Skip to main content

Elastic-Wave Propagation in Random Polycrystals: Fundamentals and Application to Nondestructive Evaluation

  • Chapter
  • First Online:
Imaging of Complex Media with Acoustic and Seismic Waves

Part of the book series: Topics in Applied Physics ((TAP,volume 84))

Abstract

The fundamental principles that govern the propagation of elastic waves in metal polycrystals are discussed in the context of their influence on nondestructive evaluation. The major influence of the polycrystalline microstructure is to determine the velocity, attenuation and backscattering of the elastic waves. For randomly oriented, equi-axed polycrystals, these effects are reasonably well understood. Waves travel at the same velocity in all directions and are exponentially attenuated at a rate controlled by the frequency and grain size. Signals backscattered from the grains, also controlled by the wavelength and grain size, produce a background noise that competes with flaw signals. The same basic phenomena exist in more complex materials. However, the understanding of these phenomena is not as well understood. Recent progress towards the development of such an understanding is discussed within this chapter. Examples include cases in which the grains have preferred crystallographic orientation, elongation in one or more dimension, or correlations in orientation from crystallite to crystallite. The latter case is particularly rich, in that the two dimensions scales of the media, associated with the grain size and the correlation length, can lead to a number of unusual phenomena such as highly anisotropic backscattering and phase modulations of an elastic beam. These modulations make the measurement, and even definition, of attenuation problematic. The current status of experimental observation and theoretical description of these phenomena is discussed. The chapter concludes with a discussion of the implications of these effects on the imaging of flaws in complex media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ultrasonics, Nondestructive Testing Handbook, Vol. 7 (American Society for Nondestructive Testing, Columbus, OH 1991)

    Google Scholar 

  2. Metals Handbook, Vol. 17 (ASM International, Metals Park, Ohio 1989)

    Google Scholar 

  3. R. B. Thompson, Quantitative ultrasonic nondestructive evaluation methods, J. Appl. Mech 50, 1191–1201 (1983)

    Article  Google Scholar 

  4. R. B. Thompson, D. O. Thompson, Ultrasonics in nondestructive evaluation, Proc. IEEE, 73, 1716–1755 (1985)

    Article  Google Scholar 

  5. W. Voigt, Lehrbuch der Kristallphysik (Tauber, Leipzig 1928)

    MATH  Google Scholar 

  6. J. E. Gubernatis, E. Domany, J. A. Krumhansl, M. Huberman, The Born approximation in the theory of the scattering of elastic waves from flaws, J. Appl. Phys. 50, 4046 (1979)

    Article  ADS  Google Scholar 

  7. J. H. Rose, Ultrasonic backscattering from polycrystalline aggregates using time-domain linear response theory, Rev. Prog. Quant. Nondestr. Eval. B 10, 1715–1720 (1991)

    Google Scholar 

  8. J. H. Rose, Ultrasonic backscattering from microstructure, Rev. Prog. Quant. Nondestruct. Eval. B 11, 1677–1684 (1992)

    Google Scholar 

  9. J. H. Rose, Theory of ultrasonic backscatter from multiphase polycrystalline solids, Rev. Prog. Quant. Nondestruct. Eval. B 12, 1719–1729 (1993)

    Google Scholar 

  10. Y. K. Han, R. B. Thompson, Ultrasonic backscattering in duplex microstructures: Theory and application to titanium alloys, Metal. Trans. A 28, 91–104 (1997)

    Article  Google Scholar 

  11. F. E. Stanke, Spatial autocorrelation functions for calculations of effective propagation constants in polycrystalline materials, J. Acoust. Soc. Am. 80, 1479 (1986)

    Article  ADS  Google Scholar 

  12. F. E. Stanke, G. S. Kino, A unified theory for elastic wave propagation on polycrystalline materials, J. Acoust. Soc. Am. 75, 665 (1984)

    Article  MATH  ADS  Google Scholar 

  13. F. E. Stanke, Inversion of attenuation measurements in terms of parameterized autocorrelation function, In NDE for Micro structure for Process Control, ed. by H.N.G. Wadley (ASM, Metals Park, Ohio 1985) p. 55

    Google Scholar 

  14. S. Ahmed, R. B. Thompson, propagation of elastic waves in equiaxed stainless steel polycrystals with aligned [001] axes, J. Acoust. Soc. Am. 99, 2086–2096 (1996)

    Article  ADS  Google Scholar 

  15. M. J. P. Musgrave, Crystal Acoustics (Holden-Day, San Francisco 1970)

    MATH  Google Scholar 

  16. F. J. Margetan, R. B. Thompson, I. Yalda-Mooshabad, Backscattered micro-structural noise in ultrasonic toneburst measurements, J. Nondestr. Eval. 13, 111–136 (1994)

    Article  Google Scholar 

  17. R. B. Thompson, Determination of texture and grain size in metals: An example of materials characterization, In Sensing for Materials Characterization, Processing, and Manufacturing, ed. by G. Birnbaum, B.A. Auld (ASNT, Columbus, Ohio 1998) p. 23–45

    Google Scholar 

  18. R. B. Thompson, J. F. Smith, S. S. Lee, G. C. Johnson, A comparison of ultrasonic and X-ray determinations of texture in thin Cu and Al plates, Metal. Trans. A 20, 2431–2447 (1989)

    Article  Google Scholar 

  19. A. Anderson, R. B. Thompson, R. Bolingbroke, J. Root, Ultrasonic characterization of rolling and recrystallization textures in hot rolled aluminum sheet, Textures Microstruct. 26–27, 39–58 (1996)

    Article  Google Scholar 

  20. A. J. Anderson, R. B. Thompson, C. S. Cook, Ultrasonic measurements of the kearns texture factors in zircaloy, zirconium, and titanium, Metal. Trans. A 30, 1981–1988 (1999)

    Article  Google Scholar 

  21. R. B. Thompson, E. P. Papadakis, D. D. Bluhm, G. A. Alers, K. Forouraghi, H. D. Shank, S. J. Wormley, Measurement of texture and formability parameter with a fully automated ultrasonic instrument, J. Nondestr. Eval. 12, 45–62 (1993)

    Article  Google Scholar 

  22. I. Yalda-Mooshabad, R. B. Thompson, Influence of texture and grain morphology on the two-point correlation of elastic constraints: Theory and implications on ultrasonic attenuation and backscattering, Rev. Prog. Quant. Nondestr. Eval. B 14, 1939–1946 (1995)

    Google Scholar 

  23. S. Ahmed, R. B. Thompson, Propagation of elastic waves in equiaxed iron polycrystalline with aligned [001] axes, Rev. Prog. Quant. Nondestr. Eval. B 10, 1999–2005 (1991)

    Google Scholar 

  24. Y. Guo, R. B. Thompson, D. K. Rehbein, F. J. Margetan, M. Warchol, The effects of microstructure on the response of aluminum E-127 calibration standards, Rev. Prog. Quant. Nondestr. Eval. B 18, 2337–2344 (1999)

    Google Scholar 

  25. S. Ahmed, R. B. Thompson, Influence of columnar microstructure on ultrasonic backscattering, Rev. Prog. Quant. Nondestr. Eval. B 14, 1617–1624 (1995)

    Google Scholar 

  26. P. D. Panetta, unpublished results

    Google Scholar 

  27. S. Ahmed, R. B. Thompson, Attenuation and dispersion of ultrasonic waves in rolled aluminum, Rev. Prog. Quant. Nondestr. Eval. B 17, 1649–1655 (1998)

    Google Scholar 

  28. S. Ahmed, R. B. Thompson, Effect of preferred grain orientation and grain elongation on ultrasonic wave propagation in stainless steel, Rev. Prog. Quant. Nondestr. Eval. B 11, 1999–2006 (1992)

    Google Scholar 

  29. P. D. Panetta, R. B. Thompson, F. J. Margetan, Use of electron backscatter diffraction in understanding texture and the mechanisms of backscattered noise generation in titanium alloys, Rev. Prog. Quant. Nondestr. Eval. A 17, 89–96 (1998)

    Google Scholar 

  30. F. J. Margetan, P. D. Panetta, R. B. Thompson, Ultrasonic signal attenuation in engine titanium alloys, Rev. Prog. Quant. Nondestr. Eval. B 17, 1469–1476 (1998)

    Google Scholar 

  31. P. D. Panetta, F. J. Margetan, I. Yalda, R. B. Thompson, Ultrasonic attenuation measurements in jet engine titanium alloys, Rev. Prog. Quant. Nondestr. Eval. B 15, 1525–1532 (1996)

    Google Scholar 

  32. P. D. Panetta, R. B. Thompson, Ultrasonic attenuation in duplex titanium alloys, Rev. Prog. Quant. Nondestr. Eval. B 18, 1717–1724 (1999)

    Google Scholar 

  33. E. J. Nieters, R. S. Gilmore, R. C. Trzaskos, J. D. Young, D. C. Copley, P. J. Howard, M. E. Keller, W. J. Leach, A multizone technique for billet inspection, Rev. Prog. Quant. Nondestr. Eval. B 14, 2137–2144 (1995)

    Google Scholar 

  34. R. B. Thompson, K. M. Lakin, J. H. Rose, A comparison of the inverse born and imaging techniques for reconstructing flaw shapes, In 1981 Ultrasonics Symposium Proceedings, Vol. 2 (IEEE, New York 1981) p. 930–993

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thompson, B.R. (2002). Elastic-Wave Propagation in Random Polycrystals: Fundamentals and Application to Nondestructive Evaluation. In: Fink, M., Kuperman, W.A., Montagner, JP., Tourin, A. (eds) Imaging of Complex Media with Acoustic and Seismic Waves. Topics in Applied Physics, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44680-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44680-X_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41667-8

  • Online ISBN: 978-3-540-44680-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics