Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson P, Davidson CM, Littlejohn D, Ure AM, Shand CA, Cheshire MV (1997) The translocation of caesium and silver by fungi in some Scottish soils. Comm Soil Sci Plant Anal 28:635–650

    CAS  Google Scholar 

  • Aoyama M, Nagumo T (1997a) Effects of heavy metal accumulation in apple orchard soils on microbial biomass and microbial activities. Soil Sci Plant Nutrition 43:601–612

    CAS  Google Scholar 

  • Aoyama M, Nagumo T (1997b) Comparison of the effects of Cu, Pb, and As on plant residue decomposition, microbial biomass, and soil respiration. Soil Sci Plant Nutr 43:613–622

    CAS  Google Scholar 

  • Aubert C, Lojou E, Bianco P, Rousset M, Durand M-C, Bruschi M, Dolla A (1998) The Desulfuromonas acetoxidans triheme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Appl Environ Microbiol 64:1308–1312

    CAS  Google Scholar 

  • Baath E, Diaz-Ravina M, Frostegard A, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which accumulate metallic elements — a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Bakken LR, Olsen RA (1990) Accumulation of radiocaesium in fungi. Can J Microbiol 36:704–710

    Article  CAS  Google Scholar 

  • Balistrieri LS, Chao TT (1987) Selenium adsorption by goethite. Soil Sci Soc Am J 51:1145–1151

    Article  CAS  Google Scholar 

  • Barnes LJ, Janssen FJ, Sherren J, Versteegh JH, Koch RO, Scheeren PJH (1992) Simultaneous removal of microbial sulphate and heavy metals from wastewater. Trans Inst Mining Metall 101:183–190

    Google Scholar 

  • Beech IB, Cheung CWS (1995) Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int Biodeter Biodeg 35: 59–72

    CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony and bismuth. Micro Mol Bio Rev 66:250–271

    CAS  Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    Article  CAS  Google Scholar 

  • Beveridge TJ, Doyle RJ (1989) Metal ions and bacteria. Wiley, New York

    Google Scholar 

  • Beveridge TJ, Meloche JD, Fyfe WS, Murray RGE (1983) Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides and organic condensates in artificial sediments. Appl Environ Microbiol 45:1094–1108

    CAS  Google Scholar 

  • Birch L, Bachofen R (1990) Complexing agents from microorganisms. Experientia 46:827–834

    Article  CAS  Google Scholar 

  • Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential responses of ectomycorrizal fungi to heavy metals in vitro. Mycol Res 104:1366–1371

    Article  CAS  Google Scholar 

  • Bode H-P, Dumschat M, Garotti S, Fuhrmann GF (1995) Iron sequestration by the yeast vacuole. A study with vacuolar mutants of Saccharomyces cerevisiae. Eur J Biochem 228:337–342

    Article  CAS  Google Scholar 

  • Bogomolova EV, Vlasov Yu D, Panina LK (1998) On the nature of the microcolonial morphology of epilithic black yeasts Phaeococcomyces de Hoog. Doklady Russian Acad Sci 363:707–709

    CAS  Google Scholar 

  • Borst-Pauwels GWFH (1989) Ion transport in yeast including lipophilic ions. Methods Enzymol 174:603–616

    CAS  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  • Bousserrhine N, Gasser UG, Jeanroy E, Berthelin J (1999) Bacterial and chemical reductive dissolution of Mn-, Co-Cr-, and Al-substituted geothites. Geomicrobiol J 16:245–258

    Article  CAS  Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1981) Mycorrhizal infection and resistance to heavy metals. Nature 292:335–337

    CAS  Google Scholar 

  • Bradley B, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209

    CAS  Google Scholar 

  • Bridge TAM, White C, Gadd GM (1999) Extracellular metal-binding activity of the sulphate reducing bacterium Desulfococcus multivorans. Microbiol 145:2987–2995

    CAS  Google Scholar 

  • Brookes PC, McGrath SP (1984) Effects of metal toxicity on the size of the soil microbial biomass. J Soil Sci 35:341–346

    CAS  Google Scholar 

  • Brown NL, Lee BTO, Silver S (1994) Bacterial transport of and resistance to copper. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 30. Dekker, New York, pp 405–434

    Google Scholar 

  • Brown NL, Barrett SR, Camakaris J, Lee BTO, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17: 1153–1166

    Article  CAS  Google Scholar 

  • Brown GE, Foster AL, Ostergren JD (1999) Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Natl Acad Sci USA 96:3388–3395

    CAS  Google Scholar 

  • Burford EP, Kierans M, Gadd GM (2003a) Geomycology: fungi in mineral substrata. Mycologist 17:98–107

    Article  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003b) Fungal involvement in bioweathering and io-transformation of rock aggregates and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Burgstaller W, Schinner F (1993) Leaching of metals with fungi. J Biotechnol 27:91–116

    Article  CAS  Google Scholar 

  • Cairney JWG, Meharg AA (1999) Influences of anthropogenic pollution on mycorrhizal fungal communities. Environ Poll 106:169–182

    Article  CAS  Google Scholar 

  • Cevnik M, Jurc M, Vodnik D (2000) Filamentous fungi associated with the fine roots of Erica herbacea L. from the area influenced by the Zerjav lead smelter (Slovenia). Phyton Ann Rei Bot 40:61–64

    Google Scholar 

  • Chander K, Brookes PC (1991) Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam UK soil. Soil Biol Biochem 23:927–932

    Google Scholar 

  • Chander K, Dyckmans J, Hoeper H, Joergensen RG, Raubuch M (2001a) Long-term effects on soil microbial properties of heavy metals from industrial exhaust deposition. J Plant Nutr Soil Sci 164:657–663

    Article  CAS  Google Scholar 

  • Chander K, Dyckmans J, Joergensen RG, Meyer B, Raubuch M (2001b) Different sources of heavy metals and their long-term effects on soil microbial properties. Biol Fertil Soil 34:241–247

    CAS  Google Scholar 

  • Chasteen TG, Bentley R (2003) Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–26

    Article  CAS  Google Scholar 

  • Colpaert JV, van Assche JA (1987) Heavy metal resistance in some ectomycorrhizal fungi. Funct Ecol 1:415–421

    Google Scholar 

  • Colpaert JV, van Assche JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143:201–211

    Article  CAS  Google Scholar 

  • Colpaert JV, van Assche JA (1993) The effect of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol 123:325–333

    CAS  Google Scholar 

  • Colpaert JV, Vandenkoornhuyse P, Adriaensen K, Vangronsveld J (2000) Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 147:367–379

    Article  CAS  Google Scholar 

  • Connolly JH, Jellison J (1997) Two-way translocation of cations by the brown rot fungus Gloeophyllum trabeum. Int Biodet Biodeg 39: 181–188

    CAS  Google Scholar 

  • Cooksey DA (1993) Copper uptake and resistance in bacteria. Mol Microbiol 7:1–5

    CAS  Google Scholar 

  • Cooksey DA (1994) Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol Rev 14:381–386

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation — update on biotechnology. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carrol PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulfide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • De Leo F, Urzi C, de Hoog GS (2003) A new meristematic fungus, Pseudotaeniolina globosa. Ant van Leeuwenhoek 83:351–360

    Google Scholar 

  • Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    CAS  Google Scholar 

  • Diaz-Ravina M, Baath E (1996) Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977

    CAS  Google Scholar 

  • Dighton J, Terry G (1996) Uptake and immobilization of caesium in UK grassland and forest soils by fungi, following the Chernobyl accident. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge Univ Press, Cambridge, pp 184–200

    Google Scholar 

  • Dighton J, Clint GM, Poskitt J (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential pool of Cs immobilization. Mycol Res 95:1052–1056

    CAS  Google Scholar 

  • Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksia and Picea glauka to heavy metals in soil. Plant Soil 105: 265–271

    CAS  Google Scholar 

  • Doelman P, Hanstra L (1979) Effects of lead on the soil bacterial microflora. Soil Biol Biochem 11:487–491

    CAS  Google Scholar 

  • Doelman P, Jansen E, Michels M, van Til M (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soil 17:177–184

    CAS  Google Scholar 

  • Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28: 981–988

    Article  Google Scholar 

  • Dowdle PR, Oremland RS (1998) Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ Sci Technol 32: 3749–3755

    Article  CAS  Google Scholar 

  • Dungan RS, Frankenberger WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremed 3: 171–188

    CAS  Google Scholar 

  • Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692

    Article  CAS  Google Scholar 

  • Ewart DK, Hughes MN (1991) The extraction of metals from ores using bacteria. Adv Inorg Chem 36:103–135

    CAS  Google Scholar 

  • Fay DA, Mitchell DT (1999) A preliminary study of the mycorrhizal associations of the tree seedlings growing on mine spoil at Avoca, Co. Wicklow. Biol Environ Proc R Irish Acad 99B:19–26

    Google Scholar 

  • Finneran KT, Anderson RT, Nevin KP, Lovley DR (2002) Bioremediation of uranium contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam 11:339–357

    CAS  Google Scholar 

  • Flemming H-K (1995) Sorption sites in biofilms. Water Sci Technol 32:27–33

    CAS  Google Scholar 

  • Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. In: Banfield J, Nealson KH (eds) Reviews in mineralogy, vol 35. Mineralogical Society of America, Washington, DC, pp 161–180

    Google Scholar 

  • Francis AJ, Dodge CJ, Gillow JB (1992) Biodegradation of metal citrate complexes and implications for toxic metal mobility. Nature 356: 140–142

    Article  CAS  Google Scholar 

  • Gadd GM (1980) Melanin production and differentiation in batch cultures of the polymorphic fungus Aureobasidium pullulans. FEMS Microbiol Lett 9:237–240

    Article  CAS  Google Scholar 

  • Gadd GM (1992) Microbial control of heavy metal pollution. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik I (eds) Microbial control of pollution. Cambridge Univ Press, Cambridge, pp 59–88

    Google Scholar 

  • Gadd GM (1993a) Interactions of fungi with toxic metals. New Phytol 124:25–60

    CAS  Google Scholar 

  • Gadd GM (1993b) Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316

    Article  CAS  Google Scholar 

  • Gadd GM (1996) Influence of microorganisms on the environmental fate of radionuclides. Endeavour 20:150–156

    Article  CAS  Google Scholar 

  • Gadd GM (1997) Roles of microorganisms in the environmental fate of radionuclides. In: Lake JV, Bock GR, Cardew G (eds) CIBA foundation symposia 203. Health impacts of large releases of radionuclides. Wiley, Chichester, pp 94–108

    Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    CAS  Google Scholar 

  • Gadd GM (2001) Accumulation and transformation of metals by microorganisms. In: Rehm H-J, Reed G, Puhler A, Stadler P (eds) Biotechnology, a multi-volume comprehensive treatise, vol 10. Special processes. Wiley-VCH, Weinheim, pp 225–264

    Google Scholar 

  • Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317

    CAS  Google Scholar 

  • Gadd GM, White C (1989) Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. In: Poole RK, Gadd GM (eds) Metal-microbe interactions. IRL Press, Oxford, pp 19–38

    Google Scholar 

  • Gadd GM, Lawrence OS (1996) Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae — specificity and kinetics. Microbiol 142:1159–1167

    CAS  Google Scholar 

  • Gadd GM, Sayer JA (2000) Fungal transformations of metals and metalloids. In: Lovley DR (ed) Environmental microbe-metal interactions. American Society of Microbiology, Washington, DC, pp 237–256

    Google Scholar 

  • Galli U, Schuepp H, Brunold C (1994) Heavy metal binding by mycorrhizal fungi. Physiol Plant 92:364–368

    Article  CAS  Google Scholar 

  • Gerrath JF, Gerrath JA, Larson DW (1995) A preliminary account of endolithic algae of limestone cliffs of the Niagara Escarpment. Can J Bot 73:788–793

    Google Scholar 

  • Gharieb MM, Gadd GM (1998) Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and-defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. BioMetals 11:101–106

    Article  CAS  Google Scholar 

  • Gharieb MM, Sayer JA, Gadd GM (1998) Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantiodes. Mycol Res 102:825–830

    Article  CAS  Google Scholar 

  • Gharieb MM, Kierans M, Gadd GM (1999) Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycol Res 103:299–305

    CAS  Google Scholar 

  • Giller K, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Glasauer S, Burford EP, Harper FA, Gadd GM, Beveridge TJ (2004) Transformation of metals and metalloids by bacteria and fungi. In: Hillel D, Rosenzweig C, Powlson D, Scow K, Singer M, Sparks D (eds) Encyclopedia of soils in the environment. Academic Press, London (in press)

    Google Scholar 

  • Gorbushina AA, Krumbein WE, Hamann R, Panina L, Soucharjevsky S, Wollenzien U (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221

    Google Scholar 

  • Gray SN, Dighton J, Jennings DH (1996) The physiology of basidiomycete linear organs. 3. Uptake and translocation of radiocaesium within differentiated mycelia of Armillaria spp growing in microcosms and in the field. New Phytol 132:471–482

    Google Scholar 

  • Griffioen WAJ (1994) Characterization of a heavy metal-tolerant endomycorrhizal fungus from the surroundings of a zinc refinery. Mycorrhiza 4:197–200

    Article  CAS  Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    Article  CAS  Google Scholar 

  • Hartley JW, Cairney G, Meharg AA (1997a) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    Article  CAS  Google Scholar 

  • Hartley C, Cairney JWG, Sanders FE, Meharg AA (1997b) Toxic interactions of metal ions (Cd2+, Pb2+, Zn2+ and Sb3-) on in vitro biomass production of ectomycorrhizal fungi. New Phytol 137: 551–562

    Article  CAS  Google Scholar 

  • Hartley J, Cairney JWG, Freestone P, Woods C, Meharg AA (1999) The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. Environ Poll 106:413–424

    Article  CAS  Google Scholar 

  • Haselwandter K, Berreck M (1994) Accumulation of radionuclides in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Dekker, New York, pp 259–277

    Google Scholar 

  • Hayashi Y, Mutoh N (1994) Cadystin (phytochelatin) in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Dekker, New York, pp 311–337

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Figge DAH (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ Pollut 86:171–179

    Article  CAS  Google Scholar 

  • Hobman JL, Wilson JR, Brown NL (2000) Microbial mercury reduction. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 177–197

    Google Scholar 

  • Holtan-Hartwig L, Bechmann M, Hoyas TR, Linjordet R, Bakken LR (2002) Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol Biochem 34:1181–1190

    CAS  Google Scholar 

  • Howe R, Evans RL, Ketteridge SW (1997) Copper binding proteins in ectomycorrhizal fungi. New Phytol 135:123–131

    Article  CAS  Google Scholar 

  • Huang JWW, Chen JJ, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Inouhe M, Sumiyoshi M, Tohoyama H, Joho M (1996) Resistance to cadmium ions and formation of a cadmium-binding complex in various wild-type yeasts. Plant Cell Physiol 37:341–346

    CAS  Google Scholar 

  • Ivey DM, Guffanti AA, Shen Z, Kudyan N, Krulwich TA (1992) The CadC gene product of alkaliphilic Bacillus firmus OF4 partially restores Na+ resistance to an Escherichia coli strain lacking an Na+/H+ antiporter (NhaA). J Bacteriol 174:4878–4884

    CAS  Google Scholar 

  • Ji G, Silver S (1992a) Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol 174:3684–3694

    CAS  Google Scholar 

  • Ji G, Silver S (1992b) Reduction of arsenate to arsenite by the arsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci USA 89:9474–9478

    CAS  Google Scholar 

  • Ji G, Garber EA, Armes LG, Chen C-M, Fuchs JA, Silver S (1994) Arsenate reductase of Staphylococcus aureus plasmid p1258. Biochemistry 33:7294–7299

    CAS  Google Scholar 

  • Joho M, Inouhe M, Tohoyama H, Murayama T (1995) Nickel resistance mechanisms in yeasts and other fungi. J Indust Microbiol 14: 164–168

    Article  CAS  Google Scholar 

  • Jones D, Muehlchen A (1994) Effects of the potentially toxic metals, aluminium, zinc and copper on ectomycorrhizal fungi. J Environ Sci Health A Environ Sci Eng 29:949–966

    Google Scholar 

  • Kameo S, Iwahashi H, Kojima Y, Satoh H (2000) Induction of metallothioneins in the heavy metal resistant fungus Beauveria bassiana exposed to copper or cadmium. Analusis 28:382–385

    Article  CAS  Google Scholar 

  • Karlson U, Frankenberger WT (1988) Effects of carbon and trace element addition on alkylselenide production by soil. Soil Sci Soc Am J 52: 1640–1644

    CAS  Google Scholar 

  • Karlson U, Frankenberger WT (1989) Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53: 749–753

    Article  CAS  Google Scholar 

  • Kelly JJ, Haggblom M, Tate RL (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465

    CAS  Google Scholar 

  • Khan M, Scullion J (2002) Effects of metal (Cd, Cu, Ni, Pb or Zn) enrichment of sewagesludge on soil micro-organisms and their activities. Appl Soil Ecol 20:145–155

    Article  Google Scholar 

  • Killham K, Firestone MK (1983) Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39–48

    Article  CAS  Google Scholar 

  • Kostov O, van Cleemput O (2001) Microbial activity of Cu contaminated soils and effect of lime and compost on soil resiliency. Compost Sci Util 9:336–351

    Google Scholar 

  • Krantz-Rulcker C, Allard B, Schnurer J (1993) Interactions between a soil fungus, Trichoderma harzianum and IIB metals — adsorption to mycelium and production of complexing metabolites. Biometals 6: 223–230

    Google Scholar 

  • Krantz-Rulcker C, Allard B, Schnurer J (1996) Adsorption of IIB metals by 3 common soil fungi — comparison and assessment of importance for metal distribution in natural soil systems. Soil Biol Biochem 28: 967–975

    Google Scholar 

  • Kubatova A, Prasil K, Vanova M (2002) Diversity of soil microscopic fungi on abandoned industrial deposits. Crypt Mycol 23:205–219

    Google Scholar 

  • Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments: an overview. John Paul Getty Trust, Los Angeles

    Google Scholar 

  • Kuo C-W, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62: 2317–2323

    CAS  Google Scholar 

  • Kuperman RG, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190

    Article  CAS  Google Scholar 

  • Lacourt I, D’Angelo S, Girlanda M, Turnau K, Bonfante P, Perotto S (2000) Genetic polymorphism and metal sensitivity of Oidiodendron maius strains isolated form polluted soil. Ann Microbiol 50:157–166

    CAS  Google Scholar 

  • Landa ER, Gray JR (1995) US Geological Survey — results on the environmental fate of uranium mining and milling wastes. J Ind Microbiol 26:19–31

    CAS  Google Scholar 

  • Ledin M, Krantz-Rulcker C, Allard B (1996) Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil components in multicompartment systems. Soil Biol Biochem 28:791–799

    Article  CAS  Google Scholar 

  • Lee Y-A, Hendson M, Panopoulus NJ, Schrott MN (1994) Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with blue copper proteins and multicopper oxidase. J Bacteriol 176:173–188

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Liu XF, Culotta VC (1999) Mutational analysis of Saccharomyces cerevisiae Smf1p, a member of the Nramp family of metal transporters. J Mol Biol 289:885–891

    Article  CAS  Google Scholar 

  • Lloyd JR, Macaskie LE (1998) Enzymatic recovery of elemental palladium using sulfate reducing bacteria. Appl Environ Microbiol 64: 4607–4609

    CAS  Google Scholar 

  • Lloyd JR, Ridley J, Khizniak T, Lyalikova NN, Macaskie LE (1999a) Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flow-through bioreactor. Appl Environ Microbiol 65:2691–2696

    CAS  Google Scholar 

  • Lloyd JR, Thomas GH, Finlay JA, Cole JA, Macaskie LE (1999b) Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high activity strains and effect of process parameters. Biotechnol Bioeng 66:122–130

    Article  CAS  Google Scholar 

  • Losi ME, Frankenberger WT (1998) Microbial oxidation and solubilization of precipitated elemental selenium in soil. J Environ Qual 27:836–843

    Article  CAS  Google Scholar 

  • Lovley DR (ed) (2000) Environmental microbe-metal interactions. ASM Press, Washington, DC

    Google Scholar 

  • Lovley DR (2001) Anaerobes to the rescue. Science 293: 1444–1446

    Article  CAS  Google Scholar 

  • Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Google Scholar 

  • Macaskie LE (1991) The application of biotechnology to the treatment of wastes produced by the nuclear fuel cycle — biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol 11:41–112

    CAS  Google Scholar 

  • Macreadie IG, Sewell AK, Winge DR (1994) Metal ion resistance and the role of metallothionein in yeast. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Dekker, New York, pp 279–310

    Google Scholar 

  • Malakul P, Srinivasan KR, Wang HY (1998) Metal toxicity reduction in naphthalene biodegradation by use of metal-chelating adsorbents. Appl Environ Microbiol 64:4610–4613

    CAS  Google Scholar 

  • Markkola AM, Ahonen-Jonnarth U, Roitto M, Strommer R, Hyvarinen M (2002) Shift in ectomycorrhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover. Environ Pollut 120:797–803

    CAS  Google Scholar 

  • Massaccesi G, Romero MC, Cazau MC, Bucsinszky AM (2002) Cadmium removal capacities of filamentous soil fungi isolated from industrially polluted sediments, in La Plata (Argentina). World J Microbiol Biotechnol 18:817–820

    Article  CAS  Google Scholar 

  • McLean JE, Bledsoe BE (1992) Behavior of metals in soils. EPA/540/S-92/018, US EPA, Washington, DC

    Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • McLean JS, Lee J-U, Beveridge TJ (2002) Interactions of bacteria and environmental metals, fine-grained mineral development, and bioremediation strategies. In: Huang PM, Bollag J-M, Senesi N (eds) Interactions between soil particles and microorganisms. Wiley, New York, pp 228–261

    Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30: 69–112

    CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their related expression. J Cell Biochem 45:30–40

    Article  CAS  Google Scholar 

  • Mineev VG, Gomonova NF, Zenova GM, Skvortsova IN (1999) Changes in the properties of soddy-podzolic soil and its microbocenosis under intensive anthropogenic impact. Eurasian Soil Sci 32:413–417

    Google Scholar 

  • Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438

    CAS  Google Scholar 

  • Morley GF, Sayer JA, Wilkinson SC, Gharieb MM, Gadd GM (1996) Fungal sequestration, solubilization and transformation of toxic metals. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge Univ Press, Cambridge, pp 235–256

    Google Scholar 

  • Mowll JL, Gadd GM (1985) The effect of vehicular lead pollution on phylloplane mycoflora. Trans Br Mycol Soc 84:685–689

    Article  CAS  Google Scholar 

  • Moynahan OS, Zabinski CA, Gannon JE (2002) Microbial community structure and carbon utilization diversity in a mine tailings revegetation study. Restoration Ecol 10:77–87

    Google Scholar 

  • Mozafar A, Ruh R, Klingel P, Gamper H, Egli S, Frossard E (2002) Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environ Monit Assess 79:177–191

    Article  CAS  Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1983) Occurrence of acid labile sulfide in cadmium binding peptide 1 from fission yeast. J Biochem 93: 661–664

    CAS  Google Scholar 

  • Nies DH (1992a) Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28

    Article  CAS  Google Scholar 

  • Nies DH (1992b) Czcr and Czcd, gene-products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus. J Bacteriol 174:8102–8110

    CAS  Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system czcabc from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Nies DH, Nies A, Chu L, Silver S (1989a) Expression and nucleotide sequence of a plasmid determined divalent-cation efflux system from Alcaligenes eutrophus. Proc Natl Acad Sci USA 86:7351–7355

    CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1989b) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065–5070

    CAS  Google Scholar 

  • Nies A, Nies DH, Silver S (1990) Nucleotide sequence and expression of plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. J Biol Chem 265:5648–5653

    CAS  Google Scholar 

  • Ohtake H, Cervantes C, Silver S (1987) Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J Bacteriol 169:3853–3856

    CAS  Google Scholar 

  • Okorokov LA (1994) Several compartments of Saccharomyces cerevisiae are equipped with Ca2+ ATPase(s). FEMS Microbiol Lett 117: 311–318

    Article  CAS  Google Scholar 

  • Okorokov LA, Lichko LP, Kulaev IS (1980) Vacuoles: main compartments of potassium, magnesium and phosphate in Saccharomyces carlsbergensis cells. J Bacteriol 144:661–665

    CAS  Google Scholar 

  • Okorokov LA, Kulakovskaya TV, Lichko LP, Polorotova EV (1985) H+/ion antiport as the principal mechanism of transport systems in the vacuolar membrane of the yeast Saccharomyces carlsbergensis. FEBS Lett 192:303–306

    Article  CAS  Google Scholar 

  • Olayinka A, Babalola GO (2001) Effects of copper sulphate application on microbial numbers and respiration, nitrifier and urease activities, and nitrogen and phosphorus mineralization in an alfisol. Biol Agric Hort 19:1–8

    Google Scholar 

  • Oremland R, Stolz J (2000) Dissimilatory reduction of selenate and arsenate in nature. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 199–224

    Google Scholar 

  • Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel sulfate-independent respiration. Appl Environ Microbiol 55: 2333–2343

    CAS  Google Scholar 

  • Oremland RS, Steinberg NA, Presser TS, Miller LG (1991) In situ bacterial selenate reduction in the agricultural drainage systems of Western Nevada. Appl Environ Microbiol 57:615–617

    CAS  Google Scholar 

  • Ortiz DF, Kreppel DF, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    CAS  Google Scholar 

  • Ow DW (1993) Phytochelatin-mediated cadmium tolerance in Schizosaccharomyces pombe. In Vitro Cell Dev Biol Plant 29P: 213–219

    CAS  Google Scholar 

  • Ow DW, Ortiz DF, Speiser DM, McCue KF (1994) Molecular genetic analysis of cadmium tolerance in Schizosaccharomyces pombe. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Dekker, New York, pp 339–359

    Google Scholar 

  • Pawlowska TE, Chaney RL, Chin M, Charvat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal contaminated landfill. Appl Environ Microbiol 66: 2526–2530

    Article  CAS  Google Scholar 

  • Pennanen T, Frostegard A, Fritze, Baath E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428

    CAS  Google Scholar 

  • Perkins J, Gadd GM (1993a) Accumulation and intracellular compartmentation of lithium ions in Saccharomyces cerevisiae. FEMS Microbiol Lett 107:255–260

    Article  CAS  Google Scholar 

  • Perkins J, Gadd GM (1993b) Caesium toxicity, accumulation and intracellular-localization in yeasts. Mycol Res 97:717–724

    Article  CAS  Google Scholar 

  • Phillips EJP, Landa ER, Lovley DR (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207

    Article  CAS  Google Scholar 

  • Ramsay LM, Gadd GM (1997) Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett 152:293–298

    Article  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Plant Physiol 109:1141–1149

    CAS  Google Scholar 

  • Rawlings DE (1997) Mesophilic, autotrophic bioleaching bacteria: description, physiology and role. In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin Heidelberg New York, pp 229–245

    Google Scholar 

  • Rawlings DE, Silver S (1995) Mining with microbes. Biotechnology 13:773–338

    CAS  Google Scholar 

  • Renella G, Chaudri AM, Brookes PC (2002) Fresh additions of heavy metals do not model long-term effects on microbial biomass and activity. Soil Biol Biochem 34:121–124

    CAS  Google Scholar 

  • Ribeiro RM, Moureaux C, Mussi Santos A (1972) Essai de mise en evidence sur milieu electif d’une microfbre fongique adaptee aux sols A teneur elevee en cuivre. Cahiers ORSTOM Serie Pedol 10:305–308

    CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    Article  CAS  Google Scholar 

  • Rusin PA, Sharp JE, Oden KL, Arnold RG, Sinclair NA (1993) Isolation and physiology of a manganese-reducing Bacillus polyrnyxa from an Oligocene silver-bearing ore and sediment with reference to Precambrian biogeochemistry. Precamb Res 61:231–240

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sandaa R-A, Enger O, Torsvik V (1999) Abundance and diversity of Archaea in heavy-metal contaminated soils. Appl Environ Microbiol 65:3293–3297

    CAS  Google Scholar 

  • Sayer JA, Gadd GM (2001) Binding of cobalt and zinc by organic acids and culture filtrates of Aspergillus niger grown in the absence or presence of insoluble cobalt or zinc phosphate. Mycol Res 105:1261–1267

    CAS  Google Scholar 

  • Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9:691–694

    Article  CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur. Appl Environ Microbiol 65:319–321

    CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    CAS  Google Scholar 

  • Schottel J, Mandal A, Clark D, Silver S, Hedges RW (1974) Volatilization of mercury and organomercurials determined by inducible R-factor systems in enteric bacteria. Nature 251:335–337

    Article  CAS  Google Scholar 

  • Sharples JM, Chambers SM, Meharg AA, Cairney JWG (2000) Genetic diversity of root associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol 148:153–162

    Article  CAS  Google Scholar 

  • Sharples IM, Meharg AA, Chambers SM, Cairney JWG (2001) Arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 151:265–270

    Article  CAS  Google Scholar 

  • Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl Environ Microbiol 68:3859–3866

    Article  CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metals — a review. Gene 179:9–19

    Article  CAS  Google Scholar 

  • Silver S (1998) Genes for all metals — a bacterial view of the Periodic Table. J Indust Microbiol Biotechnol 20:1–12

    CAS  Google Scholar 

  • Silver S, Phung Le T (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Smith T, Pitts K, McGarvey JA, Summers AO (1998) Bacterial oxidation of mercury metal vapour, Hg(o). Appl Environ Microbiol 64: 1328–1332

    CAS  Google Scholar 

  • Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991

    Article  CAS  Google Scholar 

  • Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270: 9217–9221

    Article  CAS  Google Scholar 

  • Solioz M, Odermatt A, Krapf R (1994) Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett 346:44–47

    Article  CAS  Google Scholar 

  • Southam G (2000) Bacterial surface-mediated mineral formation. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 257–276

    Google Scholar 

  • Sreekrishnan TR, Tyagi RD (1994) Heavy metal leaching from sewage sludges: a techno-economic evaluation of the process options. Environ Technol 15:531–543

    CAS  Google Scholar 

  • Staley IT, Palmer F, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks. Science 215:1093–1095

    CAS  Google Scholar 

  • Stephen JR, Chang Y-J, Macnaughton SJ, Kowalchuk GA, Leung KT, Flemming CA, White DC (1999) Effect of toxic metals on indigenous soil a-subgroup proteobacterium ammonia oxidizer community: structure and protection against toxicity by inoculated metal resistant bacteria. Appl Environ Microbiol 65:95–101

    CAS  Google Scholar 

  • Sterfinger K (2000) Fungi as geologic agents. Geomicrobiol J 17: 97–124

    Google Scholar 

  • Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627

    Article  CAS  Google Scholar 

  • Strasser H, Burgstaller W, Schinner F (1994) High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370

    Article  CAS  Google Scholar 

  • Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198

    Article  CAS  Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT (1992) Bioremediation of soils contaminated with selenium. In: Lal R, Stewart BA (eds) Advances in soil science. Springer, Berlin Heidelberg New York, pp 261–309

    Google Scholar 

  • Thompson-Eagle ET, Frankenberger WT, Karlson U (1989) Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55: 1406–1413

    CAS  Google Scholar 

  • Tobin JM, White C, Gadd GM (1994) Metal accumulation by fungi — applications in environmental biotechnology. J Ind Microbiol 13: 126–130

    Article  CAS  Google Scholar 

  • Tohoyama H, Inouhe M, Joho M, Murayama T (1995) Production of metallothionein in copper-resistant and cadmium-resistant strains of Saccharomyces cerevisiae. J Ind Microbiol 14:126–131

    Article  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenate and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336

    Article  CAS  Google Scholar 

  • Tsezos M, Volesky B (1982a) The mechanism of uranium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 24:385–401

    CAS  Google Scholar 

  • Tsezos M, Volesky B (1982b) The mechanism of thorium biosorption by Rhizopus arrhizus. Biotechnol Bioeng 24:955–969

    CAS  Google Scholar 

  • Turner RJ, Weiner JH, Taylor DE (1995) Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed in Escherichia coli. Can J Microbiol 41:92–98

    CAS  Google Scholar 

  • Vachon RPD, Tyagi J, Auclair C, Wilkinson KJ (1994) Chemical and biological leaching of aluminium from red mud. Environ Sci Technol 28: 26–30

    Article  CAS  Google Scholar 

  • Verrecchia EP (2000) Fungi and sediments. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 69–75

    Google Scholar 

  • Verrecchia EP, Dumont J-L (1996) A biogeochemical model for chalk alteration by fungi in semiarid environments. Biogeochemistry 35: 447–470

    Article  CAS  Google Scholar 

  • Vieira MJ, Melo LF (1995) Effect of clay particles on the behaviour of biofilms formed by Pseudomomonas fluorescens. Wat Sci Technol 32:45–52

    Article  CAS  Google Scholar 

  • Vodnik D, Byrne AR, Gogala N (1998) The uptake and transport of lead in some ectomycorrhizal fungi in culture. Mycol Res 102:953–958

    Article  CAS  Google Scholar 

  • Wainwright M, Gadd GM (1997) Fungi and industrial pollutants. In: Wicklow DT, Soderstrom BE (eds) The Mycota V environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 85–97

    Google Scholar 

  • Walter EG, Taylor DE (1992) Plasmid-mediated resistance to tellurite: expressed and cryptic. Plasmid 27:52–64

    Article  CAS  Google Scholar 

  • Watson JHP, Ellwood DC, Deng QX, Mikhalovsky S, Hayter CE, Evans J (1995) Heavy metal adsorption on bacterially-produced FeS. Min Eng 8:1097–1108

    CAS  Google Scholar 

  • Watson JHP, Cressey BA, Roberts AP, Ellwood DC, Charnock JM, Soper AK (2000) Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria. J Magnet Magn Mat 214:13–30

    CAS  Google Scholar 

  • White C, Gadd GM (1986) Uptake and cellular distribution of copper, cobalt and cadmium in strains of Saccharomyces cerevisiae cultured on elevated concentrations of these metals. FEMS Microbiol Ecol 38: 277–283

    Article  CAS  Google Scholar 

  • White C, Gadd GM (1987) The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. J Gen Microbiol 133:727–737

    CAS  Google Scholar 

  • White C, Gadd GM (1997) An internal sedimentation bioreactor for laboratory-scale removal of toxic metals from soil leachates using biogenic sulphide precipitation. J Ind Microbiol 18:414–421

    CAS  Google Scholar 

  • White C, Gadd GM (1998a) Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiol 144:1407–1415

    CAS  Google Scholar 

  • White C, Gadd GM (1998b) Reduction of metal cations and oxyanions by anaerobic and metal-resistant organisms: chemistry, physiology and potential for the control and bioremediation of toxic metal pollution. In: Grant WD, Horikoshi T (eds) Extremophiles: physiology and biotechnology. Wiley, New York, pp 233–254

    Google Scholar 

  • White C, Gadd GM (2000) Copper accumulation by sulphate-reducing bacterial biofilms and effects on growth. FEMS Microbiol Lett 183: 313–318

    Article  CAS  Google Scholar 

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  CAS  Google Scholar 

  • White C, Sharman K, Gadd GM (1998) An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nature Biotechnol 16:572–575

    Article  CAS  Google Scholar 

  • Wilkins DA (1991) The influence of sheathing (ecto-)mycorrhizas of trees on the uptake and toxicity of metals. Agric Ecosyst Environ 35: 245–260

    CAS  Google Scholar 

  • Wilkinson DM, Dickinson NM (1995) Metal resistance in trees — the role of mycorrhizae. Oikos 72:298–300

    Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzi C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294

    CAS  Google Scholar 

  • Wu JS, Sung HY, Juang RJ (1995) Transformation of cadmium-binding complexes during cadmium sequestration in fission yeast. Biochem Mol Biol Int 36:1169–1175

    CAS  Google Scholar 

  • Yu W, Farrell RA, Stillman DJ, Winge DR (1996) Identification of SLF1 as a new copper homeostasis gene involved in copper sulfide mineralization in Saccharomyces cerevisiae. Mol Cell Biol 16:2464–2472

    CAS  Google Scholar 

  • Zhdanova NN, Redchitz TI, Vasilevskaya AI (1986) Species composition and sorption properties of Deuteromycetes in soils polluted by industrial wastewater(in Russian). Mikrobiol Zh 48:44–50

    Google Scholar 

  • Zinkevich V, Bogdarina I, Kang H, Hill MAW, Tapper R, Beech IB (1996) Characterization of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int Biodet Biodeg 37:163–172

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gadd, G.M. (2005). Microorganisms in Toxic Metal-Polluted Soils. In: Varma, A., Buscot, F. (eds) Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26609-7_16

Download citation

Publish with us

Policies and ethics