Skip to main content

Mesoscopic dynamics and thermodynamics: Applications to polymeric fluids

  • Lectures
  • Conference paper
  • First Online:
Rheological Modelling: Thermodynamical and Statistical Approaches

Part of the book series: Lecture Notes in Physics ((LNP,volume 381))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Liberman and C. M. Marle, Sympletic Geometry and Analytical Mechanics, D. Reided Publ. Comp. (1987).

    Google Scholar 

  2. V.I. Arnold, Les méthodes mathématiques de la mécanique classique, Edition Mir, Moscou (1976).

    Google Scholar 

  3. H.B. Callen, Thermodynamics, Wiley, N.Y. (1963).

    Google Scholar 

  4. J.H. Weiner, Statistical Mechanics of Elasticity, J. Wiley (1983).

    Google Scholar 

  5. L. Boltzmann, in Wissenchaftlichen Abhandlungen von Ludwig Boltzmann Vol. 2, N.Y. Chelsea (1968).

    Google Scholar 

  6. J.G. Kirkwood, in Documents in Modern Physics, edited by P.L. Auer, Gordon and Breach, N.Y. (1967).

    Google Scholar 

  7. R.B. Bird, O. Hassager, R.C. Armstrong and C.F. Curtiss, Dynamics of Polymeric Fluids, Vol. 2, Wiley, N.Y. (1987).

    Google Scholar 

  8. M. Doi and S.F. Ewards, The Theory of Polymer Dynamics, Oxford Calderon Press (1986).

    Google Scholar 

  9. J.W. Gibbs, Collected Works, Longmans, Green Comp. N.Y. (1978).

    Google Scholar 

  10. V.I. Arnold, Lecture given at the Gibbs Symposium, Yale Univ. May (1989).

    Google Scholar 

  11. J.W. Gibbs, Elementary Principles of Statistical Mechanics, Dover (1960).

    Google Scholar 

  12. T. Morita and K.Hiroike, Prog. Theor. Phys. 25, 537 (1964).

    Google Scholar 

  13. C. de Dominics, J. Math. Phys.8 983 (1962), C. deDominics and P. Martin, J. Math. Phys 15,14 (1964).

    Google Scholar 

  14. M.S. Green, in Cargèse Lectures in Theoretical Physics, edited G. B. Jancovici, Gordon and Breach (1966).

    Google Scholar 

  15. R.D. Levin and M. Tribus, editors, Maximum Entropy Formalism, MIT Cambridge (1979).

    Google Scholar 

  16. R. Hermann, Geometry, Physics and Systems, Marcel Dekker N.Y. (1973).

    Google Scholar 

  17. F. Weinhold, J. Chem. Phys. 88, 2479 (1975), 65,559 (1976).

    Google Scholar 

  18. P. Salamon, E. Ihring and R.S. Berry, J. Math. Phys. 24, 2515 (1983).

    Google Scholar 

  19. M. Grmela, in Hamiltonian Systems, Transformation Groups and Spectral Transform Methods, eds. J. Harnad and J.E. Marsden, Les Publications CRM, Université de Montréal(1990).

    Google Scholar 

  20. L. Onsager, Phys. Rev. 37, 405 (1931), 88, 2265 (1931).

    Google Scholar 

  21. H.G. Casimir, Rev. Mod. Phys. 17,343 (1945).

    Google Scholar 

  22. J.J. Moreau, C.R. Acad. Sci. Paris 271, 608 (1970).

    Google Scholar 

  23. D.G.B. Edelen, Int. J. Eng. Sci. 10, 481 (1972).

    Google Scholar 

  24. N.G. van Kampen, Physica A 67,1 (1973).

    Google Scholar 

  25. P.J. Morrison and J.M. Greene, Phys. Rev. Lett. 45, 790 (1980).

    Google Scholar 

  26. A. Clebsh, J. Reine Angew. Math 56, 1 (1895).

    Google Scholar 

  27. D.D. Holm, J.E. Marsden, T. Ratiu and A. Weinstein, Phys. Reports, 123, 1 (1985).

    Google Scholar 

  28. M. Grmela, Contemp. Math. 28, 125.

    Google Scholar 

  29. A.N. Kaufman, Phys. Lett. A. 100, 419 (1984).

    Google Scholar 

  30. P.J. Morrison, Phys. Lett. A 100, 423 (1984), Physica D, 18, 410 (1986).

    Google Scholar 

  31. M. Grmela, Physica D, 21, 179 (1986).

    Google Scholar 

  32. M. Grmela, Phys. Lett. A 130, 81 (1988).

    Google Scholar 

  33. M. Grmela, J. Phys. A: Math. & Gen. 22, 4375 (1989).

    Google Scholar 

  34. B.J. Edwards, A.N. Beris and M. Grmela, J. Non Newtonian Fluid Mech. 35, 51 (1990).

    Google Scholar 

  35. B.J. Edwards, A.N. Beris and M. Grmela, Mol. Cryst. Liquid Cryst. (to appear). B.J. Edwards, A.N. Beris, M. Grmela and R. Larson, J. NonNewtonian Fluid Mech. 36, 243 (1990).

    Google Scholar 

  36. M. Grmela and G. Lebon, J. Phys. A: Math & Gen. 23, 3341 (1990).

    Google Scholar 

  37. M. Grmela, in Polymer Rheology and Processing, eds A.A. Collyer and L.A. Utracki, Elsevier (to appear).

    Google Scholar 

  38. R. Salmon, Ann. Rev. Fluid Mech. 20, 225 (1988).

    Google Scholar 

  39. K. Yano and S. Ishilara, Tangent and Cotangent Bundles, Marcel Dekker (1973).

    Google Scholar 

  40. V.I. Arnold, Dokl. Acad. Nauk Math. 165, 773 (1965).

    Google Scholar 

  41. M. Grmela, J. Rheol. 33, 207 (1989).

    Google Scholar 

  42. A. Ait-Kadi, P.J. Carreau and M. Grmela, Rheol. Acta 27,241 (1988).

    Google Scholar 

  43. M. Grmela and Chhon Ly, Phys Letters A. 120, 281 (1987); Spatial Nonuniformities in Lyotropic Liquid Crystals, Prepint, École Polytechnique de Montreal, January (1988).

    Google Scholar 

  44. P.J. Carreau and M. Grmela, Contribution in this Proceedings.

    Google Scholar 

  45. T. Aubry, P. Navard and M. Grmela, Rheol. Acta (submitted).

    Google Scholar 

  46. A. Ajji, P.J. Carreau, M. Grmela and H.P. Schreiber, J. Rheol. 33, 401 (1989).

    Google Scholar 

  47. J.L. Ericksen, Trans. Soc. Rheol. 5, 23 (1961).

    Google Scholar 

  48. F.M. Leslie, Proc. R. Soc.London Ser. A 307, 359 (1968).

    Google Scholar 

  49. J.E. Mardsen and A. Weinstein, Physica D 4, 394 (1982)

    Google Scholar 

  50. A. Silberger and W.Kuhn, J. Polym. Sci. 13, 21 (1954).

    Google Scholar 

  51. C. Rangel-Nafaile, A.B. Metzner and K.F. Wissburn, Macromol. 17,1187 (1984).

    Google Scholar 

  52. B.A. Wolf, Macromol. 17,615 (1984).

    Google Scholar 

  53. D. Jou, Thermodynamics under Flow (Critical review), École Polytechnique de Montreal, July 1990.

    Google Scholar 

  54. M. Grmela, J. Chem. Phys. 85, 5689 (1986).

    Google Scholar 

  55. M. Grmela, in Trends in Applications of Mathematics to Mechanics, eds. J.F. Besseling and W. Eckhaus, Springer (1988) (pp. 329–342).

    Google Scholar 

  56. W. Muschik, J. Noneq. Thermod. 4, 277 (1979).

    Google Scholar 

  57. S. Chapman and J.G. Cowling, Mathematical Theory of Non-Uniform Gases, Cambridge (1952).

    Google Scholar 

  58. P.H. van Wiechen and H. C. Booij, J. Eng.Math. 5, 89 (1971).

    Google Scholar 

  59. A.S. Lodge and Y.J. Wu, Rheol. Acta 10, 539 (1971).

    Google Scholar 

  60. G. Marrucci, Trans. Soc. Rheol. 16, 321 (1972).

    Google Scholar 

  61. I. Prigogine, Étude thermodynamique des phénomènes irréversible, Deover, France (1974).

    Google Scholar 

  62. S.R. de Groot and P. Mazur, Non Equilibrium Thermodynamics, Amsterdam: North Holland, (1962)

    Google Scholar 

  63. I. Willer, Thermodynamics, Pitman, London (1985).

    Google Scholar 

  64. D. Jou, J. Casas-Vazquez and G. Lebon, Rep. Prog. Phys. 51, 1105 (1988).

    Google Scholar 

  65. L.S. Garcia-Colin, Rev. Mex. Fisica 34, 3244 (1989).

    Google Scholar 

  66. R.E. Nettleton and E.S. Freidkin, Physica A, 158, 672 (1989).

    Google Scholar 

  67. M. Grmela and D.Jou, J.Phys. A: Math & General (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Casas-Vázquez David Jou

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Grmela, M. (1991). Mesoscopic dynamics and thermodynamics: Applications to polymeric fluids. In: Casas-Vázquez, J., Jou, D. (eds) Rheological Modelling: Thermodynamical and Statistical Approaches. Lecture Notes in Physics, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-53996-4_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-53996-4_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53996-4

  • Online ISBN: 978-3-540-46569-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics