Skip to main content

Information Theory ― The Bridge Connecting Bounded Rational Game Theory and Statistical Physics

  • Chapter
Complex Engineered Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality of all real-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. This paper shows that the same information theoretic mathematical structure, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not only provides a principled formulation of bounded rationality and a set of new types of mean field theory in statistical physics. It also shows that those topics are fundamentally one and the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airiau, S., and D. H. Wolpert, “Product distribution theory and semicoordinate transformations,” Submitted to AAMAS 04.

    Google Scholar 

  2. Al-Najjar, N. I., and R. Smorodinsky, “Large nonanonymous repeated games,” Game and Economic Behavior 37, 26–39 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  3. Arthur, W. B., “Complexity in economic theory: Inductive reasoning and bounded rationality,” The American Economic Review 84, 2 (May 1994), 406–411.

    Google Scholar 

  4. Aumann, R.J., and S. Hart, Handbook of Game Theory with Economic Applications, North-Holland Press (1992).

    Google Scholar 

  5. Aumann, R. J., “Correlated equilibrium as an expression of Bayesian rationality,” Econometrica 55, 1 (1987), 1–18.

    Article  MATH  MathSciNet  Google Scholar 

  6. Axelrod, R., The Evolution of Cooperation, Basic Books NY (1984).

    Google Scholar 

  7. Basar, T., and G.J. Olsder, Dynamic Noncooperative Game Theory, Siam Philadelphia, PA (1999), Second Edition.

    MATH  Google Scholar 

  8. Bieniawski, S., and D. H. Wolpert, “Adaptive, distributed control of constrained multi-agent systems,” Submitted to AAMAS 04.

    Google Scholar 

  9. Boutilier, C., Y. Shoham, and M. P. Wellman, “Editorial: Economic principles of multi-agent systems,” Artificial Intelligence Journal 94 (1997), 1–6.

    Article  Google Scholar 

  10. Challet, D., and N. F. Johnson, “Optimal combinations of imperfect objects,” Phys. Rev. Let. 89 (2002), 028701.

    Article  ADS  Google Scholar 

  11. Cover, T., and J. Thomas, Elements of Information Theory, Wiley- Interscience New York (1991).

    Book  MATH  Google Scholar 

  12. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification (2nd ed.), Wiley and Sons (2000).

    Google Scholar 

  13. et al., G. Korniss, Science 299 (2003), 677.

    Article  ADS  Google Scholar 

  14. Fudenberg, D., and D. K. Levine, The Theory of Learning in Games, MIT Press Cambridge, MA (1998).

    MATH  Google Scholar 

  15. Fudenberg, D., and J. Tirole, Game Theory, MIT Press Cambridge, MA (1991).

    Google Scholar 

  16. Greif, A., “Economic history and game theory: A survey,” Handbook of Game Theory with Economic Applications, (R. J. Aumann and S. Hart eds.) vol. 3. North Holland Amsterdam (1999).

    Google Scholar 

  17. Jaynes, E. T., “Information theory and statistical mechanics,” Physical Review 106 (1957), 620.

    Article  ADS  MathSciNet  Google Scholar 

  18. Jaynes, E. T., and G. Larry Bretthorst, Probability Theory : The Logic of Science, Cambridge University Press (2003).

    Google Scholar 

  19. Kahneman, D., “A psychological perspective on economics,” American Economic Review (Proceedings) 93:2 (2003), 162–168.

    Article  MathSciNet  Google Scholar 

  20. Lee, C. Fan, and D. H. Wolpert, “Product distribution theory and semicoordinate transformations,” Submitted to AAMAS 04.

    Google Scholar 

  21. Mackay, D., Information theory, inference, and learning algorithms, Cambridge University Press (2003).

    Google Scholar 

  22. Macready, W., S. Bieniawski, and D.H. Wolpert, “Adaptive multiagent systems for constrained optimization,” Submitted to AAAI 04.

    Google Scholar 

  23. Mesterton-Gibbons, M., and E. S. Adams, “Animal contests as evolutionary games,” American Scientist 86 (1998), 334–341.

    Article  ADS  Google Scholar 

  24. Neyman, A., “Bounded complexity justifies cooperation in the finitely repeated prisoner's dilemma,” Economics Letters 19 (1985), 227–230.

    Article  MathSciNet  Google Scholar 

  25. Nisan, N., and A. Ronen, “Algorithmic mechanism design,” Games and Economic Behavior 35 (2001), 166–196.

    Article  MATH  MathSciNet  Google Scholar 

  26. Opper, M., and D. Saad, Advanced Mean Field Methods: Theory and Practice (Neural Information Processing), MIT Press (2001).

    Google Scholar 

  27. Osborne, M., and A. Rubenstein, A Course in Game Theory, MIT Press Cambridge, MA (1994).

    MATH  Google Scholar 

  28. Sandholm, T., and V. R. Lesser, “Coalitions among computationally bounded agents,” Artificial Intelligence 94 (1997), 99–137.

    Article  MATH  MathSciNet  Google Scholar 

  29. Tversky, A., and D. Kahneman, “Advances in prospect theory: Cumulative representation of uncertainty,” Journal of Risk and Uncertainty 5 (1992), 297–323.

    Article  MATH  Google Scholar 

  30. Wolpert, D., and K. Tumer, “Beyond mechanism design,” International Congress of Mathematicians 2002 Proceedings (H. G. et al. ed.), Qingdao Publishing (2002).

    Google Scholar 

  31. Wolpert, D. H., “Factoring a canonical ensemble,” cond-mat/0307630.

    Google Scholar 

  32. Wolpert, D. H., “Generalizing mean field theory for distributed optimization and control,” Submitted.

    Google Scholar 

  33. Wolpert, David H., and William Macready, “Metrics for sets of more than two points,” Proceedings of the International Conference on Complex Systems, 2004, (2004), in press.

    Google Scholar 

  34. Zlotkin, G., and J. S. Rosenschein, “Coalition, cryptography, and stability: Mechanisms for coalition formation in task oriented domains,” (preprint) (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Wolpert, D.H. (2006). Information Theory ― The Bridge Connecting Bounded Rational Game Theory and Statistical Physics. In: Braha, D., Minai, A., Bar-Yam, Y. (eds) Complex Engineered Systems. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32834-3_12

Download citation

Publish with us

Policies and ethics