Skip to main content

Cytoskeleton as a Fractal Percolation Cluster: Some Biological Remarks

  • Conference paper
Fractals in Biology and Medicine

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Summary

The possibility being discussed is that the cytoskeleton, the intricate polymeric meshwork which spans the cytoplasm, may be regarded as a percolation system and that at the edge of the percolation transition mechanotransduction may be enhanced. Since calcium ion can be considered the main factor controlling the state of the cytoskeletal network, it is hypothesized that the increase of free intracellular calcium which follows a mechanical stimulus may serve to “ loosen” the cytoskeletal network into a fractal percolation cluster, a partial sol state at which mechanotransduction is most efficient. It is also suggested that such a critical state represents an optimal condition for generation of mechanical forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabeyshi M, Hoh M, Takaku F, Yazaki Y. Mechanical loading simulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J Biol Chem 1991; 266: 1265–68.

    PubMed  CAS  Google Scholar 

  2. Nakamura T., Liu M, Mourgeon E, Slutsky A, Post M. Mechanical strain and dexamethasone selectively increase surfactant protein C and tropoelastin gene expression. Am J Physiol Lung Cell Mol Physiol 2000; 278: L974–80.

    PubMed  CAS  Google Scholar 

  3. Folkman J and Moscona A. Role of cell shape in growth control. Nature 1978; 273: 345–9.

    Article  PubMed  CAS  Google Scholar 

  4. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 1997; 94: 849–54.

    Article  PubMed  CAS  Google Scholar 

  5. Capco DG, Wan KM, Penman S. The nuclear matrix: Three-dimensional architecture and protein composition. Cell 1982; 29: 847–58.

    Article  PubMed  CAS  Google Scholar 

  6. Fey EG, Wan KM, Penman S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: Three-dimensional organization and protein composition. J Cell Biol 1984; 98: 1973–84.

    Article  PubMed  CAS  Google Scholar 

  7. Traub P. Intermediate filaments and gene regulation. Physiol Chem Phys Med NMR 1995; 27: 377–400.

    PubMed  CAS  Google Scholar 

  8. Rabouille C, Cortassa S, Aon MA. Fractal organisation in biological macromolecular lattices. J Biomol Struct Dyn 1992; 9: 1013–24.

    PubMed  CAS  Google Scholar 

  9. Aon MA, Cortassa S. On the Fractal Nature of Cytoplasm. FEBS Lett 1994; 344: 1–4.

    Article  PubMed  CAS  Google Scholar 

  10. Aon MA, Cortassa S. In: Dynamic biological organization. Fundamentals as applied to cellular systems. London: Chapman and Hall, 1997.

    Google Scholar 

  11. Sackmann E. Intra-and extracellular macromolecular networks: physics and biological function. Macromol Chem Phys 1994; 195: 7–28.

    Article  CAS  Google Scholar 

  12. Tempel M, Isenberg G, Sackmann E. Temperature-induced sol-gel transition and microgel formation in alfa-actinin cross-linked actin networks: a rheological study. Phys Rev E 1996; 54: 1802–10.

    Article  CAS  Google Scholar 

  13. Forgacs G. On the possible role of cytoskeletal filamentous networks in intracellular signaling: An approach based on percolation. J Cell Sci 1995; 108: 2131–43.

    PubMed  CAS  Google Scholar 

  14. Shafrir Y, Ben-Avraham D, Forgacs G. Trafficking and signaling through the cytoskeleton: A specific mechanism. J Cell Sci 2000; 113: 2747–57.

    PubMed  CAS  Google Scholar 

  15. Shafrir Y, Forgacs G. Mechanotransduction through the cytoskeleton. Am J Physiol 2002; 282: C479–86.

    CAS  Google Scholar 

  16. Oster G. On the crawling of cells. J Embryol exp Morph 1984; 83(suppl.): 329–64.

    PubMed  Google Scholar 

  17. Donahue SW, Jacobs CR, Donahue HJ. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am J Physiol Cell Physiol 2001; 281: C1635–41.

    PubMed  CAS  Google Scholar 

  18. Ingber DE. Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 2003; 116: 1397–408.

    PubMed  CAS  Google Scholar 

  19. Chen J, Fabry B, Schiffrin EL, Wang N. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 2001; 280: C1475–84.

    PubMed  CAS  Google Scholar 

  20. Aon MA, O’Rourke B, Cortassa S. The fractal architecture of cytoplasmic organization: Scaling, kinetics and emergence inn metabolic networks. Mol Cell Biochem 2004; 256/257: 169–84.

    CAS  Google Scholar 

  21. Furukawa R, Maselli A, Thomson AM, Lim RWL, Stokes JV, Fechheimer M. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 2003; 116: 187–96.

    PubMed  CAS  Google Scholar 

  22. Ko KS, Arora PD, McCulloch CAG. Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of strech-sensitive calcium-permeable channels. J Biol Chem 2001; 276: 35967–77.

    PubMed  CAS  Google Scholar 

  23. Feldner JC, Brandt BH. Cancer cell motility — On the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 2002; 272: 93–108.

    Article  PubMed  CAS  Google Scholar 

  24. Losa GA. Fractal morphometry of cell complexity. Riv Biol/B Forum 2002; 95: 239–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel

About this paper

Cite this paper

Traverso, S. (2005). Cytoskeleton as a Fractal Percolation Cluster: Some Biological Remarks. In: Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R. (eds) Fractals in Biology and Medicine. Mathematics and Biosciences in Interaction. Birkhäuser Basel. https://doi.org/10.1007/3-7643-7412-8_26

Download citation

Publish with us

Policies and ethics