Skip to main content

The parabolic approximation method

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 70))

Abstract

This article has dealt with various aspects of parabolic approximation methods in underwater acoustics, mostly for propagation of sinusoidal signals. Extensions of these methods to time-dependent problems are also available: pulse propagation, moving sources and receivers, frequency shifting effects due to rapid temporal variations of oceanic conditions, and so forth. However, an adequate description of these extensions would require another long section and it was felt that the principles involved in making parabolic approximations have been sufficiently illustrated. Parabolic equation methods in underwater acoustics were developed only in the last few years, and as more and more use is made of these methods we may expect that many of the important modelling problems in ocean acoustics may be solved.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Leontovich and V. Fock, Zh. Eks. Teor. Fix. 16 (1946), 557–573 [J. Phys. USSR 10 (1946), 13–24; also Ref. [2], Chap. 11.]

    Google Scholar 

  2. V. A. Fock, Electromagnetic Diffraction and Propagation Problems, Pergamon Press, 1965 [Chaps. 11, 13, 14].

    Google Scholar 

  3. G. D. Malyuzhinets, Usp. Fiz. Nauk 69 (1959), 321–334 [Sov. Phys. Usp. 2 (1959), 749–758].

    Google Scholar 

  4. L. A. Vainshtein, Zh. Techn. Fiz. 34 (1964), 193 [Sov. Phys. Techn. Phys. 9 (1964), 157].

    Google Scholar 

  5. L. A. Vainshtein, Open Resonators and Waveguides, Golem Press, Boulder, Colorado, 1969.

    Google Scholar 

  6. P. L. Kelley, Phys. Rev. Lett. 15 (1965), 1005.

    Google Scholar 

  7. V. I. Talanov, Zh. E. T. Fiz. Pis. Red. 2 (1965), 218 [JETP lett. 2 (1965), 138].

    Google Scholar 

  8. A. Hasegawa and F. D. Tappert, Appl. Phys. Lett. 23 (1973), 142–144; 23 (1973), 171–172.

    Google Scholar 

  9. O. Svelto, in Progress in Optics, Vol. 12 (ed. E. Wolf), North-Holland Pub., 1974 [Chap. I, pp. 1–51].

    Google Scholar 

  10. J. H. Marburger, Prog. Quant. Elect. 4 (1975), 35–110.

    Google Scholar 

  11. V. I. Karpman, Nonlinear Waves in Dispersive Media, Pergamon Press, 1975.

    Google Scholar 

  12. V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62 (1972), 1745–1759 [Sov. Phys. JETP 35 (1972), 908–914].

    Google Scholar 

  13. G. Morales and Y. C. Lee, Phys. Rev. Lett. 33 (1974), 1016–1019.

    Google Scholar 

  14. H. H. Chen and C. S. Liu, Phys. Rev. Lett. 37 (1976), 693–697

    Google Scholar 

  15. F. D. Tappert and C. N. Judice, Phys. Rev. Lett. 29 (1972), 1308–1311.

    Google Scholar 

  16. V. I. Tatarskii, Zh. Eksp. Teor. Fiz. 56 (1969), 2106 [Sov. Phys. JETP 29 (1969), 1133].

    Google Scholar 

  17. L. A. Chernov, Sov. Phys. Acoust. 15 (1970), 511.

    Google Scholar 

  18. V. I. Klyatskin and V. I. Tatarskii, Zh. Eksp. Teor. Fiz. 58 (1970), 624–634 [Sov. Phys. JETP 31 (1970), 335–339].

    Google Scholar 

  19. Yu. N. Barabanenkov, Yu. A. Kravtsov, S. N. Rytov, and V. I. Tatarskii, Sov. Phys. Uspekhi 13 (1971), 551–580.

    Google Scholar 

  20. P. L. Chow, J. Math. Phys. 13 (1972), 1224–1236.

    Google Scholar 

  21. G. C. Papanicolaou, D. McLaughlin, and R. Burridge, J. Math. Phys. 14 (1973), 84–89.

    Google Scholar 

  22. I. M. Besieris and F. D. Tappert, J. Math. Phys. 14 (1973), 1829–1836.

    Google Scholar 

  23. R. H. Hardin and F. D. Tappert, “Analysis, simulation, and models of ionospheric scintillation”, Joint Radar Propagation Study, Bell Lab Report, March 1974, 76pp.

    Google Scholar 

  24. J. F. Claerbout, Geophys. 35 (1970), 407–418.

    Google Scholar 

  25. J. F. Claerbout, “Numerical holography”, in Acoustical Holography, Vol. 3, ed. A. F. Metherell, Plenum Press, N. Y., 1971, pp. 273–283.

    Google Scholar 

  26. J. F. Claerbout, Fundamentals of Geophysical Data Processing, McGraw-Hill, N N.Y., 1976.

    Google Scholar 

  27. H. Bremmer, Comm. Pure Appl. Math. 4 (1951), 105–115.

    Google Scholar 

  28. H. Bremmer, Radio Sci. 8 (1973), 511–534.

    Google Scholar 

  29. P.v.d. Woude and H. Bremmer, Radio Sci. 10 (1975), 23–28.

    Google Scholar 

  30. F. W. Sluijter, J. Opt. Soc. Am. 60 (1970), 8.

    Google Scholar 

  31. J. Corones, J. Math. Anal. Appl. 50 (1975), 361–372.

    Google Scholar 

  32. P. G. Bergman, J. Acoust. Soc. Am. 17 (1946), 329.

    Google Scholar 

  33. L. M. Brekhovskikh, Waves in Layered Media, Academic Press, N. Y., 1970.

    Google Scholar 

  34. I. Tolstoy and C. S. Clay, Ocean Acoustics, McGraw-Hill, N. Y., 1966.

    Google Scholar 

  35. R. J. Urick, Principles of Underwater Sound, McGraw-Hill, N. Y., 1975.

    Google Scholar 

  36. P. R. Tatro and C. W. Spofford, Proc. IEEE Ocean Environment Conf. (1973), pp. 206–216.

    Google Scholar 

  37. F. D. Tappert and R. H. Hardin, in “A synopsis of the AESD workshop on acoustic modeling by non-ray tracing techniques”, C. W. Spofford, AESD TN-73-05, Arlington, Va. (1973).

    Google Scholar 

  38. R. H. Hardin and F. D. Tappert, SIAM Rev. (Chronicle) 15 (1973), 423; F. D. Tappert, SIAM Rev. (Chronicle) 16 (1974), 140.

    Google Scholar 

  39. F. D. Tappert, J. Acoust. Soc. Am. 55 (1974), 534.

    Google Scholar 

  40. F. D. Tappert and R. H. Hardin, Proc. Eighth Inter. Congress on Acoustics (London, 1974), Vol. 2, p. 452.

    Google Scholar 

  41. G. W. Benthien, D. F. Gordon, and L. E. McCleary, J. Acoust. Soc. Am. 55 (1974), 545.

    Google Scholar 

  42. S. M. Flatté and F. D. Tappert, J. Acoust. Soc. Am. 58 (1975), 1151–1159.

    Google Scholar 

  43. C. Garrett and W. H. Munk, Geophys. Fluid Dyn. 2 (1972), 225–264.

    Google Scholar 

  44. W. H. Munk, J. Acoust. Soc. Amer. 55 (1974), 220–226.

    Google Scholar 

  45. S. T. McDaniel, J. Acoust. Soc. Amer. 57 (1975), 307–311.

    Google Scholar 

  46. S. T. McDaniel, J. Acoust. Soc. Amer. 58 (1975), 1178–1185.

    Google Scholar 

  47. A. O. Williams, Jr., J. Acoust. Soc. Amer. 58 (1975), 1320–1321.

    Google Scholar 

  48. R. M. Fitzgerald, J. Acoust. Soc. Amer. 57 (1975), 839–842.

    Google Scholar 

  49. E. A. Polyanskii, Sov. Phys. Acoust. 20 (1974), 90.

    Google Scholar 

  50. J. A. DeSanto, “Connection between the solutions of the Helmholtz and parabolic equations for sound propagation”, Proc. SACLANTCEN Conf. (1975).

    Google Scholar 

  51. H. K. Brock, “The AESD parabolic equation model”, AESD TN-75-07, ONR, Arlington, Va. (1975).

    Google Scholar 

  52. H. K. Brock, R. N. Buchal, and C. W. Spofford, “Modifying the sound speed profile to improve the accuracy of the parabolic equation technique”, AESD Tech. Memo (1975).

    Google Scholar 

  53. D. R. Palmer, J. Acoust. Soc. Am. 60 (1976), 343–354.

    Google Scholar 

  54. J. S. Hanna, J. Acoust. Soc. Am. 60 (1976), 1024–1031.

    Google Scholar 

  55. R. N. Buchal and F. D. Tappert, “A variable range step in the split-step Fourier algorithm”, AESD Tech. Memo (1975).

    Google Scholar 

  56. F. Jensen and H. Krol, “The use of the parabolic equation method in sound propagation modelling”, SACLANTCEN Memo SM-72 (1975).

    Google Scholar 

  57. P. M. Volk, “Solutions of acoustic wave propagation in the ocean by the parabolic approximation”, Thesis, Univ. of Hawaii, Dept. of Oceanography (1975).

    Google Scholar 

  58. D. J. Thomson, “Parabolic equation acoustic model”, Defense Research Establishment Pacific Report (1975).

    Google Scholar 

  59. G. A. Kreigsmann and E. N. Larsen, “On the parabolic approximation to the reduced wave equation”, SIAM J. Appl. Math. (to appear).

    Google Scholar 

  60. H. F. Harmuth, J. Math. Phys. (MIT) 36 (1957), 269–278.

    Google Scholar 

  61. A. V. Popov, Akust. Zh. 15 (1969), 265–274 [Sov. Phys. Acoust. 15 (1969), 226–233].

    Google Scholar 

  62. A. L. Dyshko, Zh. vychisl. Mat. mat. Fiz. 8 (1968), 238–242 [USSR Comput. Math. Phys. 8 (1968), 340–346].

    Google Scholar 

  63. A. Goldberg, H. M. Schey, and J. L. Schwartz, Amer. J. Phys. 35 (1967), 177.

    Google Scholar 

  64. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Second Ed., Interscience Pub., N. Y., 1967.

    Google Scholar 

  65. T. Talpay, Bell Laboratories Report, 1972 (unpublished).

    Google Scholar 

  66. R. L. Holford and C. W. Spofford, Bell Laboratories Report, Long Range Acoustic Propagation Project, April 1973 (unpublished).

    Google Scholar 

  67. R. W. Hamming, Numerical Methods for Scientists and Engineers, 2nd Ed., McGraw-Hill, N.Y., 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph B. Keller John S. Papadakis

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag

About this chapter

Cite this chapter

Tappert, F.D. (1977). The parabolic approximation method. In: Keller, J.B., Papadakis, J.S. (eds) Wave Propagation and Underwater Acoustics. Lecture Notes in Physics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08527-0_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-08527-0_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08527-0

  • Online ISBN: 978-3-540-36984-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics