Skip to main content

The Pathogenesis of Atherosclerosis

  • Chapter
Atherosclerosis: Diet and Drugs

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 170))

Abstract

Worldwide, more people die of the complications of atherosclerosis than of any other cause. It is not surprising, therefore, that enormous resources have been devoted to studying the pathogenesis of this condition. This article attempts to summarize present knowledge on the events that take place within the arterial wall during atherogenesis. Classical risk factors are not dealt with as they are the subjects of other parts of this book. First, we deal with the role of endothelial dysfunction and infection in initiating the atherosclerotic lesion. Then we describe the development of the lesion itself, with particular emphasis on the cell types involved and the interactions between them. The next section of the chapter deals with the events leading to thrombotic occlusion of the atherosclerotic vessel, the cause of heart attack and stroke. Finally, we describe the advantages—and limitations—of current animal models as they contribute to our understanding of atherosclerosis and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akira S (2000) The role of IL-18 in innate immunity. Curr Op Lipidol 12:59–63

    Google Scholar 

  • Al Suwaidi J, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A (2000) Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 101:948–954

    PubMed  Google Scholar 

  • Amar S, Gokce N, Morgan S, Loukideli M, Van Dyke TE, Vita JA (2003) Periodontal disease is associated with endothelial dysfunction and systemic inflammation. Arterioscler Thromb Vasc Biol 23:1245–1249

    PubMed  Google Scholar 

  • Ambrose JA, Winters SL, Arora RR, Eng A, Riccio A, Gorlin R et al. (1986) Angiographic evolution of coronary artery morphology in unstable angina. J Am Coll Cardiol 7:472–478

    PubMed  Google Scholar 

  • Ameli S, Hultgardh-Nilsson A, Regnstrom J, Calara F, Yano J, Cercek B et al. (1996) Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 16:1074–1079

    PubMed  Google Scholar 

  • Anderson JL, Muhlestein JB, Carlquist J, Allen A, Trehan S, Nielson C et al. (1999) Randomized secondary prevention trial of azithromycin in patients with coronary artery disease and serological evidence for Chlamydia pneumoniae infection: The Azithromycin in Coronary Artery Disease: Elimination of Myocardial Infection with Chlamydia (ACADEMIC) study. Circulation 99:1540–1547

    PubMed  Google Scholar 

  • Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  Google Scholar 

  • Anderson TJ (1999) Assessment and treatment of endothelial dysfunction in coronary artery disease and implications for therapy. J Am Coll Cardiol 34:631–638

    PubMed  Google Scholar 

  • Anitschkow N (1913) Über die Veränderungen der Kaninchenaorta bei experimenteller Cholesterinsteatose. Beiträge zur pathologischen Anatomie und zur allgemeinen Pathologie 56:379–404

    Google Scholar 

  • Apfalter P, Blasi F, Boman J, Gaydos CA, Kundi M, Maass M et al. (2001) Multicenter comparison trial of DNA extraction methods and PCR assays for detection of Chlamydia pneumoniae in endarterectomy specimens. J Clin Microbiol 39:519–524

    Article  PubMed  Google Scholar 

  • Arbes SJ Jr., Slade GD, Beck JD (1999) Association between extent of periodontal attachment loss and self-reported history of heart attack: an analysis of NHANES III data. J Dent Res 78:1777–1782

    PubMed  Google Scholar 

  • Arbustini E, Grasso M, Diegoli M, Pucci A, Bramerio M, Ardissino D et al. (1991) Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: amorphologic, immunohistochemical, and biochemical study. Am J Cardiol 68:36B–50B

    PubMed  Google Scholar 

  • Arbustini E, Dal Bello B, Morbini P, Burke AP, Bocciarelli M, Specchia G et al. (1999) Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82:269–272

    PubMed  Google Scholar 

  • Asada Y, Marutsuka K, Hatakeyama K, Sato Y, Hara S, Kisanuki A et al. (1998) The role of tissue factor in the pathogenesis of thrombosis and atherosclerosis. J Atheroscler Thromb 4:135–139

    PubMed  Google Scholar 

  • Aschoff KAL (1908) Über Atherosklerose und andere Sklerosen des Gafässystems. Urban and Schwarzenberg, Berlin

    Google Scholar 

  • Bachert C (2002) The role of histamine in allergic disease: re-appraisal of its inflammatory potential. Allergy 57:287–296

    PubMed  Google Scholar 

  • Badimon L, Steele P, Badimon JJ, Bowie EJ, Fuster V (1985) Aortic atherosclerosis in pigs with heterozygous von Willebrand disease. Comparison with homozygous von Willebrand and normal pigs. Arteriosclerosis 5:366–370

    PubMed  Google Scholar 

  • Badimon L (2001) Atherosclerosis and thrombosis: lessons from animal models. Thromb Haemost 86:356–365

    PubMed  Google Scholar 

  • Baggiolini M (2001) Chemokines in pathology and medicine. J Intern Med 250:91–104

    Article  PubMed  Google Scholar 

  • Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA (2001) Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol 167:4008–4016

    PubMed  Google Scholar 

  • Barnes MJ, Farndale RW (1999) Collagens and atherosclerosis. Exp Gerontol 34:513–525

    PubMed  Google Scholar 

  • Bayes-Genis A, Conover CA, Schwartz RS (2000) The insulin-like growth factor axis: A review of atherosclerosis and restenosis. Circ Res 86:125–130

    PubMed  Google Scholar 

  • Bea F, Blessing E, Bennett B, Levitz M, Wallace EP, Rosenfeld ME (2002) Simvastatin promotes atherosclerotic plaque stability in apoE-deficient mice independently of lipid lowering. Arterioscler Thromb Vasc Biol 22:1832–1837

    PubMed  Google Scholar 

  • Beck J, Garcia R, Heiss G, Vokonas PS, Offenbacher S (1996) Periodontal disease and cardiovascular disease. J Periodontol 67:1123–1137

    PubMed  Google Scholar 

  • Behrendt D, Ganz P (2002) Endothelial function: from vascular biology to clinical applications. Am J Cardiol 90:40L–80L

    Article  PubMed  Google Scholar 

  • Bellosta S, Mahley RW, Sanan DA, Murata J, Newland DL, Taylor JM et al. (1995) Macrophage specific expression of human apolipoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice. J Clin Invest 96:2170–2179

    PubMed  Google Scholar 

  • Bellosta S, Bernini F, Chinetti G, Cignarella A, Cullen P, von Eckardstein A, et al. (2002) Macrophage Function and Stability of Atherosclerotic Plaque Consortium. Macrophage function and stability of the atherosclerotic plaque: progress report of a European project. Nutr Metab Cardiovasc Dis 12:3–11

    PubMed  Google Scholar 

  • Benditt EP, Benditt JM (1973) Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA 70:1753–1756

    PubMed  Google Scholar 

  • Benoist C, Mathis D (2002) Mast cells in autoimmune disease. Nature 420:875–878

    Article  PubMed  Google Scholar 

  • Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A et al. (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250

    PubMed  Google Scholar 

  • Blanchette-Mackie EJ (2000) Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim Biophys Acta 1486:171–183

    PubMed  Google Scholar 

  • Bogdan C (2001) Macrophages. Nature Encyclopedia of Life Sciences; http://www.els.net/. Nature Publishing Group, London

    Google Scholar 

  • Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction—a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175

    PubMed  Google Scholar 

  • Bradding P (1996) Human mast cell cytokines. Clin Exp Allergy 26:13–19

    PubMed  Google Scholar 

  • Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM et al. (2002) Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 90:270–276

    Article  PubMed  Google Scholar 

  • Brinck H, Cullen P, Exley A, Goddard MJ, Kummer S, Lorkowski S, et al. (2003) Internetbased image database for atherosclerosis research. Proceedings of the 17th International Congress and Exhibition Computer Assisted Radiology and Surgery (CARS) Elsevier, Amsterdam, p 301

    Google Scholar 

  • Brouet A, Sonveaux P, Dessy C, Balligand JL, Feron O (2001) Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem 276:32663–32669

    Article  PubMed  Google Scholar 

  • Brown AJ, Jessup W (1999) Oxysterols and atherosclerosis. Atherosclerosis 142:1–28

    Article  PubMed  Google Scholar 

  • Brown WV (2001) Therapies on the horizon for cholesterol reduction. Clin Cardiol 24:III24–III27

    PubMed  Google Scholar 

  • Bruggeman CA, Marjorie HJ, Nelissen-Vrancken G (1999) Cytomegalovirus and atherosclerosis. Antiviral Res 43:191–200

    Article  Google Scholar 

  • Buhman KK, Accad M, Novak S, Choi RS, Wong JS, Hamilton RL et al. (2000) Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficientmice. Nat Med 6:1341–1347

    Article  PubMed  Google Scholar 

  • Burke AP, Farb A, Malcolm GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336:1276–1282

    PubMed  Google Scholar 

  • Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J et al. (2001) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940

    PubMed  Google Scholar 

  • Burke AP, Farb A, Kolodgie FD, Narula J, Virmani R (2002) Atherosclerotic plaque morphology and coronary thrombi. J Nucl Cardiol 9:95–103

    Article  PubMed  Google Scholar 

  • Burns AR, Bowden RA, Abe Y, Walker DC, Simon SI, Entman ML et al. (1999) P-selectin mediates neutrophil adhesion to endothelial cell borders. J Leukoc Biol 65:299–306

    PubMed  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844

    PubMed  Google Scholar 

  • Calara F, Silvestre M, Casanada F, Yuan N, Napoli C, Palinski W (2001) Spontaneous plaque rupture and secondary thrombosis in apolipoprotein E-deficient and LDL receptor-deficient mice. J Pathol 195:257–263

    Article  PubMed  Google Scholar 

  • Caligiuri G, Levy B, Pernow J, Thoren P, Hansson GK (1999) Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci USA 96:6920–6924

    Article  PubMed  Google Scholar 

  • Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P et al. (1997) Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 17:439–444

    Article  PubMed  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C et al. (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    Article  PubMed  Google Scholar 

  • Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID et al. (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340:1111–1115

    Article  PubMed  Google Scholar 

  • Chang TY, Chang CCY, Cheng D (1997) Acyl-coenzyme A: cholesterol acyltransferase. Annu Rev Biochem 66:613–638

    Article  PubMed  Google Scholar 

  • Christ G, Hufnagl P, Kaun C, Mundigler G, Laufer G, Huber K et al. (1997) Antifibrinolytic properties of the vascular wall. Dependence on the history of smooth muscle cell doublings in vitro and in vivo. Arterioscler Thromb Vasc Biol 17:723–730

    PubMed  Google Scholar 

  • Chung IM, Schwartz SM, Murry CE (1998) Clonal architecture of normal and atherosclerotic aorta:implications for atherogenesis and vascular development. Am J Pathol 152:913–923

    PubMed  Google Scholar 

  • Clarkson TB, Pritchard RW, Netsky MG, Lofland HB (1959) Atherosclerosis in pigeons: its spontaneous occurrence and resemblance to human atherosclerosis. AMA Arch Pathol 68:143–147

    PubMed  Google Scholar 

  • Cockburn A, Barraco RA, Reyman TA, Peck WH (1975) Autopsy of an Egyptian mummy. Science 187:1155–1160

    PubMed  Google Scholar 

  • Cockburn A (1980) Miscellaneous mummies. In: Cockburn A, Cockburn E, (eds). Mummies, disease and ancient cultures. Cambridge University Press, Cambridge

    Google Scholar 

  • Compton SJ, Cairns JA, Holgate ST, Walls AF (2000) Human mast cell tryptase stimulates the release of an IL-8-dependent neutrophil chemotactic activity from human umbilical vein endothelial cells (HUVEC). Clin Exp Immunol 121:31–36

    Article  PubMed  Google Scholar 

  • Cooke JP (2000) Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol 20:2032–2037

    PubMed  Google Scholar 

  • Cullen P, Fobker M, Tegelkamp K, Meyer K, Kannenberg F, Cignarella A et al. (1997) An improved method for quantification of cholesterol and cholesteryl esters in human monocyte-derived macrophages by high performance liquid chromatography with identification of unassigned cholesteryl ester species by means of secondary ion mass spectrometry. J Lipid Res 38:401–409

    PubMed  Google Scholar 

  • Cullen P, Cignarella A, von Eckardstein A, Mohr S, Assmann G (1996) Phenotype dependent differences in apolipoprotein E gene expression and protein secretion in human monocyte-derived macrophages. Circulation 101:1670–1677

    Google Scholar 

  • Cullen P, Baetta R, Bellosta S, Bernini F, Chinetti G, Cignarella A et al. (2003) Rupture of the atherosclerotic plaque. Does a good animal model exist? Arterioscler Thromb Vasc Biol 23:529–534

    Article  PubMed  Google Scholar 

  • Curry AJ, Portig I, Goodall JC, Kirkpatrick PJ, Gaston JS (2000) T lymphocyte lines isolated from atheromatous plaque contain cells capable of responding to Chlamydia antigens. Clin Exp Immunol 121:261–269

    Article  PubMed  Google Scholar 

  • Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F et al. (1990) Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 87:5134–5138

    PubMed  Google Scholar 

  • Dabbagh K, Laurent GJ, McAnulty RJ, Chambers RC (1998) Thrombin stimulates smooth muscle cell procollagen synthesis and mRNA levels via a PAR-1 mediated mechanism. Thromb Haemost 79:405–409

    PubMed  Google Scholar 

  • Danesh J, Collins R, Peto R (1997) Chronic infections and coronary heart disease: is there a link? Lancet 350:430–436

    PubMed  Google Scholar 

  • Danesh J, Whincup P, Walker M, Lennon L, Thomson A, Appleby P et al. (2000) Chlamydia pneumoniae IgG titres and coronary heart disease: prospective study and meta-analysis. BMJ 321:208–213

    Article  PubMed  Google Scholar 

  • Danesh J, Whincup P, Lewington S, Walker M, Lennon L, Thomson A et al. (2002) Chlamydia pneumoniae IgA titres and coronary heart disease; prospective study and meta-analysis. Eur Heart J 23:371–375

    Article  Google Scholar 

  • Dansky HM, Charlton SA, Harper MM, Smith JD (1997) T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 94:4642–4646

    Article  PubMed  Google Scholar 

  • Dansky HM, Charlton SA, Sikes JL, Heath SC, Simantov R, Levin LF et al. (1999) Genetic background determines the extent of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19:1960–1968

    PubMed  Google Scholar 

  • Daugherty A, Pure E, Delfel-Butteiger D, Chen S, Leferovich J, Roselaar SE et al. (1997) The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E-/-mice. J Clin Invest 100:1575–1580

    PubMed  Google Scholar 

  • Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105:1605–1612

    PubMed  Google Scholar 

  • Daugherty A, Rateri DL (2002) T lymphocytes in atherosclerosis: the yin-yang of Th1 and Th2 influence on lesion formation. Circ Res 90:1039–1040

    Article  PubMed  Google Scholar 

  • Davies MJ, Thomas AC (1985) Plaque fissuring: the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53:363–373

    PubMed  Google Scholar 

  • Davies MJ (1992) Anatomic features in victims of sudden coronary death. Circulation 85:119–124

    Google Scholar 

  • de Boer OJ, van der Wal AC, Becker AE (2000a) Atherosclerosis, inflammation, and infection. J Pathol 190:237–243

    Article  PubMed  Google Scholar 

  • de Boer OJ, van der Wal AC, Houtkamp MA, Ossewaarde JM, Teeling P, Becker AE (2000b) Unstable atherosclerotic plaques contain T-cells that respond to Chlamydia pneumoniae. Cardiovasc Res 48:402–408

    PubMed  Google Scholar 

  • de Winther MP, Gijbels MJ, van Dijk KW, van Gorp PJ, Suzuki H, Kodama T et al. (1999) Scavenger receptor deficiency leads to more complex atherosclerotic lesions in APOE3 Leiden transgenic mice. Atherosclerosis 144:315–321

    PubMed  Google Scholar 

  • der Thüsen JH, van Vlijmen BJ, Hoeben RC, Kockx MM, Havekes LM, van Berkel TJ et al. (2002) Induction of atherosclerotic plaque rupture in apolipoprotein E-/-mice after adenovirus-mediated transfer of p53. Circulation 105:2064–2070

    PubMed  Google Scholar 

  • Detrano RC, Doherty TM, Davies MJ, Stary HC (2000) Predicting coronary events with coronary calcium: pathophysiologic and clinical problems. Curr Probl Cardiol 25:374–402

    Article  PubMed  Google Scholar 

  • Devlin CM, Kuriakose G, Hirsch E, Tabas I (2002) Genetic alterations of IL-1 receptor antagonists in mice affect plasma cholesterol level and foam cell lesion size. Proc Natl Acad Sci USA 99:6280–6285

    PubMed  Google Scholar 

  • Dhore CR, Cleutjens JP, Lutgens E, Cleutjens KB, Geusens PP, Kitslaar PJ et al. (2001) Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 21:1998–2003

    PubMed  Google Scholar 

  • Di Girolamo N, Wakefield D (2000) In vitro and in vivo expression of interstitial collagenase/MMP-1 by human mast cells. Dev Immunol 7:131–142

    PubMed  Google Scholar 

  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  PubMed  Google Scholar 

  • Doherty TM, Uzui H, Fitzpatrick LA, Tripathi PV, Dunstan CR, Asotra K et al. (2002) Rationale for the role of osteoclast-like cells in arterial calcification. FASEB J 16:577–582

    Article  PubMed  Google Scholar 

  • Doherty TM, Fitzpatrick LA, Shaheen A, Rajavashisth TB, Detrano RC (2004) Genetic determinants of arterial calcification associated with atherosclerosis. Mayo Clin Proc 79:197–210

    PubMed  Google Scholar 

  • Duguid JB (1946) Thrombosis as a factor in the pathogenesis of coronary atherosclerosis. J Pathol Bacteriol 58:207–212

    Google Scholar 

  • Dunne MW (2000) Rationale and design of a secondary prevention trial of antibiotic use in patients after myocardial infarction: the WIZARD (Weekly Intervention with Zithromax (azithromycin) for Atherosclerosis and its Related Disorders. J Infect Dis 181:S572–S578

    PubMed  Google Scholar 

  • Egyptian Museum Cairo. Portraits from the Desert. A temporary exhibition organised by the Kunsthistorisches Museum Vienna in conjunction with the Egyptian Museum Cairo 1999

    Google Scholar 

  • Ehrlich P (1879) Beiträge zur Kenntniss der granulirten Bindegewebszellen und der eosinophilen Leukocythen. Arch Anat Physiol 3:166–169

    Google Scholar 

  • Elhage R, Maret A, Pieraggi MT, Thiers JC, Arnal JF, Bayard F (1998) Differential effects of interleukin-1 receptor antagonist and tumor necrosis factor binding protein on fatty-streak formation in apolipoprotein E-deficient mice. Circulation 97:242–244

    PubMed  Google Scholar 

  • Engel T, Lorkowski S, Lueken A, Rust S, Schluter B, Berger G et al. (2001) The human ABCG4 gene is regulated by oxysterols and retinoids inmonocyte-derived macrophages. Biochem Biophys Res Commun 288:483–488

    PubMed  Google Scholar 

  • Engel T, Lueken A, Bode G, Hobohm U, Lorkowski S, Schlueter B et al. (2004) ADP-ribosylation factor (ARF)-like 7 (ARL7) is inducedby cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett 566:241–246

    Article  PubMed  Google Scholar 

  • Epstein SE, Speir E, Zhou YF, Guetta E, Leon M, Finkel T (1996) The role of infection in restenosis and atherosclerosois: focus on cytomegalovirus. Lancet 348:13–17

    Article  PubMed  Google Scholar 

  • Epstein SE, Zhu J, Burnett MS, Zhou YF, Vercellotti G, Hajjar D (2000) Infection and atherosclerosis: potential roles of pathogen burden and molecular mimicry. Arterioscler Thromb Vasc Biol 20:1417–1420

    PubMed  Google Scholar 

  • Espinola-Klein C, Rupprecht HJ, Blankenberg S, Bickel C, Kopp H, Rippin G et al. (2000) Are morphological or functional changes in the carotid artery wall associated with Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus, or herpes simplex virus infection? Stroke 31:2127–2133

    PubMed  Google Scholar 

  • Espinola-Klein C, Rupprecht HJ, Blankenberg S, Bickel C, Kopp H, Rippin G et al. (2002a) Impact of infectious burden on extent and long-term prognosis of atherosclerosis. Circulation 105:15–21

    Article  PubMed  Google Scholar 

  • Espinola-Klein C, Rupprecht HJ, Blankenberg S, Bickel C, Kopp H, Victor A et al. (2002b) Impact of infectious burden on progression of carotid atherosclerosis. Stroke 33:2581–2586

    Article  PubMed  Google Scholar 

  • Evanko SP, Raines EW, Ross R, Gold LI, Wight TN (1998) Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am J Pathol 152:533–546

    PubMed  Google Scholar 

  • Falk E (1992) Why do plaques rupture? Circulation 86:III30–III42

    PubMed  Google Scholar 

  • Farb A, Tang AL, Burke AP, Sessums L, Liang Y, Virmani R (1995) Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 92:1701–1709

    PubMed  Google Scholar 

  • Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J et al. (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93:1354–1363

    PubMed  Google Scholar 

  • Fernandez-Ortiz A, Badimon JJ, Falk E, Fuster V, Meyer B, Mailhac A et al. (1994) Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 23:1562–1569

    PubMed  Google Scholar 

  • Fichtlscherer S, Rosenberger G, Walter DH, Breuer S, Dimmeler S, Zeiher AM. Elevated Creactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation (2000) 102:1000–1006

    PubMed  Google Scholar 

  • Fitzpatrick LA, Severson A, Edwards WD, Ingram RT (1994) Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest 94:1597–1604

    PubMed  Google Scholar 

  • Fong IW (2000) Emerging relations between infectious diseases and coronary artery disease and atherosclerosis. CMAJ 163:49–56

    PubMed  Google Scholar 

  • Fontana J, Fulton D, Chen Y, Fairchild TA, McCabe TJ, Fujita N et al. (2002) Domain mapping studies reveal that the Mdomain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res 90:866–873

    PubMed  Google Scholar 

  • Fredrikson GN, Soderberg I, Lindholm M, Dimayuga P, Chyu KY, Shah PK et al. (2003) Inhibition of atherosclerosis in apoE-null mice by immunization with apoB-100 peptide sequences. Arterioscler Thromb Vasc Biol 23:879–884

    PubMed  Google Scholar 

  • Freigang S, Horkko S, Miller E, Witztum JL, Palinski W (1998) Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 18:1972–1982

    PubMed  Google Scholar 

  • Frothingham C (1911) The relationship between acute infectious diseases and arterial lesions. Arch Intern Med 8:153–162

    Google Scholar 

  • Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992a) The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 326:242–250

    PubMed  Google Scholar 

  • Fuster V, Badimon L, Badimon JJ, Chesebro JH (1992b) The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med 326:310–318

    PubMed  Google Scholar 

  • Fuster V, Lie JT, Badimon L, Rosemark JA, Badimon JJ, Bowie EJ (1985) Spontaneous and diet-induced coronary atherosclerosis in normal swine and swine with von Willebrand disease. Arteriosclerosis 5:67–73

    PubMed  Google Scholar 

  • Fuster V, Falk E, Fallon JT, Badimon L, Chesebro JH, Badimon JJ (1995) The three processes leading to post PTCA restenosis: dependence on the lesion substrate. Thromb Haemost 74:552–559

    PubMed  Google Scholar 

  • Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    PubMed  Google Scholar 

  • Galli SJ, Iemura A, Garlick DS, Gamba-Vitalo C, Zsebo KM, Andrews RG (1993) Reversible expansion of primate mast cell populations in vivo by stem cell factor. J Clin Invest 91:148–152

    PubMed  Google Scholar 

  • Gargalovic P, Dory L (2003) Caveolins and macrophage lipidmetabolism. J Lipid Res 44:11–21

    Article  PubMed  Google Scholar 

  • Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC (1996) Replication of chlamydia-pneumoniae in-vitro in human macrophages, endothelial-cells, and aortic artery smooth-muscle cells. Infect Immun 64:1614–1620

    PubMed  Google Scholar 

  • George J, Afek A, Gilburd B, Levkovitz H, Shaish A, Goldberg I et al. (1998) Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 138:147–152

    Article  PubMed  Google Scholar 

  • Gijsbers BL, van Haarlem LJ, Soute BA, Ebberink RH, Vermeer C (1990) Characterization of a Gla-containing protein from calcified human atherosclerotic plaques. Arteriosclerosis 10:991–995

    PubMed  Google Scholar 

  • Giroud D, Li JM, Urban P, Meier B, Rutishauser W (1992) Relation of the site of acute myocardial-infarction to the most severe coronary arterial-stenosis at prior angiography. Am J Cardiol 69:729–732

    Article  PubMed  Google Scholar 

  • Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    PubMed  Google Scholar 

  • Godzik KL, Obrien ER, Wang SK, Kuo CC (1995) In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae. J Clin Microbiol 33:2411–2414

    PubMed  Google Scholar 

  • Gokce N, Keaney JF, Hunter LM, Watkins MT, Menzoian JO, Vita JA (2002) Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation 105:1567–1572

    Article  PubMed  Google Scholar 

  • Gonzalez MA, Selwyn AP (2003) Endothelial function, inflammation, and prognosis in cardiovascular disease. Am J Med 115:99S–106S

    Article  PubMed  Google Scholar 

  • Gordon JR (2000) TGFbeta1 and TNFalpha secreted by mast cells stimulated via the FcepsilonRI activate fibroblasts for high-level production of monocyte chemoattractant protein-1 (MCP-1). Cell Immunol 201:42–49

    Article  PubMed  Google Scholar 

  • Gown AM, Tsukada T, Ross R (1986) Human atherosclerosis. II. Immunocytochemical analysis of the cellular composition of human atherosclerotic lesions. Am J Pathol 125:191–207

    PubMed  Google Scholar 

  • Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL, Betteridge DJ, Emery V et al. (2003) Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation 108:678–683

    Article  PubMed  Google Scholar 

  • Grau AJ, Buggle F, Ziegler C, Schwarz W, Meuser J, Tasman AJ et al. (1997) Association between acute cerebrovascular ischemia and chronic and recurrent infection. Stroke 28:1724–1729

    PubMed  Google Scholar 

  • Grau AJ, Becher H, Ziegler CM, Lichy C, Buggle F, Kaiser C et al. (2004) Periodontal disease as a risk factor for ischemic stroke. Stroke 35:496–501

    Article  PubMed  Google Scholar 

  • Grayston JT, Campbell LA, Kuo CC, Mordhorst CH, Saikku P, Thom DH et al. (1990) A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 161:618–625

    PubMed  Google Scholar 

  • Grayston JT (1992) Infections caused by Chlamydia pneumoniae strain TWAR. Clin Infect Dis 15:757–761

    PubMed  Google Scholar 

  • Gruber BL, Marchese MJ, Suzuki K, Schwartz LB, Okada Y, Nagase H et al. (1989) Synovial procollagenase activation by human mast cell tryptase dependence upon matrix metalloproteinase 3 activation. J Clin Invest 84:1657–1662

    PubMed  Google Scholar 

  • Gupta S, Leatham EW, Carrington D, Mendall MA, Kaski JC, Camm AJ. (1997a) Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of myocardial infarction. Circulation 96:404–407

    PubMed  Google Scholar 

  • Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C (1997b) IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 99:2752–2761

    PubMed  Google Scholar 

  • Halcox JPJ, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA et al. (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106:653–658

    Article  PubMed  Google Scholar 

  • Hamilton TA, Ohmori Y, Tebo JM, Kishore R (1999) Regulation of macrophage gene expression by pro-and anti-inflammatory cytokines. Pathobiology 67:241–244

    Article  PubMed  Google Scholar 

  • Han J, Hajjar DP, Zhou X, Gotto AM, Jr., Nicholson AC (2002) Regulation of peroxisome proliferator-activated receptor-gamma-mediated gene expression. A new mechanism of action for high density lipoprotein. J Biol Chem 277:23582–23586

    Article  PubMed  Google Scholar 

  • Hansson GK (1997) Cell-mediated immunity in atherosclerosis. Curr Op Lipidol 8:301–311

    Google Scholar 

  • Hansson GK (2001) Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 21:1876–1890

    PubMed  Google Scholar 

  • Hansson GK (2002) Vaccination against atherosclerosis: science or fiction? Circulation 106:1599–1601

    Article  PubMed  Google Scholar 

  • Hansson GK, Libby P, Schonbeck U, Yan ZQ (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291

    Article  PubMed  Google Scholar 

  • Hara M, Matsumori A, Ono K, Kido H, Hwang MW, Miyamoto T et al. (1999) Mast cells cause apoptosis of cardiomyocytes and proliferation of other intramyocardial cells in vitro. Circulation 100:1443–1449

    PubMed  Google Scholar 

  • Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100:2153–2157

    PubMed  Google Scholar 

  • Haynes WG, Stanford C (2003) Periodontal disease and atherosclerosis. From dental to arterial plaque. Arterioscler Thromb Vasc Biol 23:1309–1311

    Article  PubMed  Google Scholar 

  • He S, Peng Q, Walls AF (1997) Potent induction of a neutrophil and eosinophil-rich infiltrate in vivo by human mast cell tryptase: selective enhancement of eosinophil recruitment by histamine. J Immunol 159:6216–6225

    PubMed  Google Scholar 

  • He S, Walls AF (1998) Human mast cell chymase induces the accumulation of neutrophils, eosinophils and other inflammatory cells in vivo. Br J Pharmacol 125:1491–1500

    Article  PubMed  Google Scholar 

  • Herrera VL, Makrides SC, Xie HX, Adari H, Krauss RM, Ryan US et al. (1999) Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nat Med 5:1383–1389.

    Article  PubMed  Google Scholar 

  • Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L et al. (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  PubMed  Google Scholar 

  • Hujoel PP, Drangsholt M, Spiekerman C, DeRouen TA (2000) Periodontal disease and coronary heart disease risk. JAMA 248:1406–1410

    Article  Google Scholar 

  • Ikari Y, Mcmanus BM, Kenyon J, Schwartz SM (1999) Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vasc Biol 19:2036–2040

    PubMed  Google Scholar 

  • Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893

    PubMed  Google Scholar 

  • Jackson LA (2000) Description and status of the Azithromycin and Coronary Events Study (ACES). J Infect Dis 181:S579–S581

    Article  PubMed  Google Scholar 

  • Jaeger E, Rust S, Scharffetter K, Roessner A, Winter J, Buchholz B et al. (1990) Localization of cytoplasmic collagen mRNA in human aortic coarctation: mRNA enhancement in high blood pressure-induced intimal and medial thickening. J Histochem Cytochem 38:1365–1375

    PubMed  Google Scholar 

  • Jerome WG, Lewis JC (1985) Early atherogenesis in White Carneau pigeons. II. Ultrastructural and cytochemical observations. Am J Pathol 1985; 119:210–222

    PubMed  Google Scholar 

  • Jerome WG, Lewis JC (1997) Cellular dynamics in early atherosclerotic lesion progression in white carneau pigeons—Spatial and temporal analysis of monocyte and smooth muscle invasion of the intima. Arterioscler Thromb Vasc Biol 17:654–664

    PubMed  Google Scholar 

  • Jeziorska M, McCollum C, Woolley DE (1997) Mast cell distribution, activation, and phenotype in atherosclerotic lesions of human carotid arteries. J Pathol 182:115–122

    Article  PubMed  Google Scholar 

  • Johnson JL, Jackson CL (2001) Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis 154:399–406

    Article  PubMed  Google Scholar 

  • Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138

    PubMed  Google Scholar 

  • Joshipura KJ, Rimm EB, Douglass CW, Trichopoulos D, Ascherio A, Willett WC (1996) Poor oral health and coronary heart disease. J Dent Res 75:1631–1636

    PubMed  Google Scholar 

  • Kaartinen M, Penttila A, Kovanen PT (1994a) Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 90:1669–1678

    PubMed  Google Scholar 

  • Kaartinen M, Penttila A, Kovanen PT (1994b) Mast cells of two types differing in neutral protease composition in the human aortic intima. Demonstration of tryptase-and tryptase/chymase-containing mast cells in normal intimas, fatty streaks, and the shoulder region of atheromas. Arterioscler Thromb 14:966–972

    PubMed  Google Scholar 

  • Kaartinen M, Penttila A, Kovanen PT (1996) Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-alpha. Circulation 94:2787–2792

    PubMed  Google Scholar 

  • Kaartinen M, van der Wal AC, Van der Loos CM, Piek JJ, Koch KT, Becker AE et al. (1998) Mast cell infiltration in acute coronary syndromes: implications for plaque rupture. J Am Coll Cardiol 32:606–612

    Article  PubMed  Google Scholar 

  • Kalayoglu MV, Libby P, Byrne GI (2002) Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. JAMA 288:2724–2731

    Article  PubMed  Google Scholar 

  • Katsuda S, Coltrera MD, Ross R, Gown AM (1993) Human atherosclerosis. IV. Immunocytochemical analysis of cell activation and proliferation in lesions of young adults. Am J Pathol 142:1787–1793

    PubMed  Google Scholar 

  • Kauhanen P, Kovanen PT, Lassila R (2000) Coimmobilized native macromolecular heparin proteoglycans strongly inhibit platelet-collagen interactions in flowing blood. Arterioscler Thromb Vasc Biol 20:E113–E119

    PubMed  Google Scholar 

  • Kaukoranta-Tolvanen SS, Laitinen K, Saikku P, Leinonen M (1994) Chlamydia pneumoniae multiplies in human endothelial cells in vitro. Microbial Pathogenesis 16:313–319

    Article  PubMed  Google Scholar 

  • Keele KD (1952) Leonardo da Vinci onmovement of the heart and blood. Harvey and Blythe, London

    Google Scholar 

  • Kelley JL, Chi DS, Abou-Auda W, Smith JK, Krishnaswamy G (2000) The molecular role of mast cells in atherosclerotic cardiovascular disease. Mol Med Today 6:304–308

    Article  PubMed  Google Scholar 

  • Kellner-Weibel GL, Jerome WG, Small DM, Warner GJ, Stoltenborg JK, Kearney MA et al. (1998) Effects of intracellular free cholesterol accumulation on macrophage viability—A model for foam cell death. Arterioscler Thromb Vasc Biol 18:423–431

    PubMed  Google Scholar 

  • Kellner-Weibel G, Yancey PG, Jerome WG, Walser T, Mason RP, Phillips MC et al. (1999) Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol 19:1891–1898

    PubMed  Google Scholar 

  • Khovidhunkit W, Memon RA, Feingold KR (2000) Infection and inflammation-induced proatherogenic changes of lipoproteins. J Infect Dis 181:S462–S472

    Article  PubMed  Google Scholar 

  • Kim DN, Schmee J, Lee KT, Thomas WA (1987) Atherosclerotic lesions in the coronary arteries of hyperlipidemic swine. Part 1. Cell increases, divisions, losses and cells of origin in first 90 days on diet. Atherosclerosis 64:231–242

    Article  PubMed  Google Scholar 

  • Kirchhofer D, Riederer MA, Baumgartner HR (1997) Specific accumulation of circulating monocytes and polymorphonuclear leukocytes on platelet thrombi in a vascular injury model. Blood 89:1270–1278

    PubMed  Google Scholar 

  • Kockx MM (1998) Apoptosis in the atherosclerotic plaque—Quantitative and qualitative aspects. Arterioscler Thromb Vasc Biol 18:1519–1522

    PubMed  Google Scholar 

  • Kockx MM, Herman AG (1998) Apoptosis in atherogenesis: implications for plaque destabilization. Eur Heart J 19:G23–G28

    PubMed  Google Scholar 

  • Kokkonen JO, Kovanen PT (1987) Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc Natl Acad Sci USA 84:2287–2291

    PubMed  Google Scholar 

  • Kokkonen JO, Kovanen PT (1989) Proteolytic enzymes of mast cell granules degrade low density lipoproteins and promote their granule-mediated uptake by macrophages in vitro. J Biol Chem 264:10749–10755

    PubMed  Google Scholar 

  • Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK et al. (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325

    Article  PubMed  Google Scholar 

  • Kovanen PT (1990) Atheroma formation: defective control in the intimal round-trip of cholesterol. Eur Heart J 11:238–246

    PubMed  Google Scholar 

  • Kovanen PT (1995) Role of mast cells in atherosclerosis. Chem Immunol 62:132–170

    PubMed  Google Scholar 

  • Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92:1084–1088

    PubMed  Google Scholar 

  • Kovanen PT, Pentikainen MO (1999) Decorin links low-density lipoproteins (LDL) to collagen: a novel mechanism for retention of LDL in the atherosclerotic plaque. Trends Cardiovasc Med 9:86–91

    Article  PubMed  Google Scholar 

  • Kragel AH, Reddy SG, Wittes JT, Roberts WC (1989) Morphometric analysis of the composition of atherosclerotic plaques in the four major epicardial coronary arteries in acute myocardial infarction and in sudden coronary death. Circulation 80:1747–1756

    PubMed  Google Scholar 

  • Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R et al. (2001) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104:448–454

    PubMed  Google Scholar 

  • Lassila R, Lindstedt K, Kovanen PT (1997) Native macromolecular heparin proteoglycans exocytosed from stimulated rat serosal mast cells strongly inhibit platelet-collagen interactions. Arterioscler Thromb Vasc Biol 17:3578–3587

    PubMed  Google Scholar 

  • Lee M, Lindstedt LK, Kovanen PT (1992) Mast cell-mediated inhibition of reverse cholesterol transport. Arterioscler Thromb 12:1329–1335

    PubMed  Google Scholar 

  • Lee RT, Libby P (1997) The unstable atheroma. Arterioscler Thromb Vasc Biol 17:1859–1867

    PubMed  Google Scholar 

  • Lee M, von Eckardstein A, Lindstedt L, Assmann G, Kovanen PT (1999) Depletion of pre beta 1LpA1 and LpA4 particles by mast cell chymase reduces cholesterol efflux from macrophage foam cells induced by plasma. Arterioscler Thromb Vasc Biol 19:1066–1074

    PubMed  Google Scholar 

  • Lee TS, Yen HC, Pan CC, Chau LY (1999) The role of interleukin 12 in the development of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 19:734–742

    PubMed  Google Scholar 

  • Lee M, Calabresi L, Chiesa G, Franceschini G, Kovanen PT (2002a) Mast cell chymase degrades apoE and apoA-II in apoA-I-knockout mouse plasma and reduces its ability to promote cellular cholesterol efflux. Arterioscler Thromb Vasc Biol 22:1475–1481

    Article  PubMed  Google Scholar 

  • Lee M, Sommerhoff CP, von Eckardstein A, Zettl F, Fritz H, Kovanen PT (2002b) Mast cell tryptase degrades HDL and blocks its function as an acceptor of cellular cholesterol. Arterioscler Thromb Vasc Biol 22:2086–2091

    Article  PubMed  Google Scholar 

  • Leskinen M, Wang Y, Leszczynski D, Lindstedt KA, Kovanen PT (2001) Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21:516–522

    PubMed  Google Scholar 

  • Leskinen MJ, Lindstedt KA, Wang Y, Kovanen PT (2003a) Mast cell chymase induces smooth muscle cell apoptosis by a mechanism involving fibronectin degradation and disruption of focal adhesions. Arterioscler Thromb Vasc Biol 23:238–243

    Article  PubMed  Google Scholar 

  • Leskinen MJ, Kovanen PT, Lindstedt KA (2003b) Regulation of smooth muscle cell growth, function and death in vitro by activated mast cells—a potential mechanism for the weakening and rupture of atherosclerotic plaques. Biochem Pharmacol 66:1493–1498

    Article  PubMed  Google Scholar 

  • Leu HJ, Feigl W, Susani M, Odermatt B (1988) Differentiation of mononuclear blood cells into macrophages, fibroblasts and endothelial cells in thrombus organization. Exp Cell Biol 56:201–210

    PubMed  Google Scholar 

  • Levi M (2001) CMV endothelitis as a factor in the pathogenesis of atherosclerosis. Cardiovasc Res 50:432–433

    Article  PubMed  Google Scholar 

  • Li H, Cybulsky MI, Gimbrone MA, Jr., Libby P (1993) Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol 143:1551–159

    PubMed  Google Scholar 

  • Li L, Krilis SA (1999) Mast-cell growth and differentiation. Allergy 54:306–312

    Article  PubMed  Google Scholar 

  • Li AC, Glass CK (2002) The macrophage foam cell as a target for therapeutic intervention. Nat Med 8:1235–1242

    PubMed  Google Scholar 

  • Libby P, Egan D, Skarlatos S (1997) Roles of infectious agents in atherosclerosis and restenosis—An assessment of the evidence and need for future research. Circulation 96:4095–4103

    PubMed  Google Scholar 

  • Libby P (2000) Multiple mechanisms of thrombosis complicating atherosclerotic plaques. Clin Cardiol 23:3–7

    Google Scholar 

  • Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  PubMed  Google Scholar 

  • Lijnen HR (2002) Extracellular proteolysis in the development and progression of atherosclerosis. Biochem Soc Trans 30:163–167

    Article  PubMed  Google Scholar 

  • Lindstedt KA, Kokkonen JO, Kovanen PT (1992) Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res 33:65–75

    PubMed  Google Scholar 

  • Lindstedt KA (1993) Inhibition of macrophage-mediated low density lipoprotein oxidation by stimulated rat serosal mast cells. J Biol Chem 268:7741–7746

    PubMed  Google Scholar 

  • Lindstedt L, Lee M, Castro GR, Fruchart JC, Kovanen PT (1996) Chymase in exocytosed rat mast cell granules effectively proteolyzes apolipoprotein AI-containing lipoproteins, so reducing the cholesterol efflux-inducing ability of serum and aortic intimal fluid. J Clin Invest 97:2174–2182

    PubMed  Google Scholar 

  • Lohi J, Harvima I, Keski-Oja J (1992) Pericellular substrates of human mast cell tryptase: 72,000 dalton gelatinase and fibronectin. J Cell Biochem 50:337–349

    Article  PubMed  Google Scholar 

  • Lorkowski S, Kratz M, Wenner C, Schmidt R, Weitkamp B, Fobker M et al. (2001) Expression of the ATP-binding cassette transporter gene ABCG1 (ABC8) in Tangier disease. Biochem Biophys Res Commun 283:821–830

    Article  PubMed  Google Scholar 

  • Lorkowski S, Rust S, Engel T, Jung E, Tegelkamp K, Galinski EA et al. (2001) Genomic sequence and structure of the human ABCG1 (ABC8) gene. Biochem Biophys Res Commun 280:121–131

    Article  PubMed  Google Scholar 

  • Lorkowski S, Cullen P (2002) Subfamily G of the ATP-binding cassette transporter protein family. Pure Appl Chem 74:2057–2081

    Google Scholar 

  • Lupu F, Danaricu I, Simionescu N (1987) Development of intracellular lipid deposits in the lipid-laden cells of atherosclerotic lesions. A cytochemical and ultrastructural study. Atherosclerosis 67:127–142

    Article  PubMed  Google Scholar 

  • Ma H, Kovanen PT (1997) Degranulation of cutaneous mast cells induces transendothelial transport and local accumulation of plasma LDL in rat skin in vivo. J Lipid Res 38:1877–1887

    PubMed  Google Scholar 

  • Madden KB, Urban JF, Jr., Ziltener HJ, Schrader JW, Finkelman FD, Katona IM (1991) Antibodies to IL-3 and IL-4 suppress helminth-induced intestinal mastocytosis. J Immunol 147:1387–1391

    PubMed  Google Scholar 

  • Magee R (1998) Arterial disease in antiquity. Med J Australia 169:663–666

    PubMed  Google Scholar 

  • Maier M, Spragg J, Schwartz LB (1983) Inactivation of human high molecular weight kininogen by human mast cell tryptase. J Immunol 130:2352–2356

    PubMed  Google Scholar 

  • Majesky MW (2002) Mouse model for atherosclerotic plaque rupture. Circulation 105:2010–2011

    Article  PubMed  Google Scholar 

  • Malinow MR, Maruffo CA (1965) Aortic atherosclerosis in free-ranging howler monkeys (Alouatta caraya). Nature 206:948–949

    PubMed  Google Scholar 

  • Malinow MR, Maruffo CA (1966) Naturally occurring atherosclerosis in howler monkeys (Alouatta caraya). J Atheroscler Res 6:368–380

    PubMed  Google Scholar 

  • Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF et al. Protective role of interleukin-10 in atherosclerosis. Circ Res (1999) 85:e17–e24

    PubMed  Google Scholar 

  • Maron R, Sukhova G, Faria AM, Hoffmann E, Mach F, Libby P et al. (2002) Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106:1708–1715

    PubMed  Google Scholar 

  • Maruffo CA, Malinow MR (1966) Dissecting aneurysm of the aorta in a howler monkey (Alouatta caraya). J Pathol Bacteriol 92:567–570

    Article  PubMed  Google Scholar 

  • Mattila KJ, Nieminen MS, Valtonen VV, Rasi VP, Kesaniemi YA, Syrjala SL et al. (1989) Association between dental health and acute myocardial infarction. BMJ 298:779–781.

    PubMed  Google Scholar 

  • Mattila KJ, Valtonen VV, Nieminen M, Huttunen JK (1995) Dental infection and the risk of new coronary events—prospective study of patients with documented coronary-artery disease. Clin Infect Dis 20:588–592

    PubMed  Google Scholar 

  • Maxfield FR, Wustner D (2002) Intracellular cholesterol transport. J Clin Invest 110:891–898

    Article  PubMed  Google Scholar 

  • Mekori YA, Metcalfe DD (2000) Mast cells in innate immunity. Immunol Rev 173:131–140

    Article  PubMed  Google Scholar 

  • Mendez AJ, Lin G, Wade DP, Lawn RM, Oram JF (2001) Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway. J Biol Chem 276:3158–3166

    Article  PubMed  Google Scholar 

  • Metcalfe DD, Kaliner M, Donlon MA (1981) The mast cell. Crit Rev Immunol 3:23–74

    PubMed  Google Scholar 

  • Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079

    PubMed  Google Scholar 

  • Mitchinson MJ, Hardwick SJ, Bennett MR (1996) Cell-death in atherosclerotic plaques. Curr Op Lipidol 7:324–329

    Google Scholar 

  • Moldovan NI (2003) Current priorities in the research of circulating pre-endothelial cells. Adv Exp Med Biol 522:1–8

    PubMed  Google Scholar 

  • Morrison HI, Ellison LF, Taylor GW (1999) Periodontal disease and risk of fatal coronary heart and cerebrovascular diseases. J Cardiovasc Risk 6:7–11

    PubMed  Google Scholar 

  • Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146

    Article  PubMed  Google Scholar 

  • Mosorin M, Surcel HM, Laurila A, Lehtinen M, Karttunen R, Juvonen J et al. (2000) Detection of Chlamydia pneumoniae-reactive T lymphocytes in human atherosclerotic plaques of carotid artery. Arterioscler Thromb Vasc Biol 20:1061–1067

    PubMed  Google Scholar 

  • Muhlestein JB, Anderson JL, Carlquist JF, Salunkhe K, Horne BD, Pearson RR et al. (2000) Randomized secondary prevention trial of azithromycin in patientswith coronary artery disease: primary clinical results of the ACADEMIC study. Circulation 102:1755–1760

    PubMed  Google Scholar 

  • Munder M, Mallo M, Eichmann K, Modolell M (1998) Murine macrophages secrete interferon gamma upon cobined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J Exp Med 187:2103–2108

    Article  PubMed  Google Scholar 

  • Murohara T, Kugiyama K, Ohgushi M, Sugiyama S, Ohta Y, Yasue H (1994) LPC in oxidized LDL elicits vasocontraction and inhibits endothelium-dependent relaxation. Am J Physiol 36:H2441–H2449

    Google Scholar 

  • Murry CE, Gipaya CT, Bartosek T, Benditt EP, Schwartz SM (1997) Monoclonality of smooth muscle cells in human atherosclerosis. Am J Pathol 151:697–705

    PubMed  Google Scholar 

  • Nagano H, Mitchell RN, Taylor MK, Hasegawa S, Tilney NL, Libby P (1997) Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest 100:550–557

    PubMed  Google Scholar 

  • Nagy L, Tontonoz P, Alvarez JA, Chen HW, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR gamma. Cell 93:229–240

    Article  PubMed  Google Scholar 

  • Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 14:133–140

    PubMed  Google Scholar 

  • Napoli C, DArmiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G et al. (1997) Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia—Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 100:2680–2690

    PubMed  Google Scholar 

  • Naruko T, Ueda M, Haze K, van der Wal AC, Van der Loos CM, Itoh A et al. (2002) Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106:2894–2900

    Article  PubMed  Google Scholar 

  • Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–1226

    PubMed  Google Scholar 

  • Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R et al. (2000) Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290:2298–2301

    Article  PubMed  Google Scholar 

  • Nelimarkka LO, Nikkari ST, Ravanti LS, Kahari VM, Jarvelainen HT (1998) Collagenase-1, stromelysin-1 and 92 kDa gelatinase are associated with tumor necrosis factor-alpha induced morphological change of human endothelial cells in vitro. Matrix Biol 17:293–304

    Article  PubMed  Google Scholar 

  • Nerheim PL, Meier JL, Vasef MA, Li. W.-G., Hu L, Rice JB et al. (2004) Enhanced cytomegalovirus infectionin atherosclerotic human blood vessels. Am J Pathol 164:589–600

    PubMed  Google Scholar 

  • Newby AC (1997) Molecular and cell biology of native coronary and vein-graft atherosclerosis: regulation of plaque stability and vessel-wall remodelling by growth factors and cell-extracellular matrix interactions. Coron Artery Dis 8:213–224

    PubMed  Google Scholar 

  • Nicholson AC (2004) Expression of CD36 in macrophages and atherosclerosis. The role of lipid regulation and PPARg signalling. Trends Cardiovasc Med 14:8–12

    Article  PubMed  Google Scholar 

  • Nicoletti A, Kaveri S, Caligiuri G, Bariety J, Hansson GK (1998) Immunoglobulin treatment reduces atherosclerosis in apo E knockout mice. J Clin Invest 102:910–918

    PubMed  Google Scholar 

  • Nieminen MS, Mattila K, Valtonen V (1993) Infection and inflammation as risk-factors for myocardial-infarction. Eur Heart J 14:12–16

    Google Scholar 

  • Nikkari ST, Obrien KD, Ferguson M, Hatsukami T, Welgus HG, Alpers CE et al. (1995) Interstitial collagenase (MMP 1) expression in human carotid atherosclerosis. Circulation 92:1393–1398

    PubMed  Google Scholar 

  • Nobuyoshi M, Tanaka M, Nosaka H, Kimura T, Yokoi H, Hamasaki N et al. (1991) Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol 18:904–910

    PubMed  Google Scholar 

  • Ohgushi M, Kugiyama K, Fukunaga K, Murohara T, Sugiyama S, Miyamoto E et al. (1993) Protein kinase C inhibitors prevent impairment of endothelium-dependent relaxation by oxidatively modified LDL. Arterioscler Thromb 13:1525–1532

    PubMed  Google Scholar 

  • Ooshima A (1981) Collagen alpha B chain: increased proportion in human atherosclerosis. Science 213:666–668

    PubMed  Google Scholar 

  • Osler W (1980) Modern medicine: its theory and practice. Lea and Febiger, Philadelphia

    Google Scholar 

  • Østerud B, Bjørklid E (2003) Role of monocytes in atherogenesis. Physiol Rev 83:1069–1112

    PubMed  Google Scholar 

  • Owens GK, Vernon SM, Madsen CS (1996) Molecular regulation of smooth muscle cell differentiation. J Hypertens Suppl 14:S55–S64

    Google Scholar 

  • Palinski W, Ord VA, Plump AS, Breslow JL, Steinberg D, Witztum JL (1994) ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler Thromb 14:605–616

    PubMed  Google Scholar 

  • Palinski W, Miller E, Witztum JL (1995) Immunization of low density lipoprotein (ldl) receptor-deficient rabbits with homologous malondialdehyde-modified ldl reduces atherogenesis. Proc Natl Acad Sci USA 92:821–825

    PubMed  Google Scholar 

  • Palinski W, Napoli C (2002) Unraveling pleiotropic effects of statins on plaque rupture. Arterioscler Thromb Vasc Biol 22:1745–1750

    Article  PubMed  Google Scholar 

  • Parhami F, Tintut Y, Patel JK, Mody N, Hemmat A, Demer LL (2001) Regulation of vascular calcification in atherosclerosis. Z Kardiol 90:27–30

    Article  Google Scholar 

  • Paulsson G, Zhou X, Tornquist E, Hansson GK (2000) Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 20:10–17

    PubMed  Google Scholar 

  • Pickering JG, Weir L, Jekanowski J, Kearney MA, Isner JM (1993) Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J Clin Invest 91:1469–1480

    PubMed  Google Scholar 

  • Piha M, Lindstedt L, Kovanen PT (1995) Fusion of proteolyzed low-density lipoprotein in the fluid phase: a novel mechanism generating atherogenic lipoprotein particles. Biochemistry 34:10120–10129

    Article  PubMed  Google Scholar 

  • Pinderski Oslund LJ, Hedrick CC, Olvera T, Hagenbaugh A, Territo M, Berliner JA et al. (1999) Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 19:2847–2853

    PubMed  Google Scholar 

  • Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG et al. (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  PubMed  Google Scholar 

  • Pober JS, Gimborne MA, Jr., Lapierre DL, Mendrick W, Fiers W, Rothlein R et al. (1986) Overlapping patterns of activation of human endothelial cells by interleukin I, tumor necrosis factor, and immune interferon. J Immunol 137:1893

    PubMed  Google Scholar 

  • Prasad A, Zhu J, Halcox JP, Waclawiw MA, Epstein SE, Quyyumi AA (2002) Predisposition to atherosclerosis by infections: role of endothelial dysfunction. Circulation 106:184–190

    Article  PubMed  Google Scholar 

  • Pueyo Palazón P, Alfón J, Gaffney P, Berrozpe M, Royo T, Badimon L (1998) Effects of reducing LDL and increasing HDL with gemfibrozil in experimental coronary lesion development and thrombotic risk. Atherosclerosis 136:333–345

    Article  PubMed  Google Scholar 

  • Pussinen PJ, Jousilahti P, Alfthan G, Palosuo T, Asikainen S, Salomaa V (2003) Antibodies to periodontal pathogens are associated with coronary heart disease. Arterioscler Thromb Vasc Biol 24:1250–1254

    Article  Google Scholar 

  • Quiney JR, Watts GB. (1989) Introduction. In: Quiney JR, Watts GB (eds) Classic papers in hyperlipidemia. Science Press Limited, London

    Google Scholar 

  • Ra C, Yasuda M, Yagita H, Okumura K. Fibronectin receptor integrins are involved in mast cell activation. J Allergy Clin Immunol 1994; 94:625–628

    Article  PubMed  Google Scholar 

  • Rauterberg J, Jaeger E, Althaus M (1993) Collagens in atherosclerotic vessel wall lesions. Curr Top Pathol 87:163–192

    PubMed  Google Scholar 

  • Reddick RL, Zhang SH, Maeda N (1994) Atherosclerosis inmice lacking Apo E—evaluation of lesional development and progression. Arterioscler Thromb 14:141–147

    PubMed  Google Scholar 

  • Reddick RL, Zhang SH, Maeda N (1998) Aortic atherosclerotic plaque injury in apolipoprotein E deficient mice. Atherosclerosis 140:297–305

    Article  PubMed  Google Scholar 

  • Rekhter MD, Hicks GW, Brammer DW, Work CW, Kim JS, Gordon D et al. (1998) Animal model that mimics atherosclerotic plaque rupture. Circ Res 83:705–713

    PubMed  Google Scholar 

  • Rekhter MD (1999) Collagen synthesis in atherosclerosis: too much and not enough. Cardiovasc Res 41:376–384

    Article  PubMed  Google Scholar 

  • Repka-Ramirez MS, Baraniuk JN (2002) Histamine in health and disease. Clin Allergy Immunol 17:1–25

    PubMed  Google Scholar 

  • Richardson M, Schmidt AM, Graham SE, Achen B, DeReske M, Russell JC (1998) Vasculopathy and insulin resistance in the JCR:LA-cp rat. Atherosclerosis 138:135–146

    Article  PubMed  Google Scholar 

  • Rodewald HR, Dessing M, Dvorak AM, Galli SJ (1996) Identification of a committed precursor for the mast cell lineage. Science 271:818–822

    PubMed  Google Scholar 

  • Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM (2000) Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 20:2587–2592

    PubMed  Google Scholar 

  • Ross R, Glomset JA (1973) Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180:1332–1339

    PubMed  Google Scholar 

  • Ross R, Glomset J, Kariya B, Raines E (1978) Role of platelet factors in the growth of cells in culture. Natl Cancer Inst Monogr 48:103–108

    PubMed  Google Scholar 

  • Ross R (1981) The Gordon Wilson Lecture: atherosclerosis—a response to injury gone awry. Trans Am Clin Climatol Assoc 93:78–86

    PubMed  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809

    Article  PubMed  Google Scholar 

  • Ross R (1999) Atherosclerosis, an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  Google Scholar 

  • Rothblat GH, Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC (1999) Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 40:781–796

    PubMed  Google Scholar 

  • Royo T, Alfon J, Berrozpe M, Badimon L (2000) Effect of gemfibrozil on peripheral atherosclerosis and platelet activationin apigmodel of hyperlipidemia. Eur J Clin Invest 30:843–852

    PubMed  Google Scholar 

  • Rozanski A, Blumenthal JA, Kaplan J (1999) Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 99:2192–2217

    PubMed  Google Scholar 

  • Ruffer MA (1911) On arterial lesions found in Egyptian mummies. J Pathol Bacteriol 15:453–462

    Article  Google Scholar 

  • Ruffer MA (1920) Remarks on the histology and pathological anatomy of Egyptian mummies. Cairo Scientific J 4:3–7

    Google Scholar 

  • Rupprecht HJ, Blankenberg S, Bickel C, Rippin G, Hafner G, Prellwitz W et al. (2001) Impact of viral and bacterial infectious burden on long-term prognosis in patientswith coronary artery disease. Circulation 104:25–31

    PubMed  Google Scholar 

  • Russell JC, Graham SE, Richardson M (1998a) Cardiovascular disease in the JCR:LA-cp rat. Mol Cell Biochem 188:113–126

    Article  PubMed  Google Scholar 

  • Russell JC, Graham SE, Amy RM, Dolphin PJ (1998b) Cardioprotective effect of probucol in the atherosclerosis-prone JCR:LA-cp rat. Eur J Pharmacol 350:203–210

    Article  PubMed  Google Scholar 

  • Saarinen J, Kalkkinen N, Welgus HG, Kovanen PT (1994) Activation of human interstitial procollagenase through direct cleavage of the leu(83)-thrbond by mast cell chymase. J Biol Chem 269:18134–18140

    PubMed  Google Scholar 

  • Samuelsson B (2000) The discovery of the leukotrienes. Am J Respir Crit Care Med 161:S2–S6

    PubMed  Google Scholar 

  • Sandison AT (1962) Degenerative diseases in the Egyptian mummy. Med Hist 6:77–81

    PubMed  Google Scholar 

  • Sandison AT (1981) Diseases of the ancient world. In: Anthony PP, MacSween RNM (eds) Recent advances in pathology, Vol 11. Churchill Livingstone, Edinburgh, pp 1–18

    Google Scholar 

  • Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregoire J, Fitzpatrick LA et al. (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133

    Article  PubMed  Google Scholar 

  • Santerre RF, Wight TN, Smith SC, Brannigan D (1972) Spontaneous atherosclerosis in pigeons. Amodel system for studying metabolic parameters associated with atherogenesis. Am J Pathol 67:1–22

    PubMed  Google Scholar 

  • Saren P, Welgus HG, Kovanen PT (1996) TNF-a and IL-1b selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 157:4159–4165

    PubMed  Google Scholar 

  • Scannapieco FA, Bush RB, Paju S (2003) Associations between periodontal disease and riks for atherosclerosis, cardiovascular disease, and stroke. A systematic review. Ann Periodontol 8:38–53

    Article  PubMed  Google Scholar 

  • Schechter NM, Irani AM, Sprows JL, Abernethy J, Wintroub B, Schwartz LB (1990) Identification of a cathepsin G-like proteinase in the MCTC type of human mast cell. J Immunol 145:2652–2661

    PubMed  Google Scholar 

  • Scheiffele P, Rietveld A, Wilk T, Simons K (1999) Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274:2038–2044

    Article  PubMed  Google Scholar 

  • Schroeder R, London E, Brown D (1994) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci USA 91:12130–12134

    PubMed  Google Scholar 

  • Schwartz LB, Austen KF (1984) Structure and function of the chemical mediators of mast cells. In: Ishizaka K (ed) Mast cell activation and mediator release. Karger, Basel, pp 271–321

    Google Scholar 

  • Schwartz LB, Bradford TR, Littman BH, Wintroub BU (1985) The fibrinogenolytic activity of purified tryptase from human lung mast cells. J Immunol 135:2762–2767

    PubMed  Google Scholar 

  • Schwartz CJ, Valente AJ, Kelley JL, Sprague EA, Edwards EH (1988) Thrombosis and the development of atherosclerosis: Rokitansky revisited. Semin Thromb Hemost 14:189–195

    PubMed  Google Scholar 

  • Schwartz SM, de Blois D, O'Brien ER (1995) The intima: soil for atherosclerosis and restenosis. Circ Res 77:445–465

    PubMed  Google Scholar 

  • Scotland RS, Morales-Ruiz M, Chen Y, Yu J, Rudic RD, Fulton D et al. (2002) Functional reconstitution of endothelial nitric oxide synthase reveals the importance of serine 1179 in endothelium-dependent vasomotion. Circ Res 90:904–910

    Article  PubMed  Google Scholar 

  • Shattock SG (1909) A report upon the pathological condition of the aorta of King Menephthah, traditionally regarded as the Pharoah of the Exodus. Proc Roy Soc Med Path 2:122–127

    Google Scholar 

  • Shio H, Haley NJ, Fowler S (1979) Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl esters. Lab Invest 41:160–167

    PubMed  Google Scholar 

  • Sigmund CD (2000) Viewpoint: are studies in genetically altered mice out of control? Arterioscler Thromb Vasc Biol 20:1425–1429

    PubMed  Google Scholar 

  • Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit. Am J Pathol 123:109–125

    PubMed  Google Scholar 

  • Simons K, Ikonen E (2000) How cell handle cholesterol. Science 290:1721–1726

    Article  PubMed  Google Scholar 

  • Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL et al. (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754

    Article  PubMed  Google Scholar 

  • Slowik MR, Min W, Ardito T, Karsan A, Kashgarian M, Pober JS (1997) Evidence that tumor necrosis factor triggers apoptosis in human endothelial cells by interleukin-1-converting enzyme-like protease-dependent and-independent pathways. Lab Invest 77:257–267

    PubMed  Google Scholar 

  • Smith SC, Smith EC, Taylor RL, Jr. (2001) Susceptibility to spontaneous atherosclerosis in pigeons: an autosomal recessive trait. J Hered 92:439–442

    Article  PubMed  Google Scholar 

  • Song L, Leung C, Schindler C (2001) Lymphocytes are important in early atherosclerosis. J Clin Invest 108:251–259

    Article  PubMed  Google Scholar 

  • Spronk HM, Soute BA, Schurgers LJ, Cleutjens JP, Thijssen HH, DeMey JG et al. (2001) Matrix Gla protein accumulates at the border of regions of calcification and normal tissue in the media of the arterial vessel wall. Biochem Biophys Res Commun 289:485–490

    Article  PubMed  Google Scholar 

  • Stary HC, Malinow MR (1982) Ultrastructure of experimental coronary artery atherosclerosis in cynomolgus macaques. A comparison with the lesions of other primates. Atherosclerosis 43:151–175

    Article  PubMed  Google Scholar 

  • Stary HC (1990) The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 11:3–19

    Google Scholar 

  • Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Jr., Rosenfeld ME et al. (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb 14:840–856

    PubMed  Google Scholar 

  • Stary HC (2000) Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol 89:28–35

    Article  Google Scholar 

  • Steele PM, Chesebro JH, Stanson AW, Holmes DR, Jr., Dewanjee MK, Badimon L et al. (1985) Balloon angioplasty. Natural history of the pathophysiological response to injury in a pig model. Circ Res 57:105–112

    PubMed  Google Scholar 

  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low density lipoprotein that increase its atherogenicity. New Engl J Med 320:915–924

    PubMed  Google Scholar 

  • Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD (1996) Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 97:2601–2610

    PubMed  Google Scholar 

  • Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. (1995) T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 92:3893–3897

    PubMed  Google Scholar 

  • Stemme S (2001) Plaque T-cell activity: not so specific? Arterioscler Thromb Vasc Biol 21:1099–1101

    PubMed  Google Scholar 

  • Stender S, Zilversmit DB (1981) Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx. Arteriosclerosis 1:38–49

    PubMed  Google Scholar 

  • Subbanagounder G, Wong JW, Lee H, Faull KF, Miller E, Witztum JL et al. (2002) Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. Formation of these oxidized phospholipids in response to interleukin-1beta. J Biol Chem 277:7271–7281

    Article  PubMed  Google Scholar 

  • Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K et al. (1997) A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386:292–296

    Article  PubMed  Google Scholar 

  • Syrjanen J, Peltola J, Valtonen V, Iivanainen M, Kaste M, Huttunen JK (1989) Dental infections in association with cerebral infarction in young and middle-aged men. J Intern Med 225:179–184

    PubMed  Google Scholar 

  • Tabas I (1997) Free cholesterol-induced cytotoxicity. A possible contributing factor to macrophage foam cell necrosis in advanced atherosclerotic lesions. Trends Cardiovasc Med 7:256–263

    Article  Google Scholar 

  • Tabas I (2002) Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 110:905–911

    Article  PubMed  Google Scholar 

  • Tangirala RK, Rubin EM, Palinski W (1995) Quantitation of atherosclerosis inmurine models: correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J Lipid Res 36:2320–2328

    PubMed  Google Scholar 

  • Taylor AJ, Farb AA, Angello DA, Burwell LR, Virmani R (1995) Proliferative activity in coronary atherectomy tissue. Clinical, histopathologic, and immunohistochemical correlates. Chest 108:815–820

    PubMed  Google Scholar 

  • Tomasian D, Keaney JF Jr, Vita JA (2000) Antioxidants and the bioactivity of endothelium-derived nitric oxide. Cardiovasc Res 47:426–435

    Article  PubMed  Google Scholar 

  • Tontonoz P, Nagy L, Alvarez JA, Thomazy VA, Evans RM (1998) PPAR gamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252

    Article  PubMed  Google Scholar 

  • Tremoli E, Camera M, Toschi V, Colli S (1999) Tissue factor in atherosclerosis. Atherosclerosis 144:273–283

    Article  PubMed  Google Scholar 

  • Vainio S, Ikonen E (2003) Macrophage cholesterol transport: a critical player in foam cell formation. Ann Med 35:146–155

    Article  PubMed  Google Scholar 

  • van der Wal AC, Becker AE, Vanderloos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques Is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    PubMed  Google Scholar 

  • Vartio T, Seppa H, Vaheri A (1981) Susceptibility of soluble and matrix fibronectins to degradation by tissue proteinases, mast cell chymase and cathepsin G. J Biol Chem 256:471–477

    PubMed  Google Scholar 

  • Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H et al. (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95:9220–9225

    Article  PubMed  Google Scholar 

  • Velican D, Velican C (1980) Atherosclerotic involvement of the coronary arteries of adolescents and young adults. Atherosclerosis 36:449–460

    Article  PubMed  Google Scholar 

  • Virchow R (1856) Phlogose und Thrombose im Gefäßsystem. Gesammelte Abhandlungen zur wissenschaftlichen Medizin. Meidinger, Frankfurt am Main, p ff

    Google Scholar 

  • Virchow R (1858) Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Verlag von August Hirschwald, Berlin

    Google Scholar 

  • Virmani R, Burke AP, Farb A (1999) Plaque rupture and plaque erosion. Thromb Haemost 82:1–3

    Google Scholar 

  • Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    PubMed  Google Scholar 

  • Vlassara H (1996) Advanced glycation end-products and atherosclerosis. Ann Med 28:419–426

    PubMed  Google Scholar 

  • von Eckardstein A, Langer C, Engel T, Schaukal I, Cignarella A, Reinhardt J et al. (2001) ATP binding cassette transporter ABCA1 modulates the secretion of apolipoprotein E from human monocyte-derived macrophages. FASEB J 15:1555–1561

    Article  PubMed  Google Scholar 

  • von Rokitansky C (1852) Über einige der wichtigsten Krankheiten der Arterien. K. K. Hofund Staatsdruckereien Wien, Vienna

    Google Scholar 

  • Wang Y, Lindstedt KA, Kovanen PT (1995) Mast cell granule remnants carry LDL into smooth muscle cells of the synthetic phenotype and induce their conversion into foam cells. Arterioscler Thromb Vasc Biol 1995; 15:801–810

    PubMed  Google Scholar 

  • Wang Y, Kovanen PT (1999) Heparin proteoglycans released from rat serosal mast cells inhibit proliferation of rat aortic smooth muscle cells in culture. Circ Res 84:74–83

    PubMed  Google Scholar 

  • Wang N, Lan D, Chen W, Matsuura F, Tall AR (2004) ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci USA 101:9774–9779

    Article  PubMed  Google Scholar 

  • Wasserman SI (1990) Mast cell biology. J Allergy Clin Immunol 86:590–593

    PubMed  Google Scholar 

  • Watt S, Aesch B, Lanotte P, Tranquart F, Quentin R (2003) Viral and bacterial DNA in carotid atherosclerotic lesions. Eur J Clin Microbiol Infect Dis 22:99–105

    PubMed  Google Scholar 

  • Wedemeyer J, Tsai M, Galli SJ (2000) Roles ofmast cells and basophils in innate and acquired immunity. Curr Opin Immunol 12:624–631

    Article  PubMed  Google Scholar 

  • Weitkamp B, Cullen P, Plenz G, Robenek H, Rauterberg J (1999) Human macrophages synthesize type VIII collagen in vitro and in the atherosclerotic plaque. FASEB J 13:1445–1457

    PubMed  Google Scholar 

  • Whitman SC, Ravisankar P, Daugherty A (2000) Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E-/-mice. Am J Pathol 157:1819–1824

    PubMed  Google Scholar 

  • Whitman SC, Ravisakar P, Daugherty A (2002) Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-) mice through release of interferon-gamma. Circ Res 90:E34–E38

    Article  PubMed  Google Scholar 

  • Widlansky ME, Gokce N, Keaney JF, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160

    Article  PubMed  Google Scholar 

  • Williams CM, Galli SJ (2000) The diverse potential effector and immunoregulatory roles of mast cells in allergic disease. J Allergy Clin Immunol 105:847–859

    Article  PubMed  Google Scholar 

  • Williams H, Johnson JL, Carson KG, Jackson CL (2002) Characteristics of intact and ruptured atherosclerotic plaques in brachiocephalic arteries of apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 22:788–792

    Article  PubMed  Google Scholar 

  • Wu NZ, Baldwin AL (1992) Transient venular permeability increase and endothelial gap formation induced by histamine. Am J Physiol 262:H1238–H1247

    PubMed  Google Scholar 

  • Wu T, Trevisan M, Genco RJ, Dorn JP, Falkner KL, Sempos CT (2000) Periodontal disease and risk of cerebrovascular disease: the first national health and nutrition examination survey and its follow-up study. Arch Intern Med 160:2749–2755

    Article  PubMed  Google Scholar 

  • Xu Q, Kleindienst R, Waitz W, Dietrich H, Wick G (1993) Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J Clin Invest 91:2693–2702

    PubMed  Google Scholar 

  • Xu QB, Kleindienst R, Schett G, Waitz W, Jindal S, Gupta RS et al. (1996) Regression of arteriosclerotic lesions induced by immunization with heat-shock protein 65-containing material in normocholesterolemic, but not hypercholesterolemic, rabbits. Atherosclerosis 123:145–155

    Article  PubMed  Google Scholar 

  • Xu XX, Tabas I (1991) Lipoproteins activate acyl-coenzyme A:cholesterol acyltransferase in macrophages only after cellular cholesterol pools are expanded to a critical threshold level. J Biol Chem 266:17040–17048

    PubMed  Google Scholar 

  • Yancey PG, St. Clair RW (1992) Cholesterol efflux is defective in macrophages from atherosclerosis-susceptible White Carneau pigeons relative to resistant show racer pigeons. Arterioscler Thromb 12:1291–1304

    PubMed  Google Scholar 

  • Yancey PG, St. Clair RW (1994) Mechanism of the defect in cholesteryl ester clearance from macrophages of atherosclerosis-susceptible white carneau pigeons. J Lipid Res 35:2114–2129

    PubMed  Google Scholar 

  • Yang ZH, Richard V, von Segesser L, Bauer E, Stulz P, Turina M et al. (1990) Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries: a new mechanism of vasospasm? Circulation 82:188–195

    PubMed  Google Scholar 

  • Yao PM, Tabas I (2000) Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J Biol Chem 275:23807–23813

    Article  PubMed  Google Scholar 

  • Yao PM, Tabas I (2001) Free cholesterol loading of macrophages is associated with wide spread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 276:42468–42476

    Article  PubMed  Google Scholar 

  • Yeagle PL (1991) Modulation of membrane function by cholesterol. Biochimie 73:1303–1310

    Article  PubMed  Google Scholar 

  • Yee KO, Schwartz SM (1999) Why atherosclerotic vessels narrow: the fibrin hypothesis. Thromb Haemost 82:762–771

    PubMed  Google Scholar 

  • Young JD, Liu CC, Butler G, Cohn ZA, Galli SJ (1987) Identification, purification, and characterization of a mast cell-associated cytolytic factor related to tumor necrosis factor. Proc Natl Acad Sci USA 84:9175–9179

    PubMed  Google Scholar 

  • Yura T, Fukunaga M, Khan R, Nassar GN, Badr KF, Montero A (1999) Free readical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells. Kidney Int 56:471–478

    Article  PubMed  Google Scholar 

  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    PubMed  Google Scholar 

  • Zhou X, Caligiuri G, Hamsten A, Lefvert AK, Hansson GK (2001) LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler Thromb Vasc Biol 21:108–114

    PubMed  Google Scholar 

  • Zhou X, Hansson GK (2004) Vaccination and atherosclerosis. Curr Atheroscler Rep 6:158–164

    PubMed  Google Scholar 

  • Zhu J, Quyyumi AA, Norman JE, Csako G, Waclawiw MA, Shearer GM et al. (2000) Effects of total pathogen burden on coronary artery disease risk and C-reactive protein levels. Am J Cardiol 85:140–146

    Article  PubMed  Google Scholar 

  • Zhu J, Nieto J, Home BD, Anderson JL, Muhlestein JB, Epstein SE (2001) Prospective study of pathogen burden and risk of myocardial infarction or death. Circulation 103:45–51

    PubMed  Google Scholar 

  • Zimmerman MR (1993) The paleopathology of the cardiovascular system. Tex Heart I J 20:252–257

    Google Scholar 

  • Zuckerman SH, Ackerman SK, Douglass J (1979) Long-term human peripheral blood monocyte cultures: establishment, metabolism and morphology of primary human monocyte-macrophage cell lines. Immunology 38:401–411

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cullen, P., Rauterberg, J., Lorkowski, S. (2005). The Pathogenesis of Atherosclerosis. In: von Eckardstein, A. (eds) Atherosclerosis: Diet and Drugs. Handbook of Experimental Pharmacology, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27661-0_1

Download citation

Publish with us

Policies and ethics