Skip to main content

The Use of Positively Charged or Low Surface Free Energy Coatings versus Polymer Brushes in Controlling Biofilm Formation

  • Conference paper
  • First Online:
Characterization of Polymer Surfaces and Thin Films

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 132))

Abstract

Biofilm formation on biomaterials implant surfaces and subsequent infectious complications are a frequent reason for failure of many biomedical devices, such as total hip arthroplasties, vascular catheters and urinary catheters. The development of a biofilm is initiated by the formation of a conditioning film of adsorbed macromolecules, such as proteins, followed by adhesion of microorganisms, where after they grow and anchor through secretion of extracellular polymeric substances. Adhesion of microorganisms is influenced by the physico-chemical properties of the biomaterial surface. Positively charged materials stimulate bacterial adhesion, but prevent growth of adhering bacteria. The use of low surface free energy materials did not always reduce in vitro adhesion of bacteria, but has been found beneficial in in vivo applications where fluctuating shear forces prevail, like on intra-oral devices and urine catheters. Polymer brushes have shown a very high reduction in in vitro adhesion of a great variety of microorganisms. However, for clinical application, the long term stability of polymer brushes is still a limiting factor. Further effort is therefore required to enhance the stability of polymer brushes on biomaterial implant surfaces to facilitate clinical use of these promising coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gristina AG (1987) Science 237:1588

    Article  CAS  Google Scholar 

  2. Dankert J, Hogt AH, Feijen J (1986) Crit Rev Biocompat 2:219

    CAS  Google Scholar 

  3. Costerton JW, Stewart PS, Greenberg EP (1999) Science 284:1318

    Article  CAS  Google Scholar 

  4. Gilbert P, Das J, Foley I (1997) Adv Dent Res 11:160

    Article  CAS  Google Scholar 

  5. Lee-Smith J, Santy J, Davis P, Jester R, Kneale J (2001) J Orthop Nurs 5:37

    Article  Google Scholar 

  6. Mahan J, Seligson D, Henry SL, Dobbins J (1991) Orthopedics 14:305

    CAS  Google Scholar 

  7. Escher A, Characklis WG (1990) Modeling the initial events in biofilm accumulation. In: Characklis WG (ed) Biofilms. Wiley, New York, p 445–486

    Google Scholar 

  8. Azeredo J, Visser J, Oliveira R (1999) Colloids Surf B 14:141

    Article  CAS  Google Scholar 

  9. Dufrene YF, Vermeiren H, Van der Leyden J, Rouxhet PG (1996) Microbiology 142:855

    Article  CAS  Google Scholar 

  10. Christensen GD, Baddour LM, Hasty DL, Lowrance JH, Simpson WA (1989) Microbial and foreign body factors in the pathogenesis of medical device infections. In: Bisno AL, Waldvogel FA (eds) Infections Associated with Indwelling Medical Devices. American Society of Microbiology, Washington, DC, p 27–59

    Google Scholar 

  11. van Oss CJ (1991) Biofouling 4:25

    Article  Google Scholar 

  12. Busscher HJ, Weerkamp AH (1987) FEMS Microbiol Rev 46:165

    Article  CAS  Google Scholar 

  13. Lyklema J, Norde W, van Loosdrecht MM, Zehnder AB (1989) Colloids Surf 39:175

    Article  Google Scholar 

  14. Donlan RM (2001) Emerg Infect Dis 7:277

    Article  CAS  Google Scholar 

  15. Hogt AH, Dankert J, Feijen J (1986) J Biomed Mater Res 20:533

    Article  CAS  Google Scholar 

  16. Keogh JR, Eaton JW (1994) J Lab Clin Med 121:537

    Google Scholar 

  17. Paulsson M, Gouda I, Larm O, Ljungh A (1994) J Biomed Mater Res 28:311

    Article  CAS  Google Scholar 

  18. Nomura S, Lundberg F, Stollenwerk M, Nakamura K, Ljungh A (1997) J Biomed Mater Res 38:35

    Article  CAS  Google Scholar 

  19. Morra M, Cassineli C (1999) J Biomater Sci Polym Ed 10:1107

    Article  CAS  Google Scholar 

  20. Holland NB, Qiu YX, Ruegsegger M, Marchant RE (1998) Nature 392:799

    Article  CAS  Google Scholar 

  21. Gottenbos B, Grijpma DW, Van der Mei HC, Feijen J, Busscher HJ (2001) J Antimicro Chemother 48:7

    Article  CAS  Google Scholar 

  22. Harkes G, Feijen J, Dankert J (1991) Biomaterials 12:853

    Article  CAS  Google Scholar 

  23. Jucker BA, Harms H, Zehnder AB (1996) J Bacteriol 178,18:5472

    Google Scholar 

  24. Gottenbos B, Van der Mei HC, Busscher HJ (2000) J Biomed Mater Res 0:208

    Article  CAS  Google Scholar 

  25. Gottenbos B, Van der Mei HC, Klatter F, Grijpma DW, Feijen J, Nieuwenhuis P et al. (2003) Biomaterials 24:2707

    Article  CAS  Google Scholar 

  26. Norde W (2003) Interfacial tension. In: Norde W (ed) Colloid and interfaces in life sciences. Marcel Dekker Inc., New York, p 47–61

    Google Scholar 

  27. Young T (1805) Phil Trans Roy Soc 95:65

    Article  Google Scholar 

  28. Sharma PK, Rao KH (2002) Adv Colloid Interface Sci 98:341

    Article  CAS  Google Scholar 

  29. Tsibouklis J, Nevell TG (2003) Adv Mater 15:647

    Article  CAS  Google Scholar 

  30. Thomas RR (1999) Material properties of fluoropolymers and perfluoroalkyl-based polymers. In: Hougham G, Cassidy PE, Johns K, Davidson T (eds) Fluoropolymers 2: Properties. Plenum Press, New York, p 47–65

    Google Scholar 

  31. Weerkamp AH, Quirynen M, Marechal M, Van der Mei HC, Van Steenberghe D, Busscher HJ (1989) Microb Ecol Health Dis 2:11

    Article  Google Scholar 

  32. Absolom DR, Lamberti FV, Policova Z, Zingg W, Van Oss CJ, Neumann AW (1983) Appl Environ Microbiol 46:90

    CAS  Google Scholar 

  33. Vrolijk NH, Targett NM, Baier RE, Baier AE (1990) Biofouling 2:39

    Article  Google Scholar 

  34. Dexter SC, Sullivan JD, Williams IIJ, Watson SW (1975) Appl Microbiol 30:298

    CAS  Google Scholar 

  35. Everaert EPJM, Van der Mei HC, Busscher HJ (1998) Coll Surf B:Biointerfaces 10:179

    Article  CAS  Google Scholar 

  36. Tsibouklis J, Stone M, Thorpe AA, Graham P, Peters V, Heerlien R et al. (1999) Biomaterials 20:1229

    Article  CAS  Google Scholar 

  37. Busscher HJ, Sjollema J, Van der Mei HC (1990) Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In: Doyle RJ, Rosenberg M (eds) Microbial Cell Surface Hydrophobicity. American Society for Microbiology, Washington DC, p 335–359

    Google Scholar 

  38. Norde W (2003) Water. In: Norde W (ed) Colloid and interfaces in life sciences. Marcel Dekker Inc., New York, p 47–61

    Google Scholar 

  39. Bakker DP, Huijs FM, De Vries J, Klijnstra JW, Busscher HJ, van der Mei HC (2003) Coll Surf B:Biointerfaces 32:179

    Article  CAS  Google Scholar 

  40. Olde Riekerink MB, Engbers GHM, Van der Mei HC, Busscher HJ, Feijen J (2001) Microbial adhesion onto superhydrophobic fluorinated low density poly(ethylene) films. In: Olde Riekerink MB (ed) Thesis: Structural and Chemical Modification of Polymer Surfaces by Gas Plasma Etching. Printpartners Ipskamp, Enschede, p 65–82

    Google Scholar 

  41. Quirynen M, Marechal M, Busscher HJ, Weerkamp A, Arends J, Darius PL (1989) J Dent Res 68:796

    Article  CAS  Google Scholar 

  42. Rolla G, Ellingsen JE, Herlofson B (1991) Biofouling 3:175

    Article  Google Scholar 

  43. Quirynen M, Van der Mei HC, Bollen CML, Van den Bossche LH, Doornbusch GI, Van Steenberghe D et al. (1994) J Periodontology 65:162

    CAS  Google Scholar 

  44. Everaert EPJM, Mahieu HF, Van de Belt-Gritter B, Peeters AJGE, Verkerke GJ, Van der Mei HC et al. (1999) Arch Otolaryngol Head Neck Surg 125:1329

    CAS  Google Scholar 

  45. Harris JM (1992) Poly(ethyleneglycol) Chemistry: Biotechnical and Biomedical Aplications. Plenum Press, New York

    Google Scholar 

  46. Harris JM (1992) Introduction to Biotechnical and biomedical applications of poly(ethylene glycol). In: Harris JM (ed) Poly(ethyleneglycol) Chemistry: Biotechnical and Biomedical Aplications. Plenum Press, New York, p 1–13

    Google Scholar 

  47. Ryle AP (1965) Nature 206:1256

    Article  CAS  Google Scholar 

  48. Currie EPK, Norde W, Cohen Stuart MA (2003) Adv Coll Interf Sci 100:205

    Article  CAS  Google Scholar 

  49. Zhu B, Eurell T, Gunawan R, Leckband D (2001) J Biomed Mater Res 56:406

    Article  CAS  Google Scholar 

  50. Huang NP, Michel R, Voros J, Textor M, Hofer R, Rossi A et al. (2001) Langmuir 17:489

    Article  CAS  Google Scholar 

  51. Bridgett MJ, Davies MC, Denyer SP (1992) Biomaterials 13:411

    Article  CAS  Google Scholar 

  52. Marsh LH, Coke M, Dettmar PW, Ewen RJ, Havler M, Nevell TG et al. (2002) J Biomed Mater Res 61:641

    Article  CAS  Google Scholar 

  53. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Biomaterials 25:4135

    Article  CAS  Google Scholar 

  54. Ista LK, Fan H, Baca O, Lopez GP (1996) FEMS Microbiol Lett 142:59

    Article  CAS  Google Scholar 

  55. Ki DP, Young SK, Dong KH, Young HK, Eun HBL, Hwal S et al. (1998) Biomaterials 19:851

    Article  Google Scholar 

  56. Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Langmuir 19:6912

    Article  CAS  Google Scholar 

  57. Gomez-Suárez C, Busscher HJ, Van der Mei HC (2001) Appl Environ Microbiol 67:2531

    Article  Google Scholar 

  58. Razatos A, Ong YL, Boulay F, Elbert DL, Hubbell JA, Sharma MM et al. (2000) Langmuir 16:9155

    Article  CAS  Google Scholar 

  59. Roosjen A, Kaper HJ, Van der Mei HC, Norde W, Busscher HJ (2003) Microbiology 149:3239

    Article  CAS  Google Scholar 

  60. Roosjen A, Van der Mei HC, Busscher HJ, Norde W (2004) Langmuir 20:10949

    Article  CAS  Google Scholar 

  61. Golander C-G, Herron JN, Lim K, Cleasson P, Stenius P, Andrade JD (1992) Properties of immobilized PEG films and the interaction with proteins. In: Harris JM (ed) Poly(ethylene glycol) chemistry, Biotechnological and Biomedical Applications. Plenum Press, New York, p 221–245

    Google Scholar 

  62. Prime KL, Whitesides GM (1993) J Am Chem Soc 115:10714

    Article  CAS  Google Scholar 

  63. Gombotz WR, Guanghui W, Horbett TA, Hoffman AS (1991) J Biomed Mater Res 25:1547

    Article  CAS  Google Scholar 

  64. Lee J, Martic PA, Tan JS (1989) J Coll Interf Sci 131:252

    Article  CAS  Google Scholar 

  65. Jeon SI, Lee JH, Andrade JD, Gennes PG (1991) J Coll Sci 142:149

    Article  CAS  Google Scholar 

  66. Szleifer I (1997) Biophys J 72:595

    Article  CAS  Google Scholar 

  67. Halperin A (1999) Langmuir 15:2525

    Article  CAS  Google Scholar 

  68. Leckband D, Sheth S, Halperin A (1999) J Biomater Sci Polym Ed 10:1125

    Article  CAS  Google Scholar 

  69. Park KD, Kim SW (1992) PEO-modified surfaces – In vitro, ex vivo andin vivo blood compatibility. In: Harris JM (ed) Poly(ethyleneglycol) chemistry: biotechnical and biomedical aplications. Plenum Press, New York, p 283–301

    Google Scholar 

  70. Olsson J, Van der Heijde Y, Holmberg K (1992) Caries Res 26:428

    Article  CAS  Google Scholar 

  71. Olsson J, Carlen A, Holmberg K (1990) J Dent Res 69:1586

    Article  CAS  Google Scholar 

  72. Roosjen A, De Vries J, Van der Mei HC, Norde W, Busscher HJ (2005) J Biomed Mater Res Part B: Appl Biomater 73:347

    Article  Google Scholar 

  73. Branch DW, Wheeler BC, Brewer GJ, Leckband DE (2001) Biomaterials 22:1035

    Article  CAS  Google Scholar 

  74. Bhatt MV, Kulkarni SU (1983) Synthesis 4:249

    Article  Google Scholar 

  75. Han S, Kim C, Kwon D (1997) Polymer 38:317

    Article  CAS  Google Scholar 

  76. Kawai F (2002) Appl Microbiol Biotechnol 58:30

    Article  CAS  Google Scholar 

  77. Hong HG, Jiang M, Sligar SG, Bohn PW (1994) Langmuir 10:153

    Article  CAS  Google Scholar 

  78. Maas JH, Cohen Stuart MA, Sieval AB, Zuilhof H, Sudholter EJR (2003) Thin Solid Films 426:135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk J. Busscher .

Editor information

Karina Grundke Manfred Stamm Hans-Jürgen Adler

Rights and permissions

Reprints and permissions

About this paper

Cite this paper

Roosjen, A., Norde, W., van der Mei, H.C., Busscher, H.J. The Use of Positively Charged or Low Surface Free Energy Coatings versus Polymer Brushes in Controlling Biofilm Formation. In: Grundke, K., Stamm, M., Adler, HJ. (eds) Characterization of Polymer Surfaces and Thin Films. Progress in Colloid and Polymer Science, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/2882_026

Download citation

Publish with us

Policies and ethics