Skip to main content

Algebraic Flux Correction I. Scalar Conservation Laws

  • Chapter
Book cover Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

Summary

An algebraic approach to the design of multidimensional high-resolution schemes is introduced and elucidated in the finite element context. A centered space discretization of unstable convective terms is rendered local extremum diminishing by a conservative elimination of negative off-diagonal coefficients from the discrete transport operator. This modification leads to an upwind-biased low-order scheme which is nonoscillatory but overly diffusive. In order to reduce the incurred error, a limited amount of compensating antidiffusion is added in regions where the solution is sufficiently smooth. Two closely related flux correction strategies are presented. The first one is based on a multidimensional generalization of total variation diminishing (TVD) schemes, whereas the second one represents an extension of the FEM-FCT paradigm to implicit time-stepping. Nonlinear algebraic systems are solved by an iterative defect correction scheme preconditioned by the low-order evolution operator which enjoys the M-matrix property. The dffusive and antidiffusive terms are represented as a sum of antisymmetric internodal fluxes which are constructed edge-by-edge and inserted into the global defect vector. The new methodology is applied to scalar transport equations discretized in space by the Galerkin method. Its performance is illustrated by numerical examples for 2D benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Arminjon and A. Dervieux, Construction of TVD-like artificial viscosities on 2-dimensional arbitrary FEM grids. INRIA Research Report 1111 (1989).

    Google Scholar 

  2. K. Baba and M. Tabata, On a conservative upwind finite element scheme for convective diffusion equations. RAIRO Numerical Analysis 15 (1981) 3–25.

    MathSciNet  MATH  Google Scholar 

  3. T. J. Barth, Numerical aspects of computing viscous high Reynolds number flows on unstructured meshes. Technical report 91-0721, AIAA paper, 1991.

    Google Scholar 

  4. T. J. Barth, Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations. In von Karman Institute for Fluid Dynamics Lecture Series Notes 1994-05, Brussels, 1994.

    Google Scholar 

  5. D. L. Book, The Conception, Gestation, Birth, and Infancy of FCT. Chapter 1 in this volume.

    Google Scholar 

  6. J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, A fluid transport algorithm that works. J. Comput. Phys. 11 (1973) 38–69.

    Article  ADS  Google Scholar 

  7. A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. G. F. Carey and B.N. Jiang, Least-squares finite elements for first-order hyperbolic systems. Int. J. Numer. Meth. Fluids 26 (1988) 81–93.

    MathSciNet  MATH  Google Scholar 

  9. C. R. DeVore, An improved limiter for multidimensional flux-corrected transport. NASA Technical Report AD-A360122 (1998).

    Google Scholar 

  10. J. Donea, L. Quartapelle and V. Selmin, An analysis of time discretization in the finite element solution of hyperbolic problems. J. Comput. Phys. 70 (1987) 463–499.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. J. Donea, V. Selmin and L. Quartapelle, Recent developments of the Taylor-Galerkin method for the numerical solution of hyperbolic problems. Numerical methods for fluid dynamics III, Oxford, 171–185 (1988).

    MathSciNet  Google Scholar 

  12. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, 1996.

    Google Scholar 

  13. C. A. J. Fletcher, The group finite element formulation. Comput. Methods Appl. Mech. Engrg. 37 (1983) 225–243.

    Article  ADS  MathSciNet  Google Scholar 

  14. S. K. Godunov, Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sbornik 47 (1959) 271–306.

    MATH  MathSciNet  Google Scholar 

  15. P. Hansbo, Aspects of conservation in finite element flow computations. Comput. Methods Appl. Mech. Engrg. 117 (1994) 423–437.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. A. Harten, On a class of high resolution total-variation-stable finite-difference-schemes. SIAM J. Numer. Anal. 21 (1984) 1–23.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. C. Hirsch, Numerical Computation of Internal and External Flows. Vol. II: Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons, Chichester, 1990.

    Google Scholar 

  19. A. Jameson, Analysis and design of numerical schemes for gas dynamics 1. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. Journal of CFD 4 (1995) 171–218.

    Google Scholar 

  20. A. Jameson, Computational algorithms for aerodynamic analysis and design. Appl. Numer. Math. 13 (1993) 383–422.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Jameson, Positive schemes and shock modelling for compressible flows. Int. J. Numer. Meth. Fluids 20 (1995) 743–776.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Kuzmin, Positive finite element schemes based on the flux-corrected transport procedure. In: K. J. Bathe (ed.), Computational Fluid and Solid Mechanics, Elsevier, 887–888 (2001).

    Google Scholar 

  23. D. Kuzmin and S. Turek, Flux correction tools for finite elements. J. Comput. Phys. 175 (2002) 525–558.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. D. Kuzmin and S. Turek, Explicit and implicit high-resolution finite element schemes based on the Flux-Corrected-Transport algorithm. In: F. Brezzi et al. (eds), Proceedings of the 4th European Conference on Numerical Mathematics and Advanced Applications, Springer-Verlag Italy, 2002, 133–143.

    Google Scholar 

  25. D. Kuzmin, M. Möller and S. Turek, Multidimensional FEM-FCT schemes for arbitrary time-stepping. Int. J. Numer. Meth. Fluids 42 (2003) 265–295.

    Article  MATH  Google Scholar 

  26. D. Kuzmin and S. Turek, Finite element discretization tools for gas-liquid flows. In: M. Sommerfeld (ed.), Bubbly Flows: Analysis, Modelling and Calculation, Springer, 2004, 191–201.

    Google Scholar 

  27. D. Kuzmin and S. Turek, High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198 (2004) 131–158.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. D. Kuzmin, M. Möller and S. Turek, High-resolution FEM-FCT schemes for multidimensional conservation laws. Technical report 231, University of Dortmund, 2003. To appear in Comput. Methods Appl. Mech. Engrg

    Google Scholar 

  29. A. Lapin, University of Stuttgart. Private communication.

    Google Scholar 

  30. P.D. Lax, Systems of Conservation Laws and Mathematical Theory of Shock Waves. SIAM Publications, Philadelphia, 1973.

    MATH  Google Scholar 

  31. R. J. LeVeque, Numerical Methods for Conservation Laws. Birkhäuser, 1992.

    Google Scholar 

  32. R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow. Siam J. Numer. Anal. 33 (1996) 627–665.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. Löhner, Applied CFD Techniques: An Introduction Based on Finite Element Methods. Wiley, 2001.

    Google Scholar 

  34. R. Löhner and J. D. Baum, 30 Years of FCT: Status and Directions. Chapter 5 in this volume.

    Google Scholar 

  35. R. Löhner, K. Morgan, J. Peraire and M. Vahdati, Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer. Meth. Fluids 7 (1987) 1093–1109.

    Article  MATH  Google Scholar 

  36. R. Löhner, K. Morgan, M. Vahdati, J. P. Boris and D. L. Book, FEM-FCT: combining unstructured grids with high resolution. Commun. Appl. Numer. Methods 4 (1988) 717–729.

    Article  MATH  Google Scholar 

  37. P.R.M. Lyra, Unstructured Grid Adaptive Algorithms for Fluid Dynamics and Heat Conduction. PhD thesis, University of Wales, Swansea, 1994.

    Google Scholar 

  38. P.R.M. Lyra, K. Morgan, J. Peraire and J. Peiro, TVD algorithms for the solution of the compressible Euler equations on unstructured meshes. Int. J. Numer. Meth. Fluids 19 (1994) 827–847.

    Article  MATH  Google Scholar 

  39. P.R.M. Lyra and K. Morgan, A review and comparative study of upwind biased schemes for compressible flow computation. III: Multidimensional extension on unstructured grids. Arch. Comput. Methods Eng. 9 (2002) no. 3, 207–256.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Möller, Hochauflösende FEM-FCT-Verfahren zur Diskretisierung von konvektionsdominanten Transportproblemen mit Anwendung auf die kompressiblen Eulergleichungen. Diploma thesis, University of Dortmund, 2003.

    Google Scholar 

  41. M. Möller, D. Kuzmin and S. Turek, Implicit flux-corrected transport algorithm for finite element simulation of the compressible Euler equations. In: M. Kříżek et al. (eds), Conjugate Gradient Algorithms and Finite Element Methods, Springer, 2004, 325–354.

    Google Scholar 

  42. K. Morgan and J. Peraire, Unstructured grid finite element methods for fluid mechanics. Reports on Progress in Physics, 61 (1998), no. 6, 569–638.

    Google Scholar 

  43. E.S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow. 2nd edition, Cambridge University Press, 2001.

    Google Scholar 

  44. S. V. Patankar, Numerical Heat Transfer and Fluid Flow. McGraw-Hill, New York, 1980.

    MATH  Google Scholar 

  45. J. Peraire, M. Vahdati, J. Peiro and K. Morgan, The construction and behaviour of some unstructured grid algorithms for compressible flows. Numerical Methods for Fluid Dynamics IV, Oxford University Press, 221–239 (1993).

    MathSciNet  Google Scholar 

  46. R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element. Numer. Meth. PDEs 8 (1992), no. 2, 97–111.

    MathSciNet  MATH  Google Scholar 

  47. C. Schär and P.K. Smolarkiewicz, A synchronous and iterative flux-correction formalism for coupled transport equations. J. Comput. Phys. 128 (1996) 101–120.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. V. Selmin, Finite element solution of hyperbolic equations. I. One-dimensional case. INRIA Research Report 655 (1987).

    Google Scholar 

  49. V. Selmin, Finite element solution of hyperbolic equations. II. Two-dimensional case. INRIA Research Report 708 (1987).

    Google Scholar 

  50. A. Sokolichin, Mathematische Modellbildung und numerische Simulation von Gas-Flüssigkeits-Blasenströmungen. Habilitation thesis, University of Stuttgart, 2004.

    Google Scholar 

  51. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984), 995–1011.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  52. S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach, LNCSE 6, Springer, 1999.

    Google Scholar 

  53. S. Turek and D. Kuzmin, Algebraic Flux Correction III. Incompressible Flow Problems. Chapter 8 in this volume.

    Google Scholar 

  54. S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31 (1979) 335–362.

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuzmin, D., Möller, M. (2005). Algebraic Flux Correction I. Scalar Conservation Laws. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27206-2_6

Download citation

Publish with us

Policies and ethics