In: Cutillo AG (ed) Application of magnetic resonance to the study of lung; hrsg. v. Futura Pub. Co., Armonk, NY, pp 73–114

    Google Scholar 

  • Bauman G, Bieri O (2016) Reversed half-echo stack-of-stars TrueFISP (TrueSTAR). Magn Reson Med 76:583–590

    Article  CAS  Google Scholar 

  • Biederer J, Graessner J, Heller M (2001) Magnetic resonance imaging of the lung with a volumetric interpolated 3D-gradient echo sequence. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 173:883–887

    Article  CAS  Google Scholar 

  • Biederer J, Reuter M, Both M, Muhle C, Grimm J, Graessner J, Heller M (2002a) Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering. Eur Radiol 12:378–384

    Article  CAS  Google Scholar 

  • Biederer J, Busse I, Grimm J, Reuter M, Muhle C, Freitag S, Heller M (2002b) Sensitivity of MRI in detecting alveolar infiltrates: experimental studies. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 174:1033–1039

    Article  CAS  Google Scholar 

  • Biederer J, Schoene A, Freitag S, Reuter M, Heller M (2003) Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. Radiology 227:475–483

    Article  Google Scholar 

  • Biederer J, Liess C, Charalambous N, Heller M (2004) Volumetric interpolated contrast-enhanced MRA for the diagnosis of pulmonary embolism in an ex vivo system. J Magn Reson Imaging 19:428–437

    Article  Google Scholar 

  • Biederer J, Hintze C, Fabel M, Dinkel J (2010) Magnetic resonance imaging and computed tomography of respiratory mechanics. J Magn Reson Imaging 32:1388–1397

    Article  Google Scholar 

  • Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M, Beek EJR (2012) MRI of the lung (2/3). Why … when … how? Insights Imaging 3:355–371

    Article  CAS  Google Scholar 

  • Boiselle PM, Biederer J, Gefter WB, Lee EY (2013) Expert opinion: why is MRI still an under-utilized modality for evaluating thoracic disorders? J Thorac Imaging 28:137

    Article  Google Scholar 

  • Both M, Schultze J, Reuter M, Bewig B, Hubner R, Bobis I, Noth R, Heller M, Biederer J (2005) Fast T1- and T2-weighted pulmonary MR-imaging in patients with bronchial carcinoma. Eur J Radiol 53:478–488

    Article  CAS  Google Scholar 

  • Bruegel M, Gaa J, Woertler K, Ganter C, Waldt S, Hillerer C, Rummeny EJ (2007) MRI of the lung: value of different turbo spin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for the detection of pulmonary metastases. J Magn Reson Imaging 25:73–81

    Article  Google Scholar 

  • Chung JH, Cox CW, Forssen AV, Biederer J, Puderbach M, Lynch DA (2013) The dark lymph node sign on magnetic resonance imaging: a novel finding in patients with sarcoidosis. J Thorac Imaging 29:125–129

    Article  Google Scholar 

  • Deng J, Miller FH, Salem R, Omary RA, Larson AC (2006) Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Investig Radiol 41:769–775

    Article  Google Scholar 

  • Dewes P, Frellesen C, Al-Butmeh F, Albrecht MH, Scholtz J-E, Metzger SC, Lehnert T, Vogl TJ, Wichmann JL (2016) Comparative evaluation of non-contrast CAIPIRINHA-VIBE 3T-MRI and multidetector CT for detection of pulmonary nodules: in vivo evaluation of diagnostic accuracy and image quality. Eur J Radiol 85:193–198

    Article  Google Scholar 

  • Eichinger M, Puderbach M, Fink C, Gahr J, Ley S, Plathow C, Tuengerthal S, Zuna I, Müller F-M, Kauczor H-U (2006) Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis—initial results. Eur Radiol 16:2147–2152

    Article  Google Scholar 

  • Fabel M, Wintersperger BJ, Dietrich O, Eichinger M, Fink C, Puderbach M, Kauczor H-U, Schoenberg SO, Biederer J (2009) MRI of respiratory dynamics with 2D steady-state free-precession and 2D gradient echo sequences at 1.5 and 3 Tesla: an observer preference study. Eur Radiol 19:391–399

    Article  CAS  Google Scholar 

  • Fink C, Puderbach M, Bock M, Lodemann K-P, Zuna I, Schmähl A, Delorme S, Kauczor H-U (2004) Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. Radiology 231:175–184

    Article  Google Scholar 

  • Fink C, Puderbach M, Biederer J, Fabel M, Dietrich O, Kauczor H-U, Reiser MF, Schönberg SO (2007) Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences. Investig Radiol 42:377–383

    Article  Google Scholar 

  • Hasegawa I, Boiselle PM, Kuwabara K, Sawafuji M, Sugiura H (2008) Mediastinal lymph nodes in patients with non-small cell lung cancer: preliminary experience with diffusion-weighted MR imaging. J Thorac Imaging 23:157–161

    Article  Google Scholar 

  • Heidemann RM, Griswold MA, Kiefer B, Nittka M, Wang J, Jellus V, Jakob PM (2003) Resolution enhancement in lung 1H imaging using parallel imaging methods. Magn Reson Med 49:391–394

    Article  CAS  Google Scholar 

  • Heussel CP, Sandner A, Voigtländer T, Heike M, Deimling M, Kuth R, Rupprecht T, Schreiber WG, Kauczor HU (2002) Prospective feasibility study of chest X-ray vs. thoracic MRI in breath-hold technique at an open low-field scanner. ROFO Fortschr Geb Rontgenstr Nuklearmed 174:854–861

    Article  CAS  Google Scholar 

  • Hintze C, Biederer J, Wenz HW, Eberhardt R, Kauczor HU (2006) MRI in staging of lung cancer. Radiology 46:251–4, 256–9

    Google Scholar 

  • Hochhegger B, Marchiori E, dos Reis DQ, Souza AS, Souza LS, Brum T, Irion KL (2012) Chemical-shift MRI of pulmonary hamartomas: initial experience using a modified technique to assess nodule fat. AJR Am J Roentgenol 199:W331–W334

    Article  Google Scholar 

  • Kim HS, Lee KS, Ohno Y, van Beek EJR, Biederer J (2015) PET/CT versus MRI for diagnosis, staging, and follow-up of lung cancer. J Magn Reson Imaging 42:247–260

    Article  Google Scholar 

  • Kluge A, Gerriets T, Müller C, Ekinci O, Neumann T, Dill T, Bachmann G (2005) Thoracic real-time MRI: experience from 2200 examinations in acute and ill-defined thoracic diseases. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 177:1513–1521

    Article  CAS  Google Scholar 

  • Koyama H, Ohno Y, Aoyama N, Onishi Y, Matsumoto K, Nogami M, Takenaka D, Nishio W, Ohbayashi C, Sugimura K (2010) Comparison of STIR turbo SE imaging and diffusion-weighted imaging of the lung: capability for detection and subtype classification of pulmonary adenocarcinomas. Eur Radiol 20:790–800

    Article  Google Scholar 

  • Landwehr P, Schulte O, Lackner K (1999) MR imaging of the chest: mediastinum and chest wall. Eur Radiol 9:1737–1744

    Article  CAS  Google Scholar 

  • Leutner C, Schild H (2001) MRI of the lung parenchyma. RöFo Fortschritte Auf Dem Geb Röntgenstrahlen Nukl 173:168–175

    Article  CAS  Google Scholar 

  • Leutner C, Gieseke J, Lutterbey G, Kuhl CK, Flacke S, Glasmacher A, Theisen A, Wardelmann E, Grohe C, Schild HH (1999) MRT versus CT in the diagnosis of pneumonias: an evaluation of a T2-weighted ultrafast turbo-spin-echo sequence (UTSE). ROFO Fortschr Geb Rontgenstr Nuklearmed 170:449–456

    Article  CAS  Google Scholar 

  • Levin DL, Chen Q, Zhang M, Edelman RR, Hatabu H (2001) Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging. Magn Reson Med 46:166–171

    Article  CAS  Google Scholar 

  • Lin W, Guo J, Rosen MA, Song HK (2008) Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn Reson Med 60:1135–1146

    Article  Google Scholar 

  • Lutterbey G, Gieseke J, von Falkenhausen M, Morakkabati N, Schild H (2005) Lung MRI at 3.0 T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease. Eur Radiol 15:324–328

    Article  CAS  Google Scholar 

  • Lutterbey G, Grohé C, Gieseke J, von Falkenhausen M, Morakkabati N, Wattjes MP, Manka R, Trog D, Schild HH (2007) Initial experience with lung-MRI at 3.0T: comparison with CT and clinical data in the evaluation of interstitial lung disease activity. Eur J Radiol 61:256–261

    Article  CAS  Google Scholar 

  • Ohno Y, Hatabu H, Takenaka D, Higashino T, Watanabe H, Ohbayashi C, Yoshimura M, Satouchi M, Nishimura Y, Sugimura K (2004) Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative and qualitative assessment with STIR turbo spin-echo MR imaging. Radiology 231:872–879

    Article  Google Scholar 

  • Pauls S, Schmidt SA, Juchems MS, Klass O, Luster M, Reske SN, Brambs H-J, Feuerlein S (2012) Diffusion-weighted MR imaging in comparison to integrated [18F]-FDG PET/CT for N-staging in patients with lung cancer. Eur J Radiol 81:178–182

    Article  Google Scholar 

  • Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969

    Article  CAS  Google Scholar 

  • Plathow C, Hof H, Kuhn S, Puderbach M, Ley S, Biederer J, Claussen CD, Huber PE, Schaefer J, Tuengerthal S, Kauczor H-U (2006) Therapy monitoring using dynamic MRI: analysis of lung motion and intrathoracic tumor mobility before and after radiotherapy. Eur Radiol 16:1942–1950

    Article  Google Scholar 

  • Rank CM, Heußer T, Buzan MTA, Wetscherek A, Freitag MT, Dinkel J, Kachelrieß M (2016) 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. Magn Reson Med 77:1170–1183

    Article  Google Scholar 

  • Regier M, Kandel S, Kaul MG, Hoffmann B, Ittrich H, Bansmann PM, Kemper J, Nolte-Ernsting C, Heller M, Adam G, Biederer J (2007) Detection of small pulmonary nodules in high-field MR at 3 T: evaluation of different pulse sequences using porcine lung explants. Eur Radiol 17:1341–1351

    Article  CAS  Google Scholar 

  • Regier M, Schwarz D, Henes FO, Groth M, Kooijman H, Begemann PG, Adam G (2011) Diffusion-weighted MR-imaging for the detection of pulmonary nodules at 1.5 Tesla: intraindividual comparison with multidetector computed tomography. J Med Imaging Radiat Oncol 55:266–274

    Article  Google Scholar 

  • Remmert G, Biederer J, Lohberger F, Fabel M, Hartmann GH (2007) Four-dimensional magnetic resonance imaging for the determination of tumour movement and its evaluation using a dynamic porcine lung phantom. Phys Med Biol 52:N401–N415

    Article  CAS  Google Scholar 

  • Rupprecht T, Böwing B, Kuth R, Deimling M, Rascher W, Wagner M (2002) Steady-state free precession projection MRI as a potential alternative to the conventional chest X-ray in pediatric patients with suspected pneumonia. Eur Radiol 12:2752–2756

    PubMed  Google Scholar 

  • Schäfer JF, Vollmar J, Schick F, Seemann MD, Mehnert F, Vonthein R, Aebert H, Claussen CD (2002) Imaging diagnosis of solitary pulmonary nodules on an open low-field MRI system—comparison of two MR sequences with spiral CT. ROFO Fortschr Geb Rontgenstr Nuklearmed 174:1107–1114

    Article  Google Scholar 

  • Schäfer JF, Vollmar J, Schick F, Seemann MD, Kamm P, Erdtmann B, Claussen CD (2005) Detection of pulmonary nodules with breath-hold magnetic resonance imaging in comparison with computed tomography. ROFO Fortschr Geb Rontgenstr Nuklearmed 177:41–49

    Article  Google Scholar 

  • Schroeder T, Ruehm SG, Debatin JF, Ladd ME, Barkhausen J, Goehde SC (2005) Detection of pulmonary nodules using a 2D HASTE MR sequence: comparison with MDCT. AJR Am J Roentgenol 185:979–984

    Article  Google Scholar 

  • Shiotani S, Sugimura K, Sugihara M, Kawamitsu H, Yamauchi M, Yoshida M, Kushima T, Kinoshita T, Endoh H, Nakayama H et al (2000) Diagnosis of chest wall invasion by lung cancer: useful criteria for exclusion of the possibility of chest wall invasion with MR imaging. Radiat Med 18:283–290

    CAS  PubMed  Google Scholar 

  • Strollo DC, Rosado de Christenson ML, Jett JR (1997a) Primary mediastinal tumors. Part 1: tumors of the anterior mediastinum. Chest 112:511–522

    Article  CAS  Google Scholar 

  • Strollo DC, Rosado-de-Christenson ML, Jett JR (1997b) Primary mediastinal tumors: part II. Tumors of the middle and posterior mediastinum. Chest 112:1344–1357

    Article  CAS  Google Scholar 

  • Su S, Saunders JK, Smith IC (1995) Resolving anatomical details in lung parenchyma: theory and experiment for a structurally and magnetically inhomogeneous lung imaging model. Magn Reson Med 33:760–765

    Article  CAS  Google Scholar 

  • Weick S, Breuer FA, Ehses P, Völker M, Hintze C, Biederer J, Jakob PM (2013) DC-gated high resolution three-dimensional lung imaging during free-breathing. J Magn Reson Imaging 37:727–732

    Article  Google Scholar 

  • Wielpütz MO, Eichinger M, Puderbach M (2013) Magnetic resonance imaging of cystic fibrosis lung disease. J Thorac Imaging 28:151–159

    Article  Google Scholar 

  • Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, Molinari F, Van Beek EJR, Biederer J (2012) MRI of the lung (1/3): methods. Insights Imaging 3:345–353

    Article  CAS  Google Scholar 

  • Wu L-M, Xu J-R, Gu H-Y, Hua J, Chen J, Zhang W, Haacke EM, Hu J (2012) Preoperative mediastinal and hilar nodal staging with diffusion-weighted magnetic resonance imaging and fluorodeoxyglucose positron emission tomography/computed tomography in patients with non-small-cell lung cancer: which is better? J Surg Res 178:304–314

    Article  Google Scholar 

  • Wu L-M, Xu J-R, Hua J, Gu H-Y, Chen J, Haacke EM, Hu J (2013) Can diffusion-weighted imaging be used as a reliable sequence in the detection of malignant pulmonary nodules and masses? Magn Reson Imaging 31:235–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Biederer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Biederer, J. (2017). General Requirements of MRI of the Lung and Suggested Standard Protocol. In: Kauczor, HU., Wielpütz, M.O. (eds) MRI of the Lung. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/174_2017_98

Download citation

  • DOI: https://doi.org/10.1007/174_2017_98

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42616-7

  • Online ISBN: 978-3-319-42617-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics