Skip to main content

Chemistry and physics of “agricultural” hydrogels

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 104))

Abstract

Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, in particular, in agriculture for improving water retention of soils and the water supply of plants. This article reviews methods of superabsorbent gel synthesis, measurements and treatment of their properties, as well as their effects in soil and on plant growth. The thermodynamic approach used to describe the swelling behavior of polymer networks proves to be quite helpful in modelling the hydrogel efficiency as a water-absorbing additive.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AAc:

Acrylic acid

AAm:

Acrylamide

AN:

Acrylonitrile

MBAA:

N, N′-Methylene-bis-acrylamide

PAAc:

Poly(acrylic acid)

PAAm:

Polyacrylamide

PAN:

Polyacrylonitrile

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

PVA:

Poly(vinyl alcohol)

SAH:

Superabsorbent hydrogel

6 References

  1. Wichterle O, Lim D (1960) Nature 185: 117

    Google Scholar 

  2. Andrade JD (ed) (1976) Hydrogels for medical and related applications. ACS symp ser 31. ACS, Washington

    Google Scholar 

  3. Peppas NA (ed) (1986) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton

    Google Scholar 

  4. Flory PJ (1953) Principles of polymer chemistry. Cornell Univ Press, Ithaca, New York

    Google Scholar 

  5. Masuda F (1983) Chem Econ Eng Rev 15(11): 19

    CAS  Google Scholar 

  6. Levy M, Vofsi D (1982) ACS Polym Prepr 23: 197

    CAS  Google Scholar 

  7. Jensen MH, King PA, Eikhof R (1971) In: 10th Natl Agric Plast Conf Proc Chicago, p 69

    Google Scholar 

  8. Eikhof RH, King PA, Moline W (1973) In: 11th Natl Agric Plast Conf Proc San Antonio, p 117

    Google Scholar 

  9. King PA, Eikhof RH, Jensen MH (1973) ibid., p 106

    Google Scholar 

  10. El-Hady OA, Azzam R (1983) Egypt J Soil Sci 23: 243

    Google Scholar 

  11. Azzam R et al. (1983) In: Proc Intl Symp on Isot and Rad Tech in Soil Phys and Irrig Stud Aix-en-Provance, p 321

    Google Scholar 

  12. Azzam R (1985) Commun Soil Sci Plant Anal 16: 1123

    CAS  Google Scholar 

  13. Azzam R, Danial L, Ayoub R (1986) In: Proc 6 Tihany Symp Rad Chem Siofok, 2: 649

    Google Scholar 

  14. Hemphill DD (1982) Hort Sci 17: 256

    Google Scholar 

  15. Ward SM, O'Driscoll F (1985) Agr Mechaniz in Asia, Afr and Lat Amer 16: 45

    Google Scholar 

  16. Gaal O, Medgyesi GA, Vereczkey L (1980) Electrophoresis in the separation of biological macromolecules. Akadémiai Kiado, Budapest

    Google Scholar 

  17. Tanaka T (1979) Polymer 20: 1404

    CAS  Google Scholar 

  18. Baselga J et al. (1987) Macromolecules 20: 3060

    CAS  Google Scholar 

  19. Ilavsky M (1982) Macromolecules 15: 782

    CAS  Google Scholar 

  20. Geissler E et al. (1988) Macromolecules 21: 2594

    CAS  Google Scholar 

  21. Oppermann W, Rose S, Rehage G (1985) Br Polym J 17: 175

    CAS  Google Scholar 

  22. Dubrovskii SA et al. (1990) Polym Bull 24: 107

    CAS  Google Scholar 

  23. Truong ND et al. (1986) Polymer 27: 459, 467

    CAS  Google Scholar 

  24. Baselga J et al. (1989) Polym J 21: 467

    CAS  Google Scholar 

  25. Watkin JE, Miller RA (1970) Anal Biochem 34: 424

    CAS  Google Scholar 

  26. Gupta MK, Bansil R (1981) J Polym Sci: Polym Phys Ed 19: 353

    CAS  Google Scholar 

  27. Bansil R, Gupta MK (1980) Ferroelectrics 30: 63

    CAS  Google Scholar 

  28. Hsu TP, Cohen C (1983) Polymer 24: 1273

    CAS  Google Scholar 

  29. Hsu TP, Ma DS, Cohen C (1984) Polymer 25: 1419

    CAS  Google Scholar 

  30. Janas VF, Rodrigues F, Cohen C (1980) Macromolecules 13: 977

    CAS  Google Scholar 

  31. Weiss N, Silberberg F (1977) Br Polym J 9: 144

    CAS  Google Scholar 

  32. Nieto JL et al. (1987) Eur Polym J 23: 551

    CAS  Google Scholar 

  33. Baselga J et al. (1988) Eur Polym J 24: 161

    CAS  Google Scholar 

  34. Baselga J et al. (1989) Eur Polym J 25: 471, 477

    CAS  Google Scholar 

  35. Rogozhin SV, Vainerman ES, Lozinsky VI (1982) Dokl Akad Nauk SSSR 263: 115

    CAS  Google Scholar 

  36. Lozinsky VI et al. (1986) Acta Polym 37: 142

    CAS  Google Scholar 

  37. Thomson RAM (1983) In: Finch CA (ed) Chemistry and technology of water-soluble polymers. Plenum Press. New York, p 31

    Google Scholar 

  38. Kulicke WM, Kniewske R, Klein J (1982) Progr Polym. Sci 8: 373

    CAS  Google Scholar 

  39. Huang MY, Heng SY (1983) Makromol Chem, Rapid Commun 4: 17

    Google Scholar 

  40. Rosiak J, Burczak K, Czolozińska T (1983) Rad Phys Chem 22: 917

    CAS  Google Scholar 

  41. Buyanov AL, Revelskaya LG, Petropavlovskii GA (1989) Zh Prikl Khim 62: 1854

    CAS  Google Scholar 

  42. Buyanov AL et al. (1989) Vysokomol Soedin, Ser B 31: 883

    CAS  Google Scholar 

  43. Fanta GF et al. (1982) Starch 34: 95

    CAS  Google Scholar 

  44. Fanta GF et al. (1978) Starch 30: 237

    CAS  Google Scholar 

  45. Castel D, Ricard A, Andebert R (1988) J Macromol Sci, Chem 25: 235

    Google Scholar 

  46. Castel D, Ricard A, Andebert R (1990) J Appl Polym Sci 39: 11

    CAS  Google Scholar 

  47. Fanta GF, Burr RC, Doan WM (1979) J Appl Polym Sci 24: 2015

    CAS  Google Scholar 

  48. Kazanskii KS et al. (1988) Vestn S-H Nauki 4: 125

    Google Scholar 

  49. Vitta SB, Stahel EP, Stannett VT (1985) J Macromol Sci, Chem 22: 579

    Google Scholar 

  50. Fanta GF, Burr RC, Doane WM (1982) J Appl Polym Sci 27: 4239

    CAS  Google Scholar 

  51. Taylor NW et al. (1978) J Appl Polym Sci 22: 1343

    CAS  Google Scholar 

  52. Finch CA (1983) in: Ref. [37] p 81

    Google Scholar 

  53. Horkay F, Nagy M (1981) Acta Chim Hung 108: 111

    CAS  Google Scholar 

  54. Horkay F, Nagy M (1982) Acta Chim Hung 109: 415

    CAS  Google Scholar 

  55. Peppas NA, Benner RE (1980) Biomaterials 1: 158

    CAS  Google Scholar 

  56. Reinhardt CT, Peppas NA (1984) J Membr Sci 18: 227

    Google Scholar 

  57. Mateescu MA et al. (1984) Polym Bull 11: 421

    CAS  Google Scholar 

  58. Johnson MS, (1984) J Sci Food Agric 35: 1063, 1196

    CAS  Google Scholar 

  59. Westman L, Lindstrom T (1981) J Appl Polym Sci 26: 2519

    CAS  Google Scholar 

  60. Taylor NW (1979) J Appl Polym Sci 24: 2031

    CAS  Google Scholar 

  61. Kobayashi S et al. (1989) Polym J 21: 971

    CAS  Google Scholar 

  62. Chujo Y et al. (1989) Macromolecules 22: 1074

    CAS  Google Scholar 

  63. Hunt JA et al. (1989) AIChE J 35: 250

    CAS  Google Scholar 

  64. Allain C, Salomé L (1987) Polym Commun 28: 109

    CAS  Google Scholar 

  65. Prud'homme RK et al. (1983) Soc Pet Eng J 23: 804

    Google Scholar 

  66. Jordan DS et al. (1982) Soc Pet Eng J 22: 463

    CAS  Google Scholar 

  67. Allain C, Salomé L (1988) In: Kramer O (ed) Biological and synthetic polymer networks. Elsevier, New York, p 291

    Google Scholar 

  68. Allain C, Salomé L (1987) Macromolecules 20: 2957

    CAS  Google Scholar 

  69. Rudman AR et al. (1983) Vysokomol Soedin, Ser A 25: 2405

    CAS  Google Scholar 

  70. Kopylova YeM et al. (1987) Vysokomol Soedin, Ser A 29: 517

    CAS  Google Scholar 

  71. Watase M et al. (1983) Polym Commun 24: 52, 270, 345

    CAS  Google Scholar 

  72. Fanta GF, Weaver MO, Doane WM (1974) Chem Tech 4: 675

    CAS  Google Scholar 

  73. Chapiro A (1960) Radiation chemistry of polymeric systems Wiley-Interscience, New York

    Google Scholar 

  74. Marchal J (1965) C r Acad Sci 261: 5104

    Google Scholar 

  75. King PA, Ward JA (1970) J Polym Sci A-1 8: 253

    CAS  Google Scholar 

  76. Ward JA (1971) J Polym Sci 9: 3555

    CAS  Google Scholar 

  77. Minkova L et al. (1989) J Polym Sci: Polym Phys 27: 621

    CAS  Google Scholar 

  78. Kazanskii KS, Arkhipovich GN (to be published)

    Google Scholar 

  79. King PA (1966) US Pat 3.264.202

    Google Scholar 

  80. Burillo G, Ogawa T (1980) Makromol Chem Rapid Commun 1: 545

    CAS  Google Scholar 

  81. Burillo G, Ogawa T (1981) Rad Phys Chem 18: 1143

    CAS  Google Scholar 

  82. Burillo G, Ogawa T (1986) J Appl Polym Sci 32: 3783

    CAS  Google Scholar 

  83. Buchanan KJ, Hird B, Letcher TM (1986) Polym Bull 15: 325

    CAS  Google Scholar 

  84. Chapiro A, Legris C (1986) Rad Phys Chem 28: 143

    CAS  Google Scholar 

  85. Ikada Y et al. (1977) Rad Phys Chem 9: 633

    CAS  Google Scholar 

  86. Rosiak J, Olejniczak J, Charlesby A (1988) Rad Phys Chem 32: 691

    CAS  Google Scholar 

  87. Yen SW, Osterholz FD (1975) US Pat 3.900.378

    Google Scholar 

  88. Assarsson PG, King PA (1976) US Pat 3.898.443, 3.957.605, 3.993.551, 3.993.552

    Google Scholar 

  89. Yoshikawa M et al. (1989) New Polym Mat 1: 223

    CAS  Google Scholar 

  90. Gnanou Y, Hild G, Rempp P (1984) Macromolecules 17: 945

    CAS  Google Scholar 

  91. Graham NB, Zulfigar M (1989) Polymer 30: 2130

    CAS  Google Scholar 

  92. Rogers JA, Tam T (1977) Can J Pharm Sci 12: 65

    CAS  Google Scholar 

  93. Graham NB, McNeil ME (1988) Makromol Chem, Makromol Symp 19: 255

    CAS  Google Scholar 

  94. Muller G, Laine JP, Fenyo JC (1979) J Polym Sci: Polym Chem Ed 17: 659

    CAS  Google Scholar 

  95. Kulicke WM, Hörl HH (1985) Colloid Polym Sci 263: 530

    CAS  Google Scholar 

  96. Tanaka T (1987) In: Nicolini C (ed) Structure and dynamics of biopolymers. Nijhoff Publ, Dordrecht, p 237 (NATO ASI Series E, No 133)

    Google Scholar 

  97. Tanaka T et al. (1980) Phys Rev Lett 45: 1636

    CAS  Google Scholar 

  98. Ilavský M (1981) Polymer 22: 1687

    Google Scholar 

  99. Vasilevskaia VV, Khokhlov AR (1986) Vysokomol Soedin, Ser A 28: 316

    Google Scholar 

  100. Harrison DJP, Yates WR, Johnson JE (1985) J Macromol Sci Rev Macromol Chem Phys 25: 481

    Google Scholar 

  101. Rička J, Tanaka T (1984) Macromolecules 17: 2916

    Google Scholar 

  102. Dubrovskii SA et al. (1989) Vysokomol Soedin, Ser A 31: 321

    CAS  Google Scholar 

  103. Dubrovskii SA et al. (1990) Vysokomol Soedin, Ser A 32: 165

    CAS  Google Scholar 

  104. Horkay F, Zrinyi M (1982) Macromolecules 15: 1306

    CAS  Google Scholar 

  105. Candau S, Bastide J, Delsanti M (1982) Adv Polym Sci 44: 27

    CAS  Google Scholar 

  106. Nossal R (1985) Macromolecules 18: 49

    CAS  Google Scholar 

  107. Rička J, Tanaka T (1985) Macromolecules 18: 83

    Google Scholar 

  108. Kulicke WM, Nottelmann H (1987) Polym Mater Sci Eng 57: 265

    CAS  Google Scholar 

  109. Nishi S, Kotaka T (1986) Macromolecules 19: 978

    CAS  Google Scholar 

  110. Bailey FE, Koleske JV (1976) Polyethylene oxide. Academic Press, New York

    Google Scholar 

  111. Khokhlov AR (1980) Polymer 21: 376

    CAS  Google Scholar 

  112. Nagy M, Horkay F (1979) Magy Kem Foly 85: 513

    CAS  Google Scholar 

  113. Hasa J, Ilavsky M, Dušek K (1975) J Polym Sci Polym Phys Ed 13: 253

    CAS  Google Scholar 

  114. Koňák Č, Bansil R (1989) Polymer 30: 677

    Google Scholar 

  115. Horkay F, Hecht AM, Geissler E (1989) Macromolecules 22: 2007

    CAS  Google Scholar 

  116. Dušek K, Prins W (1969) Adv Polym Sci 6: 1

    Google Scholar 

  117. Khokhlov AR (1980) Vysokomol Soedin, Ser B 22: 736

    CAS  Google Scholar 

  118. Mark JE (1982) Adv Polym Sci 44: 1

    CAS  Google Scholar 

  119. De Gennes P-G (1979) Scaling concepts in polymer physics. Cornell Univ Press, Ithaca, New York

    Google Scholar 

  120. Ilavský M, Hrouz J (1982) Polym Bull 8: 387

    Google Scholar 

  121. Ilavský M, Hrouz J (1983) Polum Bull 9: 159

    Google Scholar 

  122. Watase M (1985) Makromol Chem 186: 1081

    CAS  Google Scholar 

  123. Starodubtsev SG (1982) Vysokomol Soedin, Ser B 24: 67

    CAS  Google Scholar 

  124. Brannon-Peppas L, Peppas NA (1988) Polym Bull 20: 285

    CAS  Google Scholar 

  125. Tanaka T, Fillmore DJ (1979) J Chem Phys 70: 1214

    CAS  Google Scholar 

  126. Sato Matsuo E, Tanaka T (1988) J Chem Phys 89: 1695

    Google Scholar 

  127. Ilmain F, Candau SJ (1989) Makromol Chem Makromol Symp 30: 119

    CAS  Google Scholar 

  128. Dubrovskii SA (1988) Dokl Akad Nauk SSSR 303: 1163

    CAS  Google Scholar 

  129. Tanaka T et al. (1987) Nature 325: 796

    CAS  Google Scholar 

  130. Sekimoto K, Kawasaki K (1989) Physica A 154: 384

    CAS  Google Scholar 

  131. El-Hady OA et al. (1981) Acta Hort 119: 247, 257

    Google Scholar 

  132. Nuriev BN et al. (1986) in: Monakov VS (ed) Technical progress in deserts (in Russian). Ilym, Ashkhabad, p 59

    Google Scholar 

  133. Sus NS et al. (1990) Pochvovedenije 7: 149

    Google Scholar 

  134. Garrison S (1981) The thermodynamics of soil solutions. Clarendon Press, Oxford

    Google Scholar 

  135. Voronin AD (1984) Structural functional hydrophysics of soil (in Russian). Moscow Univ Press, Moscow

    Google Scholar 

  136. Yoshitake T (1981) Polym Digest 33: 10

    CAS  Google Scholar 

  137. Stevenson DS (1987) Can J Soil Sci 67: 395

    Google Scholar 

  138. Grula MM, Huang M (1982) Dev Ind Microbiol 22: 451

    Google Scholar 

  139. Lagutina MA et al. (to be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this chapter

Cite this chapter

Kazanskii, K.S., Dubrovskii, S.A. (1992). Chemistry and physics of “agricultural” hydrogels. In: Polyelectrolytes Hydrogels Chromatographic Materials. Advances in Polymer Science, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55109-3_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-55109-3_3

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55109-6

  • Online ISBN: 978-3-540-46728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics