Skip to main content

The Hydrodynamics of Flow Stimuli

  • Chapter
  • First Online:
The Lateral Line System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 48))

Abstract

The lateral line system allows a fish to respond to changes in its surroundings by detecting flow stimuli that are governed by hydrodynamics. Therefore, an application of hydrodynamic principles offers insight into the information that is detected by the lateral line system. With this interest, investigators have employed a variety of hydrodynamic models to understand the fish lateral line. Models that neglect viscosity can accurately predict stimuli detected by canal neuromasts when predators locate prey in the dark. However, viscous forces have been shown mediate the signals detected by canal neuromasts, as illustrated in the obstacle detection of blind cavefish. Further, viscous boundary layers are essential to the functioning of superficial neuromasts, such as seen in how prey fish detect a fish predator. The application of computational modeling and flow visualization techniques are increasingly practical for understanding flow signals, even in the complex flows generated by a swimming fish or obstacles in a turbulent stream. The integration of these approaches with neurophysiological and behavioral techniques offers great promise for a deeper understanding of the lateral line system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, E. J., McGillis, W. R., & Grosenbaugh, M. A. (2001). The boundary layer of swimming fish. Journal of Experimental Biology, 204, 81–102.

    CAS  PubMed  Google Scholar 

  • Anderson, J. M. (1996). Vorticity control for efficient propulsion. In Applied ocean science engineering, MIT (pp. 1–193). Cambridge: MIT/Woods Hole Oceanographic Institution.

    Google Scholar 

  • Batchelor, G. (1967). An introduction to fluid dynamics. New York: Cambridge University Press.

    Google Scholar 

  • Beal, D. N. (2003). Propulsion through wake synchronization using a flapping foil. Doctoral Dissertation, Massachusetts Institute of Technology.

    Google Scholar 

  • Beal, D. N., Hover, F. S., Triantafyllou, M. S., Liao, J. C., & Lauder, G. V. (2006). Passive propulsion in vortex wakes. Journal of Fluid Mechanics, 549, 385–402.

    Article  Google Scholar 

  • Bleckmann, H. (2008). Peripheral and central processing of lateral line information. Journal of Comparative Physiology A, 194, 145–158.

    Article  CAS  Google Scholar 

  • Blevins, R. D. (1990). Flow induced vibration, 2nd ed. Malabar, FL: Krieger..

    Google Scholar 

  • Coombs, S. (1994). Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). Journal of Experimental Biology, 190, 109–129.

    CAS  PubMed  Google Scholar 

  • Coombs, S., & Janssen, J. (1990). Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus-bairdi. Journal of Comparative Physiology A, 167, 557–567.

    Article  CAS  Google Scholar 

  • Coombs, S., & Montgomery, J. C. (1992). Fibers innervating different parts of the lateral line system of an antarctic notothenioid, Trematomus-Bernacchii, have similar frequency responses, despite large variation in the peripheral morphology. Brain Behavior and Evolution, 40, 217–233.

    Article  CAS  Google Scholar 

  • Coombs, S., & Conley, R. A. (1997a). Dipole source localization by the mottled sculpin. 2. The role of lateral line excitation patterns. Journal of Comparative Physiology A, 180, 401–415.

    Google Scholar 

  • Coombs, S., & Conley, R. A. (1997b). Dipole source localization by mottled sculpin. 1. Approach strategies. Journal of Comparative Physiology A, 180, 387–399

    Google Scholar 

  • Coombs, S., & Patton, P. (2009). Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). Journal of Comparative Physiology A, 195, 279–297.

    Article  Google Scholar 

  • Coombs, S., Hasting, M., & Finneran, J. (1996). Modeling and measuring lateral line excitation patterns to changing dipole source locations. Journal of Comparative Physiology A, 178, 359–371.

    Article  CAS  Google Scholar 

  • Ćurčić-Blake, B., & van Netten, S. M. (2006). Source location encoding in the fish lateral line canal. Journal of Experimental Biology, 209, 1548–1559.

    Article  PubMed  Google Scholar 

  • Daniel, T. (1981). Fish mucus: In situ measurements of polymer drag reduction. Biological Bulletin, 160, 376–382.

    Article  Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1983). Mechanical factors in the excitation of clupeid lateral lines. Proceedings of the Royal Society B: Biological Sciences, 218, 1–26.

    Article  CAS  Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1988). Mechanical factors in the excitation of the lateral lines of fishes. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory biology of aquatic animals(pp. 595–618). New York: Springer.

    Chapter  Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1989). Some observations on the forces acting on neuromasts in fish lateral line canals. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 79–97). New York: Springer-Verlag.

    Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1993). Stimulation of the acoustico-lateralis system of clupeid fish by external sources and their own movements. Philosophical Transactions: Biological Sciences, 341, 113–127.

    Google Scholar 

  • Dijkgraaf, S. (1963). The functioning and significance of lateral-line organs. Biological Reviews of the Cambridge Philosophical Society, 38, 51–105.

    Article  CAS  PubMed  Google Scholar 

  • Dinklo, T. (2005). Mechano- and electrophysiological studies on cochlear hair cells and superficial lateral line cupulae. Doctoral dissertation, University of Groningen.

    Google Scholar 

  • Ferry-Graham, L. A., Wainwright, P. C., & Lauder, G. V. (2003). Quantification of flow during suction feeding in bluegill sunfish. Zoology, 106, 159–168.

    Article  PubMed  Google Scholar 

  • Flock, Å. (1965). Transducing mechanisms in lateral line canal organ receptors. Cold Spring Harbor Symposia on Quantitative Biology, 30, 133–145.

    Article  CAS  PubMed  Google Scholar 

  • Görner, P. (1963). Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Journal of Comparative Physiology A, 47, 316–338.

    Google Scholar 

  • Goulet, J., Engelmann, J., Chagnaud, B. P., Franosch, J.-M. P., Suttner, M. D., & Hemmen, J. L. (2008). Object localization through the lateral line system of fish: Theory and experiment. Journal of Comparative Physiology A, 194, 1–17.

    Article  Google Scholar 

  • Hassan, E. S. (1985). Mathematical analysis of the stimulus of the lateral line organ. Biological Cybernetics, 52, 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, E. S. (1992a). Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis. II. The case of gliding alongside or above a plane surface. Biological Cybernetics, 66, 453–461.

    Article  Google Scholar 

  • Hassan, E. S. (1992b). Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis. I. The cases of moving in open water and of gliding towards a plane surface, Biological Cybernetics, 66, 443–452.

    Article  Google Scholar 

  • Higham, T. E., Day, S. W., & Wainwright, P. C. (2005). Sucking while swimming: Evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry. Journal of Experimental Biology, 208, 2653–2660.

    Article  PubMed  Google Scholar 

  • Hoekstra, D., & Janssen, J. (1985). Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environmental Biology of Fishes, 12, 111–117.

    Article  Google Scholar 

  • Hoekstra, D., & Janssen, J. (1986). Lateral line receptivity in the mottled sculpin. Copeia, 1986, 91–96.

    Article  Google Scholar 

  • Hudspeth, A. J. (1982). Extracellular current flow and the site of transduction by vertebrate hair cells. Journal of Neuroscience, 2, 1–10.

    CAS  PubMed  Google Scholar 

  • Kalmijn, A. J. (1988). Hydrodynamic and acoustic field detection. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory biology of aquatic animals. (pp. 83–130). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Kalmijn, A. J. (1989). Functional evolution of lateral line and inner ear sensory systems. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 187–215). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Karlsen, H. E., & Sand, O. (1987). Selective and reversible blocking of the lateral line in freshwater fish. Journal of Experimental Biology, 133, 249–262.

    Google Scholar 

  • Kármán, von, T. (1954). Aerodynamics: Selected topics in the light of their historical development. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Kroese, A. B. A., & Schellart, N. A. M. (1992). Velocity-sensitive and acceleration-sensitive units in the trunk lateral line of the trout. Journal of Neurophysiology, 68, 2212–2221.

    CAS  PubMed  Google Scholar 

  • Liao, J. C. (2004). Neuromuscular control of trout swimming in a vortex street: Implications for energy economy during the Kármán gait. Journal of Experimental Biology, 207, 3495–3506.

    Article  PubMed  Google Scholar 

  • Liao, J. C. (2006). The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. Journal of Experimental Biology, 209, 4077–4090.

    Article  PubMed  Google Scholar 

  • Liao, J. C. (2010). Organization and physiology of posterior lateral line afferent neurons in larval zebrafish. Biology Letters, 6, 402–405.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liao, J. C., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003a). The Kármán gait: Novel body kinematics of rainbow trout swimming in a vortex street. Journal of Experimental Biology, 206, 1059–1073.

    Article  PubMed  Google Scholar 

  • Liao, J. C., Beal, D. N., Lauder, G. V., & Triantafyllou, M. S. (2003b). Fish exploiting vortices decrease muscle activity. Science, 302, 1566–1569.

    Article  CAS  PubMed  Google Scholar 

  • Lighthill, J. (1993). Estimates of pressure differences across the head of a swimming clupeid fish. Philosophical Transactions: Biological Sciences, 341, 129–140.

    Google Scholar 

  • Lighthill, J. (1995). The role of the lateral line in active drag reduction by clupeoid fishes. Animal Locomotion Symposium by the Society for Experimental Biology, 49, 35–48.

    CAS  Google Scholar 

  • McHenry, M. J., Strother, J. A., & van Netten, S. M. (2008). Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system. Journal of Comparative Physiology A, 194, 795–810.

    Article  Google Scholar 

  • McHenry, M. J., Feitl, K. E., Strother, J. S., & Van Trump, W. J. (2009). Larval zebrafish rapidly sense the water flow of a predator's strike. Biology Letters, 5, 477–497.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McHenry, M. J., Michel, K. B., & Stewart, W. J. (2010). Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas). Journal of Experimental Biology, 213, 1309–1319.

    Article  CAS  PubMed  Google Scholar 

  • Montgomery, J. C., McDonald, F., Baker, C. F., Carton, A. G., & Ling, N. (2003). Sensory integration in the hydrodynamic world of rainbow trout. Proceedings of the Royal Society B: Biological Sciences, 270, S195–S197.

    Article  PubMed  Google Scholar 

  • Muddada, S., & Patnaik, B. S. V. (2011). Understanding complex systems. In S. Banerjee, M. Mitra, & L. Rondoni (Eds.), Understanding complex systems (pp. 87–136). Berlin: Springer.

    Google Scholar 

  • Mϋnz, H. (1989). Functional organization of the lateral line periphery. In S. Coombs, P. Görner, & H. Mϋnz (Eds.). The mechanosensory lateral line: Neurobiology and Evolution (pp. 285–297). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Prandtl, L. (1904). Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Proceedings Third International Kongreß Heidelberg, S, 484–491.

    Google Scholar 

  • Rapo, M. A., Jiang, H., & Grosenbaugh, M. A. (2009). Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water. Journal of Experimental Biology, 212, 1494–1505.

    Article  PubMed  Google Scholar 

  • Reynolds, O. (1883). An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and the law of resistance in parallel channels. Philosophical Transactions of the Royal Society, 174, 935–982.

    Google Scholar 

  • Rowe, D. M., Denton, E. J., & Batty, R. S. (1993). Head turning in herring and some other fish. Proceedings of the Royal Society B: Biological Sciences, 341, 141–148.

    Google Scholar 

  • Schewe, G. (1983). On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. Journal of Fluid Mechanics, 133, 265–285.

    Article  Google Scholar 

  • Schlichting, H. (1979). Boundary-layer theory. New York: Springer-Verlag.

    Google Scholar 

  • Schulze, F. E. (1870). Über die Nervenendigung in den sogenannten Schleimkanälen der Fische und über entsprechende Organe der durch Kiemen athmenden Amphibien. Archive für Anatomische Physiologie Leipzig, 759–769.

    Google Scholar 

  • Stewart, W. J., & McHenry, M. J. (2010). Sensing the strike of a predator fish depends on the specific gravity of a prey fish. Journal of Experimental Biology, 213, 3769–3777.

    Article  PubMed  Google Scholar 

  • Sutterlin, A., & Waddy, S. (1975). Possible role of posterior lateral line in obstacle entrainment by brook trout (Salvelinus-Fontinalis). Journal of Fisheries Research Board of Canada, 32, 2441–2446.

    Article  Google Scholar 

  • Taguchi, M., & Liao, J. C. (2011). Rainbow trout consume less oxygen in turbulence: The energetics of swimming behaviors at different speeds. Journal of Experimental Biology, 214, 1428–1436.

    Article  PubMed  Google Scholar 

  • Teyke, T. (1990).Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behavior and Evolution, 35, 23–30.

    Article  CAS  Google Scholar 

  • Van Dyke, M. (1982). An album of fluid motion. Palo Alto, CA: Parabolic Press.

    Google Scholar 

  • van Netten, S. M. (2006). Hydrodynamic detection by cupulae in a lateral line canal: Functional relations between physics and physiology. Biological Cybernetics, 94, 67–85.

    Article  PubMed  Google Scholar 

  • Van Trump, W. J., & McHenry, M. J. (2008). The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). Journal of Experimental Biology, 211, 2105–2115.

    Article  PubMed  Google Scholar 

  • Wainwright, P. C., & Day, S. W. (2007). The forces exerted by aquatic suction feeders on their prey. Journal of the Royal Society Interface, 4, 553–560.

    Article  PubMed Central  Google Scholar 

  • Webb, P. W. (1998). Entrainment by river chub Nocomis micropogon and smallmouth bass Micropterus dolomieu on cylinders. Journal of Experimental Biology, 201, 2403–2412.

    PubMed  Google Scholar 

  • Weber, D. D., & Schiewe, M. H. (1976). Morphology and function of the lateral line of juvenile steelhead trout in relation to gas-bubble disease. Journal of Fish Biology, 9, 217–233.

    Article  Google Scholar 

  • Windsor, S. P., & McHenry, M. J. (2009). The influence of viscous hydrod3842ynamics on the fish lateral-line system. Integrative and Comparative Biology, 49, 691–701.

    Article  PubMed  Google Scholar 

  • Windsor, S. P., Tan, D., & Montgomery, J. C. (2008). Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). Journal of Experimental Biology, 211, 2950–2959.

    Article  PubMed  Google Scholar 

  • Windsor, S., Norris, S., & Cameron, S. (2010a). The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: Open water and heading towards a wall. Journal of Experimental Biology, 213, 3819–3831.

    Article  PubMed  Google Scholar 

  • Windsor, S., Norris, S. E., Cameron, S. M., Mallinson, G. D., & Montgomery, J. C. (2010b). The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: Gliding parallel to a wall. Journal of Experimental Biology, 213, 3832–3842.

    Article  PubMed  Google Scholar 

  • Wu, T. Y., & Chwang, A. T. (1975). Extraction of flow energy by fish and birds in a wavy stream. New York: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. McHenry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McHenry, M.J., Liao, J.C. (2013). The Hydrodynamics of Flow Stimuli. In: Coombs, S., Bleckmann, H., Fay, R., Popper, A. (eds) The Lateral Line System. Springer Handbook of Auditory Research, vol 48. Springer, New York, NY. https://doi.org/10.1007/2506_2013_13

Download citation

Publish with us

Policies and ethics