Skip to main content

Photoinduced charge transfer processes at semiconductor electrodes and particles

  • Conference paper
  • First Online:
Electron Transfer I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 169))

Abstract

In contrast to reactions at metal electrodes, charge transfer processes at semiconductor electrodes can be controlled by light excitation if minority carriers are involved. Since electron and hole transfer always occur via one of the energy bands, valuable information on the energy parameters determining the reaction rates can be obtained. In the present paper, models of the charge transfer processes at semiconductor electrodes are presented, and the kinetics of various reactions in the dark and under illumination are discussed in detail. During the last decade it has become very popular to investigate photoinduced charge transfer reactions at small semiconductor particles, i.e. at micoroheterogeneous systems, because of the large surface area. Here, various fundamental processes in suspensions or colloidal solutions are compared with corresponding reactions at extended electrodes. Finally, several applications of photoinduced reactions at semiconductor electrodes and particles are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Gerischer H (1960) (Z Phys Chem N F) 26: 223; 26: 325: (1961) 27: 48

    Google Scholar 

  2. Marcus RA (1964) Ann Rev Phys Chem 15: 155

    Google Scholar 

  3. Dogonadze RR, Kuznetsov AM, Chizmadzhev (1964) Russ I Phys Chem 38: 652

    Google Scholar 

  4. Levich VG (1966) In: Delahay P, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering. Wiley Interscience, New York, vol 4, p 249

    Google Scholar 

  5. Gerischer H (1970) In: Eyring M, Jos W, Henderson D, (eds) Physical chemistry, Academic, New York, vol 4 A, p 463

    Google Scholar 

  6. Memming R (1979) In: Bard AJ (ed) Electroanalytical chemistry. Marcel Dekker, New York vol 11, p 1

    Google Scholar 

  7. Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum, New York

    Google Scholar 

  8. Gomes WP, Cardon F (1982), Progr Surf Sci 12: 155

    Google Scholar 

  9. Pleskov Yu V (1980) In: Conway BE, Bockris IO'M, Yeager E (eds) Comprehensive treatise of electrochemistry. Plenum, New York, vol 1, p 291

    Google Scholar 

  10. Memming R (1983) in: Conway BE, Bockris IOM, Yeager E (eds) Comprehensive treatise of electrochemistry. Plenum, New York, vol 7, p 529

    Google Scholar 

  11. Pleskov Yu V; Gurevick YU (1986) Semiconductor Photoelectrochemistry, Consultant Bureau, New York

    Google Scholar 

  12. Jaegermann W, Tributsch H (1988) Prog Surf Sci 29: 1

    Google Scholar 

  13. Fujishima A, Honda K (1972) Nature 238: 37

    PubMed  Google Scholar 

  14. Gerischer H, Willig F (1976) In: Topics in current chemistry. Springer, Berlin Heidelberg New York, vol 61, p 33

    Google Scholar 

  15. Memming R (1984) Progr Surf Sci 17: 7

    Google Scholar 

  16. Henglein A (1988) Topics of curr chem 143: 113

    Google Scholar 

  17. Henglein A (1989) Chem Rev 89: 1861

    Google Scholar 

  18. Bahnemann DW (1991) In: Pelizzetti E, Schiavello M (eds) Photochemical conversion and storage of solar energy, Kluwer, The Netherlands, p 251

    Google Scholar 

  19. Kittel Ch (1976) Introduction to solid state physics. John Wiley, New York

    Google Scholar 

  20. Sze S (1981) Physics of semiconductor devices, 2nd edn. John Wiley, New York

    Google Scholar 

  21. Brillson LI (1982) Surf Sci Rep 2: 123

    Article  Google Scholar 

  22. Zimann IM (1972) Principles of theory of solids. Cambridge University Press, Cambridge, UK

    Google Scholar 

  23. Pankove IL (1971) Optical Processes in semiconductors. Prentice Hall, Englewood Cliffs, UK

    Google Scholar 

  24. Knox RS, Dexter KL (1965) Excitons, New York

    Google Scholar 

  25. Gutmann F, Lyons LE (1967) Organic semiconductors. John Wiley, New York

    Google Scholar 

  26. Berry CR (1967) Phys Rev 161: 611

    Article  Google Scholar 

  27. Meehan EI, Miller IK (1968) J Phys Chem 72: 1523

    Article  Google Scholar 

  28. Fojtik A, Weller H, Koch U, Henglein A (1984) Ber Bunsenges Phys Chem 88: 969

    Google Scholar 

  29. Rossetti R, Ellison IL, Gibson IM, Brus LE (1984) J Chem Phys 80: 4464

    Article  Google Scholar 

  30. Chestnoy N, Hall R, Brus LE (1986) J Chem Phys 85: 2237

    Article  Google Scholar 

  31. Weller H, Fojtik A, Henglein A (1985) Chem Phys Lett 117: 485

    Article  Google Scholar 

  32. Brus LE (1986) J Phys Chem 90: 2555

    Article  Google Scholar 

  33. Bawendi MG, Steigerwald ML, Brus LE (1990) Annu Rev Phys Chem 41: 477

    Google Scholar 

  34. Schmidt HM, Weller H (1986) Chem Phys Lett 129: 615

    Article  Google Scholar 

  35. Weller H, Schmidt HM, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E (1986) Chem Phys Lett 124: 557

    Article  Google Scholar 

  36. Bahnemann DW, Kormann C, Hoffmann MR (1987) J Phys Chem 91: 3789

    Article  Google Scholar 

  37. Atkins PW (1978) Physical chemistry. Oxford University Press, Oxford, UK

    Google Scholar 

  38. Hodes G, Albu-Yaron A, Decker F, Motisuke P (1987) Phys Rev B 36: 4215

    Google Scholar 

  39. Hodes G, Howell IDJ, Peter LM (1992) J Electrochem Soc 139: 3136

    Google Scholar 

  40. Ekimor AI, Onushchenko AA (1984) Pisma Zh Eksp Teor Fis 40: 337

    Google Scholar 

  41. Wang Y, Herron N (1987) J Phys Chem 91: 257

    Article  Google Scholar 

  42. Dingle R (1975) In: Queisser HI (ed) Advances in solid state physics. Pergamon Viehweg, Braunschweig, vol 53, p 136

    Google Scholar 

  43. Gerischer H (1960) Z Phys Chem NF 26: 232 and 325; (1961): 27: 48

    Google Scholar 

  44. Möllers F, Memming R (1976) Ber Bunsenges Phys Chem 76: 469

    Google Scholar 

  45. Memming R, Möllers F (1976) Ber Bunsenges Phys Chem 76: 475

    Google Scholar 

  46. Memming R (1969) J Electrochem Soc 116: 785

    Google Scholar 

  47. Lohmann F (1966) Ber Bunsenges Phys Chem 70: 428

    Google Scholar 

  48. Bolts IM, Wrighton MS (1976) J Phys Chem 80: 2641

    Article  Google Scholar 

  49. Pleskov Yu V (1973) Prog Surf Membr Sci 7: 57

    Google Scholar 

  50. Memming R, Schwandt G (1968) Electrochem Acta 13: 1299

    Article  Google Scholar 

  51. Van den Berghe RAL, Cardon F, Gomes WP (1973) Surf Sci 39: 368

    Article  Google Scholar 

  52. Gerischer H, Mindt W (1966) Surface Sci 4: 440

    Article  Google Scholar 

  53. Gerischer H, Hoffmann-Perez M, Mindt W (1965) Ber Bunsenges Phys Chem 69: 130

    Google Scholar 

  54. Memming R, Neumann G (1969) J Electroanal Chem Interfac Electrochem 21: 295

    Article  Google Scholar 

  55. Schröder K, Memming R (1985) Ber Bunsenges Phys Chem 89: 385

    Google Scholar 

  56. Meissner D, Memming R, Kastening B (1988) J Phys Chem 92: 3476

    Article  Google Scholar 

  57. Meissner D, Benndorf C, Memming R (1987) Appl Surf Sci 27: 423

    Article  Google Scholar 

  58. Rimmasch J (1992) Die Untersuchung von Ladungstransferprozessen an der Phasengrenze TiO2/Electrolyt. Thesis, University of Hamburg, Germany

    Google Scholar 

  59. Lewerenz HJ, Gerischer H, Lübke M (1984) J Electrochem Soc 131: 100

    Google Scholar 

  60. Mc Evoy AI, Etman M, Memming R (1985) Electroanal Chem 190: 225

    Article  Google Scholar 

  61. Bard AI, Bocarsly AB, Fan F, Walton EW, Wrighton MS (1980) J Am Chem Soc 102: 3671

    Article  Google Scholar 

  62. Ennaoui A, Tributsch H (1986) J Electrochem Soc 204: 185

    Google Scholar 

  63. Mishra KK, Osseo-Asare K (1992) J Electrochem Soc 139: 749

    Google Scholar 

  64. Fantini MCA, Shen WM, Tonkiewicz M, Gambino JP (1989) J Appl Phys 65: 4884

    Article  Google Scholar 

  65. Ba B, Fotouhi BB, Gabouze N, Gorochov O, Cachet H (1993) J Electroanal Chem, 334, 263

    Article  Google Scholar 

  66. Dutoit EC, Cardon F, Gomes WP (1976) Ber Bunsenges 80: 475

    Google Scholar 

  67. Kiwiet NJ, Fox MA (1990) J Electrochem Soc 137: 1240

    Google Scholar 

  68. Memming R, Kelly JJ (1980) Connolly (ed), Photochemical conversion and storage of solar energy. Academic Press, New York, p 243

    Google Scholar 

  69. Kelly JJ, Memming R (1982) J Electrochem Soc 129: 730

    Google Scholar 

  70. Mc Intyre R, Gerischer H (1985) Ber Bunsenges Phys Chem 88: 963

    Google Scholar 

  71. Van den Meerakker JEAM (1985) Electrochim Acta 30: 435

    Article  Google Scholar 

  72. Allongue P, Cachet H (1985) Sol State Electron 55: 44

    Google Scholar 

  73. Lincot D, Vedel J (1987) J Electroanal Chem 220: 179

    Article  Google Scholar 

  74. Van den Meerakker JEAM, Kelly JJ, Notten PHL (1985) J Electrochem Soc 132: 638

    Google Scholar 

  75. Meissner D, Lauermann I, Memming R, Kastening B (1988) J Phys Chem 92: 3484

    Article  Google Scholar 

  76. Scholz GA, Gerischer H (1992) J Electrochem Soc 139: 165

    Google Scholar 

  77. Sinn Ch, Meissner D, Memming R (1990) J Electrochem Soc 137: 168

    Google Scholar 

  78. Kühne HM, Tributsch H (1986) J Electroanal Chem 201: 263

    Article  Google Scholar 

  79. Meissner D, Memming R (1988) In: Grassi G, Hall DO (eds) Photocatalytic production of energy-rich compounds. Elsevier, London, p 138

    Google Scholar 

  80. Jägermann W, Kühne HM (1986) Appl Surf Sci 26: 1

    Article  Google Scholar 

  81. Dogonadze RR, Kutzenov (1983) In: Conway BE, Bockris JOM, Yeager E, Khan SUM, White RE (eds) comprehensive treatise of electrochemistry, vol 7

    Google Scholar 

  82. Schefold J, Kühne HM (1991) J Electroanal Chem 300: 211

    Article  Google Scholar 

  83. Memming R (1987) Ber Bunsenges Phys Chem 91: 353

    Google Scholar 

  84. Reichman J (1980) Appl Phys Lett 36: 574

    Article  Google Scholar 

  85. Gärtner WW (1959) Phys Rev 116: 84

    Article  Google Scholar 

  86. Butler MA (1977) J Appl Phys 48: 1914

    Article  Google Scholar 

  87. Wilson RH (1977) J Appl Phys 48: 4292

    Article  Google Scholar 

  88. Memming R (1991) In: Pelizzetti E, Schiavello M (eds) Photochemical conversion and storage of solar energy. Kluwer, The Netherlands, p 193

    Google Scholar 

  89. Shockley W (1950) Electrons and Holes in Semiconductors, Van Norstrand, New York

    Google Scholar 

  90. Williams F, Nozik AI (1984) Nature 311: 5989

    Article  Google Scholar 

  91. Reineke R, Memming R (1989) In: Hall DO, Grassi G (eds) Photo conversion pro-cesses for energy and chemicals. Elsevier, Essex, UK, p 129

    Google Scholar 

  92. Reineke R, Memming R (1992) J Phys Chem 96: 1310

    Article  Google Scholar 

  93. Vanmaekelbergh D, Gomes WP, Cardon F (1982) J Electrochem Soc 129: 564

    Google Scholar 

  94. Lu Shou Yun, Vanmaekelbergh D, Gomes WP (1987) Ber Bunsenges Phys Chem 91: 390

    Google Scholar 

  95. Vanmaekelbergh D, Lu Shou Yun, Gomes WP (1987) J Electroanal Chem 221: 187

    Article  Google Scholar 

  96. Notten PHL (1987) Electrochim Acta 32: 575

    Article  Google Scholar 

  97. Notten PHL, Kelly JJ (1987) J Electrochem Soc 134: 444

    Google Scholar 

  98. Kelly JJ, Reynders AC (1987) Appl Surf Sci 29: 149

    Article  Google Scholar 

  99. Notten PHL, Damen AAJM (1987) Appl Surf Sci 28: 331

    Article  Google Scholar 

  100. Notten PHL (1984) J Electrochem Soc 131: 2641

    Google Scholar 

  101. Inoue T, Watanabe T, Fujishima A, Honda, K, Kohayakawa (1977) J Electrochem Soc 124: 719

    Google Scholar 

  102. Memming R (1977) Ber Bunsenges Phys Chem 81: 732

    Google Scholar 

  103. Memming R (1978) J Electrochem Soc 125: 117

    Google Scholar 

  104. Gerischer H (1977) J Electrochanal Chem 82: 133

    Article  Google Scholar 

  105. Bard AJ, Wrighton MS (1977) In: Heller A (ed) Semiconductor-liquid junctions. Electrochemical Society, Princeton NY, Proc. vol 77-3, p 195

    Google Scholar 

  106. Gerischer H (1979) In: Seraphin BO (ed) Topics in appl physics. Springer, Berlin Heidelberg New York, p 115

    Google Scholar 

  107. Gerischer H, Mindt W (1968) Electrochim Acta 13: 1329

    Article  Google Scholar 

  108. Memming R, Schwandt G (1966) Surf Sci 5: 97

    Article  Google Scholar 

  109. Frese K, Madou MJ, Morrison SR (1980) J Phys Chem 84: 3172; (1981) J Electrochem Soc 128: 1528

    Article  Google Scholar 

  110. Gerischer H, Lübke M (1983) Ber Bunsenges Phys Chem 87: 123

    Google Scholar 

  111. Memming R (1985) In: Schiavello (ed) Photoelectrochemistry, photocatalysis and photoreactors. D. Reidel, Dordrecht, p 107

    Google Scholar 

  112. Cardon F, Gomes WP, Kerchove F, Vanmaekelbergh D, v. Overmeire F (1980) Faraday Discussions 70: 153

    Article  Google Scholar 

  113. Memming R (1988) In: Topics in current chemistry. Springer Verlag, Berlin, vol 143, p 79

    Google Scholar 

  114. Menezes S, Miller B (1983) J Electrochem Soc 130: 517

    Google Scholar 

  115. Gomes WP, v. Overmeire F, Vanmaekelbergh D, v. d. Kerchove F, Cardon F (1981) In: Nozik AJ (ed) Photophysics at semiconductor-elektrolyte interfaces. ACS-Series No. 146, p 120

    Google Scholar 

  116. Vanmaekelbergh D, Gomes WP (1990) J Phys Chem 94: 1571

    Google Scholar 

  117. Meissner D, Sinn Ch, Memming R, Notten PHL, Kelly JJ (1986) In: Pelizzetti E, Serpone N (eds) Homogeneous and heterogeneous photocatalysis. D Reidel, The Netherlands, p 343

    Google Scholar 

  118. Allongue P, Blonkowsky S, Lincot D (1991) J Electroanal Chem 300: 261

    Google Scholar 

  119. Tributsch H (1977) Ber Bunsenges Phys Chem 81: 361

    Google Scholar 

  120. Tributsch H, Bennett JC (1977) J Electroanal Chem 81: 97

    Google Scholar 

  121. Tributsch H (1982) In: Structure and bonding. Springer, Berlin Heidelberg, New York, vol 49, p 129

    Google Scholar 

  122. Kautek W, Gerischer H (1982) Surf Sci 119: 46

    Google Scholar 

  123. Kautek W, Gerischer H (1981) Electrochim Acta 26: 1771

    Google Scholar 

  124. Kautek W, Willig F (1981) Elektrochim Acta 26: 1709

    Google Scholar 

  125. Tributsch H (1979) Sol Energy Mat 1, 257

    Google Scholar 

  126. Hale JM (1971) In: Hush NS (ed) Reactions of molecules at electrodes. Wiley, New York, p 229

    Google Scholar 

  127. Vetter K (1961) Elektrochemische Kinetik, Springer, Berlin Heidelberg New York

    Google Scholar 

  128. Lewis NS (1991) Ann Rev Phys Chem 42: 543

    Google Scholar 

  129. Marcus RA (1990) J Phys Chem 94: 4152 and 94: 7742

    Google Scholar 

  130. Gerischer H (1991) J Phys Chem 95: 1356

    Google Scholar 

  131. Morrison SR (1969) Surf Sci 15: 363

    Google Scholar 

  132. Marcus RA (1990) J Phys Chem 94: 1050

    Google Scholar 

  133. Gurevich Yu Ya, Pleskov Yu V (1982) Elektrokhimiya 18: 1477

    Google Scholar 

  134. Reineke R, Memming R (1992) J Phys Chem 96: 1317

    Google Scholar 

  135. Uhlendorf I, Rimmasch J, Reineke R, Meissner D (1991), presented at the 42nd Meeting of the Internat Soc of Electrochem, Montreux

    Google Scholar 

  136. Meissner D, Memming R (1992) Electrochim Acta 37: 799

    Google Scholar 

  137. Allongue P, Blonkowski S, Souteyrand E (1992) Electrochim Acta 37: 781

    Google Scholar 

  138. Rosenwaks Y, Thacker BR, Ahrenkiel RK, Nozik AJ (1993) Nature, in press

    Google Scholar 

  139. Minks BP, Oskam G, Vanmaekelbergh D, Kelly JJ (1989) J Electroanal Chem 273: 119

    Google Scholar 

  140. Minks BP (1991) Photoetching of GaAs: The Cathodic Reaction. Thesis, University of Utrecht (Holland)

    Google Scholar 

  141. Uhlendorf I, Reineke R, Memming R (publication in preparation)

    Google Scholar 

  142. Nozik AJ (1993) Second Internat Conference on solar energy storage and appl photochemistry (cairo), Proc (in press)

    Google Scholar 

  143. Rosenbluth ML, Lieber CM, Lewis NS (1984) Appl Phys Lett 45: 423

    Google Scholar 

  144. Rosenbluth ML, Lewis NS (1986) J Am Chem Soc 108: 4689

    Google Scholar 

  145. Lewis NS (1990) Acc Chem Res 23: 176

    Google Scholar 

  146. Kumar A, Lewis NS (1991) J Phys Chem 95: 7021

    Google Scholar 

  147. Kobayashi H, Tsubomura H (1989) J Electroanal Chem 272: 37

    Google Scholar 

  148. Kobayashi H, Chigami A, Takeda N, Tsubomura H (1990) J Electroanal Chem 287: 239

    Google Scholar 

  149. Memming R (1969) J Electrochem Soc 116: 785

    Google Scholar 

  150. Beckmann KH, Memming R (1969) J Electrochem Soc 116: 368

    Google Scholar 

  151. Memming R, Möllers F (1972) Ber Bunsenges Phys Chem 76: 609

    Google Scholar 

  152. Gerischer H, Müller N, Haas O (1981) J Electroanal Chem 119: 41

    Google Scholar 

  153. Notten PHL (1987) J Electroanal Chem 224: 211

    Google Scholar 

  154. Kelly JJ, Minks BP, Verhaegh AM, Stumper J, Peter LM (1992) Electrochim Acta 37: 909

    Google Scholar 

  155. Morrison SR, Freund T (1968) Electrochim Acta 13: 1343

    Google Scholar 

  156. Morrison SR, Freund T (1967) J Chem Phys 47: 1543

    Google Scholar 

  157. Micka K, Gerischer H (1972) J Electroanal Chem 38: 397

    Google Scholar 

  158. Yamagata S, Nakabayashi S, Sancier KM, Fujishima A (1988) Bull Chem Soc Jap 61: 3429

    Google Scholar 

  159. Hykaway N, Sears WM, Morisaki H, Morrison SR (1986) J Phys Chem 90: 6663

    Google Scholar 

  160. Lee J, Kato T, Fujishima A, Honda K (1984) Bull Chem Soc Jap 57: 1179

    Google Scholar 

  161. Lilie J, Beck G, Henglein A (1971) Ber Bunsenges Phys Chem 75: 458

    Google Scholar 

  162. Maeda Y, Fujishima A, Honda K (1981) J Electrochem Soc 128: 1731

    Google Scholar 

  163. Williams F, Nozik AJ (1978) Nature 271: 137

    Google Scholar 

  164. Ross RT, Nozik AJ (1982) J Appl Phys 53: 3813

    Google Scholar 

  165. Cooper G, Turner JA, Parkinson BA, Nozik AJ (1983) J Appl Phys 54: 6463

    Google Scholar 

  166. Boudreaux DS, Williams F, Nozik AJ (1980) J Appl Phys 51: 2158

    Google Scholar 

  167. Turner JA, Nozik AJ (1982) Appl Phys Lett 41: 101

    Google Scholar 

  168. Koval CA, Segar PR (1989) J Am Chem Soc 111: 2004

    Google Scholar 

  169. Frese KW, Chen C (1992) J Electrochem Soc 139: 3234

    Google Scholar 

  170. Chen C, Frese KW (1992) J Electrochem Soc 139: 3243

    Google Scholar 

  171. Fox MA (1987) In: Topics in current chemistry. Springer Verlag, vol 143: 42

    Google Scholar 

  172. Grätzel M, Frank AJ (1982) J Phys Chem 86: 2964

    Google Scholar 

  173. Minoura H, Katoh Y, Sugiura T, Ueno Y, Matsui M, Shibata K (1990) Chem Phys Lett 173: 220

    Google Scholar 

  174. Minoura H, Inayoshi N, Ueno Y, Matsui M, Shibata K (1992) J Electroanal Chem 332: 279

    Google Scholar 

  175. Wolf K, Bahnemann DW (publication in preparation)

    Google Scholar 

  176. Bahnemann DW, Henglein A, Spanhel L (1984) Faraday Discuss Chem Soc 78: 151

    Google Scholar 

  177. Rothenburger G, Moser I, Grätzel M, Serpone N, Sharma DK (1985) J Am Chem Soc 107: 8054

    Google Scholar 

  178. Baral S, Fojtik A, Weller H, Henglein A (1986) J Am Chem Soc 108: 375

    Google Scholar 

  179. Chen G, Zen IM, Fan F, Bard AI (1991) J Phys Chem 95: 3682

    Google Scholar 

  180. Nedeljkovic IM, Nenadovic MT, Micic OI, Nozik AJ (1986) J Phys Chem 90: 12

    Google Scholar 

  181. Micic OI, Rajh T, Comor MV (1992) In: Mackay RA, Texter J (eds) Electrochemistry in colloids and dispersions. VCH, New York (USA), p 457

    Google Scholar 

  182. Kraeutler B, Bard AJ (1977) J Am Chem Soc 99: 7729; (1978) 100: 5985

    Google Scholar 

  183. Meissner D, Memming R, Kastening B (1983) Chem Phys Lett 96: 34

    Google Scholar 

  184. Kormann C, Bahnemann DW, Hoffmann MR (1990) Langmuir 6: 555

    Google Scholar 

  185. Kormann C, Bahnemann DW, Hoffmann MR (1991) Environ Sci Techn 25: 494

    Google Scholar 

  186. Henglein A, Gutiérrez M (1983) Ber Bunsenges Phys Chem 87: 852

    Google Scholar 

  187. Müller B, Majoni S, Meissner D (publication in preparation)

    Google Scholar 

  188. Yanagida S, Ishimaru Y, Miyake Y, Shiragami T, Pac C, Hashimoto K, Sakata T (1989) J Phys 93: 2576

    Google Scholar 

  189. Müller B (1993) Photoeletrochem Untersuchungen an Halbleiterteilchen unterschiedlicher Größe Thesis, University of Hamburg (Germany)

    Google Scholar 

  190. Henglein A, Gutiérrez M, Fischer CH (1984) Ber Bunsenges Phys Chem 88: 170

    Google Scholar 

  191. Inoue H, Torimoto T, Sakata T, Mori H, Yoneyama H (1990) Chem Lett 1483

    Google Scholar 

  192. Tributsch H (1982) In: Solar energy materials, structure and bonding. Springer, Berlin Heidelberg New York, vol 49, p 127

    Google Scholar 

  193. Lewis NS (1984) Ann Rev Mater Sci 14: 95

    Google Scholar 

  194. Hodes G (1985) In: Grätzel M (ed) Energy resources through photochemistry and catalysis. Academic, New York, p 521

    Google Scholar 

  195. Memming R (1990) In: Rabek JF (ed) Photochemistry and photophysics. CRC Boca Raton (USA), vol II, p 143

    Google Scholar 

  196. Tributsch H (1988) In: Schiavello (ed) New trends and applications of photocatalysis and photochemistry for environmental problems. D. Reidel. Dordrecht (Holland), p 297

    Google Scholar 

  197. Honda K, Fujishima A, Watanabe T (1982) In: Ohta T (ed) Solar hydrogen energy systems. Pergamon Press, Oxford, UK, p 137

    Google Scholar 

  198. Memming R (1991) In: Pelizzetti E, Schiavello M (eds) Photochemical conversion and storage of solar energy. Kluwer (Holland), p 193

    Google Scholar 

  199. Ennaoui A, Tributsch H (1986) Sol Energy Mat 14: 461

    Google Scholar 

  200. Ennaoui A, Fiechter S, Pettenhofer Ch, Allonso-Vante N, Büker K, Bronold M, Höpfner C, Tributsch H (1993) In: Solar energy materials and solar cells, in press

    Google Scholar 

  201. Tributsch H, Calvin M (1971) Photochem Photobiol 14: 95

    Google Scholar 

  202. Matsumura N, Nomura Y, Tsubomura H (1977) Bull Chem Soc Jap 50: 2533

    Google Scholar 

  203. Alonso N, Beley VM, Chartier P, Erns N (1981) Rev Phys Appl 16: 5

    Google Scholar 

  204. Stalder C, Augustynsky J (1979) J Electrochem Soc 126: 2007

    Google Scholar 

  205. Desilvestro I, Grätzel M, Kavau L, Moser I, Augustynsky J (1985) J Am Chem Soc 107: 2988

    Google Scholar 

  206. O'Regan B, Grätzel M (1991) Nature 353: 737

    Google Scholar 

  207. Mavroides JG, Dafalos JA, Kolesar DF (1976) Appl Phys Lett 28: 241

    Google Scholar 

  208. Nozik AJ (1975) Nature 257: 5527

    Google Scholar 

  209. Yeh LSR, Hackermann N (1977) J Electrochem Soc 124: 833

    Google Scholar 

  210. Piazza S, Kühne HM, Tributsch H (1985) J Electroanal Chem 196: 53

    Google Scholar 

  211. Vogel R Pohl K, Weller H (1990) Chem Phys Lett 174: 241

    Google Scholar 

  212. Ennaoui A, Fiechter S, Tributsch H, Giersig M, Vogel R, Weller H (1992) J Electrochem Soc 139: 2514

    Google Scholar 

  213. Sayama K, Tanaka A, Domen K, Maruya K, Onishi T (1991) J Phys Chem 95: 1345

    Google Scholar 

  214. Kudo A, Sayama K, Tunaka A, Asakura K, Domen K, Maruya K, Onishi T (1989) J Catalysis 120: 337

    Google Scholar 

  215. Lauermann I, Meissner D, publication in preparation

    Google Scholar 

  216. Meissner D (1992) In: Veziroglu TN, Derive C, Pottier I (eds), Hydrogen energy progress IX, Proc 9th World Hydrogen Energy Conf Paris, vol 1, p 517

    Google Scholar 

  217. Nakato Y, Ueda K, Yano H, Tsubomura H (1988) J Phys Chem 92: 2316

    Google Scholar 

  218. Kormann C, Bahnemann DW, Hoffmann MR (1989) J Photochem Photobiol, A: Chemistry 48: 161

    Google Scholar 

  219. Bahnemann DW, Bockelmann D, Goslich R (1991) Solar Energy Mat 24: 564

    Google Scholar 

  220. Gerischer H, Heller A (1991) J Phys Chem 95: 5261

    Google Scholar 

  221. Gerischer H, Heller A (1992) J Electrochem Soc 139: 113

    Google Scholar 

  222. Bahnemann DW, Bockelmann D, Hilgendorff M, Weichgrebe D, Goslich R (1993) In: Ollis D, Al-Ekabi H (eds) TiO2 photocatalytic purification and treatment of water and air. Elsevier Science Publishers Amsterdam, in press

    Google Scholar 

  223. Jackson NB, Wang CM, Luo Z, Schwitzgebel J, Eckerdt JG, Brock JR, Heller A (1991) J Electrochem Soc 138: 3660

    Google Scholar 

  224. Möllers F, Tolle HJ, Memming R (1974) J Electrochem Soc 121: 1160

    Google Scholar 

  225. Jacobs JWM (1986) J Phys Chem 90: 6507

    Google Scholar 

  226. Jacobs JWM (1988) Laser initiated metal deposition on semiconductors from aqueous solutions. Thesis, University of Eindhoven (Holland)

    Google Scholar 

  227. Lauermann I, Meissner D, Memming R (1988) In: Ginley DS et al (eds) Proc. of the symposium of photoelectrochemistry and electrosynthesis on semiconductor materials. Proc vol 88-14, the Electrochemical Society, Pennington, NY, p 190

    Google Scholar 

  228. Kobayashi T, Taniguchi Y, Yoneyama H, Tamura H (1983) J Phys Chem 87: 768

    Google Scholar 

  229. Richter W, Rimmasch J, Kastening B, Memming R, Meissner D (1991) In: Datta M, Sheppard K, Snyder D (eds) Electrochemical Microfabrication, Proc. vol 2–3, The Electrochemical Society, Pennigton, NY, p 149

    Google Scholar 

  230. Ostermayer FW, Kohl PA, Burton RH (1983) Appl Phys Lett 43: 642

    Google Scholar 

  231. Kelly JJ, Notten PHL (1984) Electrochim Acta 29: 589

    Google Scholar 

  232. Kelly JJ, van den Meerakker JEAM, Notten PHL (ed) (1986) In: Behrens H (ed) Grundlagen von elektrodenreaktionen, dechema monographien. Verlag Chemie, vol 102, p 453

    Google Scholar 

  233. Minks BP, Vanmaekelbergh D, Kelly JJ (1989) J Electroanal Chem 273: 133

    Google Scholar 

  234. van de Ven J, Nabben HJP (1990) J Appl Phys 67: 7572

    Google Scholar 

  235. Ollis DF (1985) Environ Sci Technol 19: 486

    Google Scholar 

  236. Serpone N (1989) In: Norris JR, Meisel D (eds) Photochemical energy conversion. Elsevier, New York, p 297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jochen Mattay

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this paper

Cite this paper

Memming, R. (1994). Photoinduced charge transfer processes at semiconductor electrodes and particles. In: Mattay, J. (eds) Electron Transfer I. Topics in Current Chemistry, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-57565-0_75

Download citation

  • DOI: https://doi.org/10.1007/3-540-57565-0_75

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57565-8

  • Online ISBN: 978-3-540-48225-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics