Skip to main content

Transition Metal Corrole Coordination Chemistry

A Review Focusing on Electronic Structural Studies

  • Chapter
  • First Online:
Molecular Electronic Structures of Transition Metal Complexes I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 142))

Abstract

The transition metal complexes of the non-innocent, electron-rich corrole macrocycle are discussed. A detailed summary of the investigations to determine the physical oxidation states of formally iron(IV) and cobalt(IV) corroles as well as formally copper(III) corroles is presented. Electronic structures and reactivity of other metallocorroles are also discussed, and comparisons between corrole and porphyrin complexes are made where data are available. The growing assortment of second-row corrole complexes is discussed and compared to first-row analogs, and work describing the synthesis and characterization of third-row corroles is summarized. Emphasis is placed on the role of spectroscopic and computational studies in elucidating oxidation states and electronic configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjerrum J, Ballhausen CJ, Jørgensen CK (1954) Results of calculations on the spectra and configuration of copper(II) ions. Acta Chem Scand 8:1275

    CAS  Google Scholar 

  2. Ballhausen CJ, Jørgensen CK (1955) The spectra of cobalt(II) complexes. Acta Chem Scand 9:397

    CAS  Google Scholar 

  3. Ballhausen CJ, Jørgensen CK (1955) d-Electrons in crystal fields of different symmetries. Dan Mat Fys Medd 29: No.14

    Google Scholar 

  4. Ballhausen CJ (1962) Introduction to ligand field theory. McGraw-Hill, New York and London

    Google Scholar 

  5. Anders U (2003) Early ideas in the history of quantum chemistry. http://www.quantum-chemistry-history.com/Ball_Dat/BallPub1.htm

  6. Gray HB, Ballhausen CJ (1961) The mixing of 3dn and 3dn-14 s states in crystalline field theory. Acta Chem Scand 15:1327

    CAS  Google Scholar 

  7. Gray HB, Ballhausen CJ (1961) The electronic structure of the vanadyl ion. Inorg Chem 1:111–122

    Google Scholar 

  8. Gray HB, Ballhausen CJ (1962) On the optical spectra of some transition metal pentacyanonitrosyl complexes. J Chem Phys 36:1151

    CAS  Google Scholar 

  9. Gray HB, Ballhausen CJ (1963) A molecular orbital theory for square planar metal complexes. J Am Chem Soc 85:260

    CAS  Google Scholar 

  10. Ballhausen CJ, Gray HB (1963) π-Bonding in transition metal complexes. Inorg Chem 2:426

    CAS  Google Scholar 

  11. Spiro TG, Ballhausen CJ (1961) Complexes of 1,3-diamino-2-aminomethylpropane with nickel(II). Equilibrium constants and visible spectra. Acta Chem Scand 15:1707

    CAS  Google Scholar 

  12. Solomon EI, Ballhausen CJ, Høg JH (1975) Pseudo-Stark splitting of charge transfer transitions of KCrO3Cl. Chem Phys Lett 34

    Google Scholar 

  13. Solomon EI, Ballhausen CJ (1975) Identification of the structures of the 3T1g (I) ← 3A2g band in the Ni(H2O) ++6 complex. Mol Phys 29:279–299

    CAS  Google Scholar 

  14. Trogler WC, Solomon EI, Trabjerg I, Ballhausen CJ (1977) Studies of the polarization behavior, temperature dependence and vibronic structure of the 23000 cm –1 absorption system in the electronic spectra of Mo2(O2CCH3)4 and related compounds: emission spectrum of Mo2(O2CCF3)4 at 1.3 K. Inorg Chem 16

    Google Scholar 

  15. Basolo F, Ballhausen CJ, Bjerrum J (1955) Absorption spectra of geometrical isomers of hexacoordinated complexes. Acta Chem Scand 9:810

    CAS  Google Scholar 

  16. Cotton FA, Ballhausen CJ (1956) Soft X-ray absorption edges of metal ions in complexes I. J Chem Phys 25:617

    CAS  Google Scholar 

  17. Ballhausen CJ, Gray HB (1964) Molecular orbital theory. W A Benjamin Inc, New York, NY

    Google Scholar 

  18. Ballhausen CJ, Gray HB (1980) Molecular electronic structures: an introduction. Benjamin/Cummings Publishing Co Inc, Reading, MA

    Google Scholar 

  19. Hedegaard ED, Schau-Magnussen M, Bendix J (2011) [Cr(N)(acac)2]: a simple chromium nitride complex and its reactivity towards late transition metals. Inorg Chem Commun 14:719–721

    CAS  Google Scholar 

  20. Schau-Magnussen M, Malcho P, Herbst K, Brorson M, Bendix J (2011) Synthesis and X-ray crystal structure of a novel organometallic (μ3-oxido)(μ3-imido) trinuclear iridium complex. Dalton Trans 40:4212–4216

    CAS  Google Scholar 

  21. Brock-Nannestad T, Hammershoi A, Schau-Magnussen M, Vibenholt J, Bendix J (2011) Electronic and molecular structure of [Cr(N)(NCO)4]2-, the first example of a mixed nitride-cyanate complex. Inorg Chem Commun 14:251–253

    CAS  Google Scholar 

  22. Bendix J, Gray HB, Golubkov G, Gross Z (2000) High-field (high-frequency) EPR spectroscopy and structural characterization of a novel manganese(III) corrole. Chem Commun 19:1957–1958

    Google Scholar 

  23. Golubkov G, Bendix J, Gray HB, Mahammed A, Goldberg I, DiBilio AJ, Gross Z (2001) High-valent manganese corroles and the first perhalogenated metallocorrole catalyst. Angew Chem Int Ed 40:2132–2134

    CAS  Google Scholar 

  24. Bendix J, Dmochowski IJ, Gray HB, Mahammed A, Simkhovich L, Gross Z (2000) Structural, electrochemical, and photophysical properties of gallium(III) 5,10,15-tris(pentafluorophenyl)corrole. Angew Chem Int Ed 39:4048–4051

    CAS  Google Scholar 

  25. Johnson AW, Price R (1960) Synthesis of derivatives of corrole (pentadehydrocorrin). J Chem Soc 1649–1653

    Google Scholar 

  26. Johnson AW, Kay IT (1961) The synthesis of derivatives of corrole. An amendment. Proc Chem Soc London 168–169

    Google Scholar 

  27. Johnson AW, Kay IT (1964) The pentadehydrocorrin (corrole) ring system. Proc Chem Soc London 168–169

    Google Scholar 

  28. Johnson AW, Kay IT (1965) Synthesis of corroles and related ring systems. Proc Royal Soc London A 288:334–341

    CAS  Google Scholar 

  29. Gross Z, Galili N, Saltsman I (1999) The first direct synthesis of corroles from pyrrole. Angew Chem Int Ed 38:1427–1429

    CAS  Google Scholar 

  30. Gross Z, Galili N, Simkhovich L, Saltsman I, Botoshansky M, Blaeser D, Boese R, Goldberg I (1999) Solvent-free condensation of pyrrole and pentafluorobenzaldehyde: a novel synthetic pathway to corrole and oligopyrromethenes. Org Lett 1:599–602

    CAS  Google Scholar 

  31. Paolesse R, Licoccia S, Bandoli G, Dolmella A, Boschi T (1994) First direct synthesis of a corrole ring from a monopyrrolic precursor crystal and molecular structure of (triphenylphosphine)(5,10,15-triphenyl-2,3,7,8,12,13,17,18-octamethylcorrolato)cobalt(III)-dichloromethane. Inorg Chem 33:1171–1176

    CAS  Google Scholar 

  32. Paolesse R, Tassoni E, Licoccia S, Paci M, Boschi T (1996) One-pot synthesis of corrolates by cobalt catalyzed cyclization of formylpyrroles. Inorg Chim Acta 241:55–60

    CAS  Google Scholar 

  33. Licoccia S, Di Vona ML, Paolesse R (1998) Acid-catalyzed cyclization of 1,19-unsubstituted a, c-biladienes. J Org Chem 63:3190–3195

    CAS  Google Scholar 

  34. Paolesse R, Mini S, Sagone F, Boschi T, Jaquinod L, Nurco DJ, Smith KM (1999) 5,10,15-triphenylcorrole: a product from a modified rothemund reaction. Chem Commun 14:1307–1308

    Google Scholar 

  35. Gryko DT (2000) A simple, rational synthesis of Meso-substituted A2B-corroles. Chem Commun 22:2243–2244

    Google Scholar 

  36. Guilard R, Gryko DT, Canard G, Barbe J-M, Koszarna B, Brandes S, Tasior M (2002) Synthesis of corroles bearing up to three different meso substituents. Org Lett 4:4491–4494

    CAS  Google Scholar 

  37. Gryko DT (2002) Recent advances in the synthesis of corroles and core-modified corroles. Eur J Org Chem 11:1735–1743

    Google Scholar 

  38. Scifinder® by Chemical Abstracts Service. Copyright 2010 American Chemical Society

    Google Scholar 

  39. Kadish KM, Smith KM, Guilard R (eds) (2000) The Porphyrin Handbook, Volume 1: Synthesis and Organic Chemistry, Academic Press – San Diego, CA and London, UK

    Google Scholar 

  40. Gryko DT (2008) Adventures in the synthesis of meso-substituted corroles. J Porphyr Phthalocyanines 12:906–917

    CAS  Google Scholar 

  41. Paolesse R (2008) Corrole: the little big porphyrinoid. Syn Lett 15:2215–2230

    Google Scholar 

  42. Aviv I, Gross Z (2007) Corrole-based applications. Chem Commun 20:1987–1999

    Google Scholar 

  43. Paolesse R, Nardis S, Sagone F, Khoury RG (2001) Synthesis and functionalization of meso-aryl-substituted corroles. J Org Chem 66:550–556

    CAS  Google Scholar 

  44. Saltsman I, Mahammed A, Goldberg I, Tkachenko E, Botoshansky M, Gross Z (2002) Selective substitution of corroles: nitration, hydroformylation, and chlorosulfonation. J Am Chem Soc 124:7411–7420

    CAS  Google Scholar 

  45. Aviv-Harel I, Gross Z (2009) Aura of corroles. Chem Eur J 15:8382–8394

    CAS  Google Scholar 

  46. Stefanelli M, Nardis S, Tortora L, Fronczek FR, Smith KM, Licoccia S, Paolesse R (2011) Nitration of iron corrolates: further evidence for non-innocence of the corrole ligand. Chem Commun 47:4255–4257

    CAS  Google Scholar 

  47. Paolesse R, Nardis S, Venanzi M, Mastroianni M, Russo M, Fronczek FR, Vicente MGH (2003) Vilsmeier formylation of 5,10,15-triphenylcorrole: expected and unusual products. Chem Eur J 9:1192–1197

    CAS  Google Scholar 

  48. Gouterman M (1961) Spectra of porphyrins. J Mol Spectrosc 6:138–163

    CAS  Google Scholar 

  49. Gouterman M, Wagniére GH, Snyder LC (1963) Spectra of porphyrins Part II: four orbital model. J Mol Spectrosc 11:108–127

    CAS  Google Scholar 

  50. Ghosh A, Wondimagegn T, Parusel ABJ (2000) Electronic structure of gallium, copper, and nickel complexes of corrole: high-valent transition metal centers versus non-innocent ligands. J Am Chem Soc 122:5100–5104

    CAS  Google Scholar 

  51. Day P (1967) A theory of the optical properties of vitamin B12 and its derivatives. Theor Chem Acc 7:328–341

    CAS  Google Scholar 

  52. Day P (1967) The electronic structure and spectrum of vitamin B12. Coord Chem Rev 2:109–116

    CAS  Google Scholar 

  53. Liu X, Mahammed A, Tripathy U, Gross Z, Steer RP (2008) Photophysics of soret-excited tetrapyrroles in solution III: porphyrin analogues: aluminum and gallium corroles. Chem Phys Lett 459:113–118

    CAS  Google Scholar 

  54. Kowalska D, Liu X, Tripathy U, Mahammed A, Gross Z, Hirayama S, Steer RP (2009) Ground- and excited-state dynamics of aluminum and gallium corroles. Inorg Chem 48:2670–2678

    CAS  Google Scholar 

  55. Ventura B, Esposti AD, Koszarna B, Gryko DT, Flamigni L (2005) Photophysical characterization of free-base corroles, promising chromophores for light energy conversion and singlet oxygen generation. New J Chem 29:1559–1566

    CAS  Google Scholar 

  56. Aviv-Harel I, Gross Z (2011) Coordination chemistry of corroles with focus on main group elements. Coord Chem Rev 255:717–736

    CAS  Google Scholar 

  57. Kadish KM, Smith KM, Guilard R (eds) (2000) The Porphyrin Handbook, Volume 3: Inorganic, Organometallic, and Coordination Chemistry, Academic Press – San Diego, CA and London, UK

    Google Scholar 

  58. Licoccia S, Paolesse R, Tassoni E, Polizio F, Boschi T (1995) First-row transition-metal complexes of corroles: synthesis and characterization of oxotitanium(IV) and oxovanadium(IV) complexes of β-alkylcorroles. J Chem Soc Dalton Trans 3617–3621

    Google Scholar 

  59. Matsuda Y, Yamada S, Murakami Y (1980) Preparation and characterization of an oxochromium(V) complex with a macrocyclic N4-ligand: oxo-(2,3,17,18-tetramethyl-7,8,12,13-tetraethylcorrolato)chromium(V). Inorg Chim Acta 44:309–311

    CAS  Google Scholar 

  60. Boschi T, Licoccia S, Paolesse R, Tagliatesta P, Tehran MA (1990) Synthesis and characterization of novel metal(III) complexes of corrole: crystal and molecular structure of (2,3,7,8,12,13,17,18-octamethylcorrolato)(triphenylarsine)rhodium(III). J Chem Soc Dalton Trans 463–467

    Google Scholar 

  61. Conlon M, Johnson AW, Overend WR, Rajapaksa D, Elson CM (1973) Structure and reactions of cobalt corroles. J Chem Soc Perkin Trans 2281–2288

    Google Scholar 

  62. Johnson AW, Kay IT (1965) Corroles: Part 1: synthesis. J Chem Soc Res 1620–1629

    Google Scholar 

  63. Murakami Y, Matsuda Y, Yamada S (1977) Preparation and characterization of oxo(2,3,17,18-tetramethyl-7,8,12,13-tetraethylcorrolato)molybdenum(V). Chem Lett 6:689–692

    Google Scholar 

  64. Jérôme F, Billier B, Barbe JM, Espinosa E, Dahaoui S, Lecomte C, Guilard R (2000) Evidence for the formation of a RuIII-RuIII bond in a ruthenium corrole homodimer. Angew Chem Int Ed 39:4051–4053

    Google Scholar 

  65. Simkhovich L, Luobeznova I, Goldberg I, Gross Z (2003) Mono- and binuclear ruthenium corroles: synthesis, spectroscopy, electrochemistry, and structural characterization. Chem Eur J 9:201–208

    CAS  Google Scholar 

  66. Abeysekera AM, Grigg R, Trocha-Grimshaw J, Viswanatha V (1976) Structure and reactivity of Rh(I) complexes of polypyrrole macrocycles and their N-alkylated derivatives. Tet Lett 36:3189–3192

    Google Scholar 

  67. Boschi T, Liccocia S, Paolesse R, Tagliatesta P (1988) Synthetic routes to rhodium(III) corrolates. Inorg Chim Acta 141:169–171

    CAS  Google Scholar 

  68. Brückner C, Barta CA, Briñas RP, Krause-Bauer JA (2003) Synthesis and structure of [meso-triarylcorrolato]silver(III). Inorg Chem 42:1673–1680

    Google Scholar 

  69. Tse MK, Zhang Z, Mak TCW, Chan KS (1998) Synthesis of an oxorhenium(V) corrolate from porphyrin with detrifluoromethylation and ring contraction. Chem Commun 11:1199–1200

    Google Scholar 

  70. Alemayehu AB, Ghosh A (2011) Gold corroles. J Porphyr Phthalocyanines 15:106–110

    CAS  Google Scholar 

  71. Palmer JH, Day MW, Wilson AD, Henling LM, Gross Z, Gray HB (2008) Iridium corroles. J Am Chem Soc 130:7786–7787

    CAS  Google Scholar 

  72. Buchler JW (1975) In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, Chapter 5

    Google Scholar 

  73. Buchler JW (1978) In: Dolphin D (ed) The porphyrins. Academic Press, New York, Vol. IA, Chapter 10

    Google Scholar 

  74. Meier-Callahan AE, Gray HB, Gross Z (2000) Stabilization of high-valent metals by corroles: oxo[tris(pentafluorophenyl)corrolato]chromium(V). Inorg Chem 39:3605–3607

    CAS  Google Scholar 

  75. Gross Z, Golubkov G, Simkhovich L (2000) Epoxidation catalysis by a manganese corrole and isolation of an oxomanganese(V) corrole. Angew Chem Int Ed 39:4045–4047

    CAS  Google Scholar 

  76. Gross Z (2001) High-valent metallocorroles. J Biol Inorg Chem 6:733–738

    CAS  Google Scholar 

  77. Gross Z, Gray HB (2004) Oxidations catalyzed by metallocorroles. Adv Synth Catal 346:165–170

    CAS  Google Scholar 

  78. Meier-Callahan AE, di Bilio AJ, Simkhovich L, Mahammed A, Goldberg I, Gross Z, Gray HB (2001) Chromium corroles in four oxidation states. Inorg Chem 40:6788–6793

    CAS  Google Scholar 

  79. Golubkov G, Gross Z (2003) Chromium(V) and chromium (VI) nitrido complexes of tris(pentafluorophenyl)corrole. Angew Chem Int Ed 42:4507–4510

    CAS  Google Scholar 

  80. Du Bois J, Tomooka CS, Hong J, Carreira EM (1997) Nitridomanganese(V) complexes: design, preparation, and use as nitrogen atom-transfer reagents. Acc Chem Res 30:364–372

    Google Scholar 

  81. Edwards NY, Eikey RA, Loring MI, Abu-Omar MM (2005) High-valent imido complexes of manganese and chromium corroles. Inorg Chem 44:3700–3708

    CAS  Google Scholar 

  82. Meyer K, Bendix J, Bill E, Weyhermüller T, Wieghardt K (1998) Molecular and electronic structure of nitridochromium(V) complexes with macrocyclic amine ligands. Inorg Chem 37:5180–5188

    CAS  Google Scholar 

  83. Che CM, Ma JX, Wong WT, Lai TF, Poon CK (1988) Synthesis and molecular structure of a nitridochromium(V) complex stabilized with dianionic organic amide ligand. Inorg Chem 27:2547–2548

    CAS  Google Scholar 

  84. Egorova OA, Tsay OG, Khatua S, Huh JO, Churchill DG (2009) A chiral meso-ABC-corrolatochromium(V) complex. Inorg Chem 48:4634–4636

    CAS  Google Scholar 

  85. Guilard R, Gryko DT, Canard G, Barbe JM, Koszarna B, Brandès S, Tasior M (2002) Synthesis of corroles bearing up to three different meso substituents. Org Lett 4:4491–4494

    CAS  Google Scholar 

  86. Mahammed A, Gray HB, Meier-Callahan AE, Gross Z (2003) Aerobic oxidations catalyzed by chromium corroles. J Am Chem Soc 125:1162–1163

    CAS  Google Scholar 

  87. Czernuszewicz R, Mody V, Czader A, Gałęzowski M, Gryko DT (2009) Why the chromyl bond is stronger than the perchromyl bond in high-valent oxochromium(IV, V) complexes of tris(pentafluorophenyl)corrole. J Am Chem Soc 131:14214–14215

    CAS  Google Scholar 

  88. Czernuszewicz RS, Su YO, Stern MK, Macor KA, Kim D, Groves JT, Spiro TG (1988) J Am Chem Soc 110:4158–4165

    CAS  Google Scholar 

  89. Kryztek J, Tesler J, Hoffman BM, Brunel LC, Liccocia S (2001) High frequency and field EPR investigation of (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III). J Am Chem Soc 123:7890–7897

    Google Scholar 

  90. Fryxelius J, Eilers G, Feyziyev Y, Magnuson A, Sun L, Lomoth R (2005) Synthesis and redox properties of a [(meso-tris(4-nitrophenyl)corrolato]Mn(III) complex. J Porphyr Phthalocyanines 9:379–386

    CAS  Google Scholar 

  91. Ou Z, Erben C, Autret M, Will S, Rosen D, Lex J, Vogel E, Kadish KM (2005) Manganese(III) and manganese(IV) corroles: synthesis, spectroscopic, electrochemical, and X-ray structural characterization. J Porphyr Phthalocyanines 9:398–412

    CAS  Google Scholar 

  92. Liu HY, Lai TS, Yeung LL, Chang CK (2003) First synthesis of perfluorinated corrole and its Mn-O complex. Org Lett 5:617–620

    CAS  Google Scholar 

  93. Liu HY, Yam F, Xie YT, Li XY, Chang CK (2009) A bulky bis-pocket manganese(V)-oxo corrole complex: observation of oxygen atom transfer between triply bonded MnVtO and alkene. J Am Chem Soc 131:12890–12891

    CAS  Google Scholar 

  94. Kumar A, Goldberg I, Botoshansky M, Buchman Y, Gross Z (2010) Oxygen atom transfer reactions from isolated (oxo)manganese(V) corroles to sulfides. J Am Chem Soc 132:15233–15245

    CAS  Google Scholar 

  95. Eikey RA, Khan SI, Abu-Omar MM (2002) The elusive terminal imido of manganese(V). Angew Chem Int Ed 41:3592–3595

    CAS  Google Scholar 

  96. Golubkov G, Gross Z (2005) Nitrogen atom transfer between manganese complexes of salen, porphyrin, and corrole and characterization of a (nitrido)manganese(VI) corrole. J Am Chem Soc 127:3258–3259

    CAS  Google Scholar 

  97. Saltsman I, Goldberg I, Gross Z (2010) Water-soluble manganese(III) corroles and corresponding (nitrido)manganese(V) complexes. J Porphyr Phthalocyanines 14:615–620

    CAS  Google Scholar 

  98. Bröring M, Hell C, Brandt CD (2007) Iodomanganesecorrole: a stable MnIV-I species. Chem Commun 1861–1862

    Google Scholar 

  99. Abu-Omar MM (2011) High-valent iron and manganese complexes of corrole and porphyrin in atom transfer and dioxygen evolving catalysis. Dalton Trans 40:3435–3444

    CAS  Google Scholar 

  100. Licoccia S, Morgante E, Paolesse R, Polizio F, Senge MO, Tondello E, Boschi T (1997) Tetracoordinated manganese(III) alkylcorrolates. spectroscopic studies and the crystal and molecular structure of (7,13-Dimethyl-2,3,8,12,17,18-hexaethylcorrolato)manganese(III). Inorg Chem 36:1564–1570

    CAS  Google Scholar 

  101. Scheidt WR (1978) Porphyrin stereochemistry. In: Dolphin D (ed) The porphyrins, Vol 3 (Part A), pages 463–511 – published by Academic Press (New York, NY)

    Google Scholar 

  102. Shen J, El Ojaimi M, Chkounda M, Gros CP, Barbe JM, Shao J, Guilard R, Kadish KM (2008) Solvent, anion, and structural effects on the redox potentials and UV-visible spectral properties of mononuclear manganese corroles. Inorg Chem 47:7717–7727

    CAS  Google Scholar 

  103. Vogel E, Will S, Schulze A, Neumann L, Lex J, Bill E, Trautwein AX, Wieghardt K (1994) Metallocorroles with formally tetravalent iron. Angew Chem Int Ed Engl 33:731–735

    Google Scholar 

  104. Bill E, Ding XQ, Bominaar EL, Trautwein AX, Winkler H, Mandon D, Weiss R, Gold A, Jayaraj K, Hatfield WE, Kirk ML (1990) Evidence for variable metal-radical spin coupling in oxoferrylporphyrin cation radical complexes. Eur J Biochem 188:665–672

    CAS  Google Scholar 

  105. Cai S, Walker FA, Licoccia S (2000) NMR and EPR investigations of iron corrolates: iron(III) corrolate π cation radicals or iron(IV) corrolates? Inorg Chem 39:3466–3478

    CAS  Google Scholar 

  106. Steene E, Wondimagegn T, Ghosh A (2001) Electrochemical and electronic absorption spectroscopic studies of substituent effects in iron(IV) and manganese(IV) corroles: do the compounds feature high-valent metal centers or noninnocent corrole ligands? Implications for peroxidase compound I and II intermediates. J Phys Chem B 105:11406–11413

    CAS  Google Scholar 

  107. Zakharieva O, Schünemann V, Gerdan M, Licoccia S, Cai S, Walker FA, Trautwein AX (2002) Is the corrolate macrocycle innocent or noninnocent? Magnetic susceptibility, mössbauer, 1H NMR, and DFT investigations of chloro- and phenyliron corrolates. J Am Chem Soc 124:6636–6648

    CAS  Google Scholar 

  108. Simkhovich L, Goldberg I, Gross Z (2002) Iron(III) and iron(IV) corroles: synthesis, spectroscopy, structures, and no indications for corrole radicals. Inorg Chem 41:5433–5439

    CAS  Google Scholar 

  109. Simkhovich L, Gross Z (2004) Halogeno-coordinated iron corroles. Inorg Chem 43:6136–6138

    CAS  Google Scholar 

  110. Yatsunyk L, Walker FA (2002) 19 F isotropic shifts in paramagnetic iron(III) octaethyltetraphenylporphyrinate and tetraphenylporphyrinato complexes of a variety of electronic ground states: implications for the electron configuration of chloroiron tri-(pentafluorophenyl)corrolate. Inorg Chim Acta 337:266–274

    CAS  Google Scholar 

  111. Cai S, Licoccia S, D’Ottavi C, Paolesse R, Nardis S, Bulach V, Bertrand Z, Shokhivera TK, Walker FA (2002) Chloroiron meso-triphenylcorrolates: electronic ground state and spin delocalization. Inorg Chim Acta 339:171–178

    CAS  Google Scholar 

  112. Walker FA, Licoccia S, Paolesse R (2006) Iron corrolates: unambiguous chloroiron(III)(corrolate)2-· π-cation radicals. J Inorg Biochem 100:810–837

    CAS  Google Scholar 

  113. Ye S, Tuttle T, Bill E, Simkhovich L, Gross Z, Thiel W, Neese F (2008) The electronic structure of iron corroles: a combined experimental and quantum chemical study. Chem Eur J 14:10839–10851

    CAS  Google Scholar 

  114. Roos BO, Verzazov V, Conradie J, Taylor PR, Ghosh A (2008) Not innocent: verdict from Ab initio multiconfigurational second-order perturbation theory on the electronic structure of chloroiron corrole. J Phys Chem B 112:14099–14102

    CAS  Google Scholar 

  115. Hocking RK, George SD, Gross Z, Walker FA, Hodgson KO, Hedman B, Solomon EI (2009) Fe L- and K-edge XAS of low-spin ferric corrole: bonding and reactivity relative to low-spin ferric porphyrin. Inorg Chem 48:1678–1688

    CAS  Google Scholar 

  116. Conlon M, Johnson AW, Overend WR, Rajapaksa D, Elson CM (1973) Structures and reactions of cobalt corroles. J Chem Soc Perkin Trans 2281–2289

    Google Scholar 

  117. Murakami Y, Aoyama Y, Hayashida M (1980) Hydroxide-promoted reduction of the corrole complexes of cobalt(III) and iron(III) in the presence of olefin. J Chem Soc Chem Comm 501–502

    Google Scholar 

  118. Hush NS, Woolsey IS (1974) Optical and electron spin resonance spectra of cobalt complexes related to vitamin B12. J Chem Soc Dalton Trans 24–34

    Google Scholar 

  119. Murakami Y, Yamada S, Matsuda Y, Sakata K (1978) Transition-metal complexes of pyrrole pigments XV: coordination of pyridine bases to the axial sites of cobalt corroles. Bull Chem Soc Jpn 51:123–129

    CAS  Google Scholar 

  120. Murakami Y, Yamada S, Matsuda Y, Sakata K, Yamada S, Tanaka Y, Aoyama Y (1981) Transition-metal complexes of pyrrole pigments XVII: preparation and spectroscopic properties of corrole complexes. Bull Chem Soc Jpn 54:163–169

    CAS  Google Scholar 

  121. Hitchcock PB, McLaughlin GM (1976) Five-co-ordinate [sic] cobalt(III): crystal and molecular structure of corrole-(triphenylphosphine)cobalt(III). J Chem Soc Dalton Trans 1927–1930

    Google Scholar 

  122. Brückner S, Calligaris M, Nardin G, Randaccio L (1969) The crystal and molecular structure of N, N’-ethylene-bis(acetylacetoneiminato)methylcobalt(III). Inorg Chim Acta 3:308–312

    Google Scholar 

  123. Ibers JA, Lauher JW, Little RG (1974) Stereochemistry of cooperativity effects in the Prosthetic Group of Coboglobin. Acta Cryst B30:268–272

    Google Scholar 

  124. Kadish KM, Koh W, Tagliatesta P, Sazou D, Paolesse R, Licoccia S, Boschi T (1992) Electrochemistry of rhodium and cobalt corroles: characterization of (OMC)Rh(PPh3) and (OMC)Co(PPh3) where OMC is the trianion of 2,3,7,8,12,13,17,18-octamethylcorrole. Inorg Chem 31:2305–2313

    CAS  Google Scholar 

  125. Paolesse R, Liccocia S, Fanciullo M, Morgante E, Boschi T (1993) Synthesis and characterization of cobalt(III) complexes of meso-phenyl-substituted corroles. Inorg Chim Acta 203:107–114

    CAS  Google Scholar 

  126. Adamian VA, D’Souza F, Licoccia S, Di Vona ML, Tassoni E, Paolesse R, Boschi T, Kadish KM (1995) Synthesis, characterization, and electrochemical behavior of (5,10,15-tri-X-phenyl-2,3,7,8,12,13,17,18-octamethylcorrolato)cobalt(III) triphenylphosphine complexes, where X = p-OCH3, p-CH3, p-Cl, m-Cl, o-Cl, m-F, or o-F. Inorg Chem 34:532–540

    CAS  Google Scholar 

  127. Liccocia S, Tassoni E, Paolesse R, Boschi T (1995) The effect of steric hindrance in the synthesis of corrolates via the cobalt catalyzed cyclization of 2-(α-hydroxyalkyl)pyrroles. Inorg Chim Acta 235:15–20

    Google Scholar 

  128. Will S, Lex J, Vogel E, Adamian VA, Caemelbecke EV, Kadish KM (1996) Synthesis, characterization, and electrochemistry of σ-bonded cobalt corroles in high oxidation state. Inorg Chem 35:5577–5583

    CAS  Google Scholar 

  129. Harmer J, Doorslaer SV, Gromov I, Bröring M, Jeschke G, Schweiger A (2002) A pulse EPR and ENDOR investigation of the electronic structure of a σ-carbon-bonded cobalt(IV) corrole. J Phys Chem B 106:2801–2811

    CAS  Google Scholar 

  130. Simkhovich L, Galili N, Saltsman I, Goldberg I, Gross Z (2000) Coordination chemistry of the novel 5,10,15-tris(pentafluorophenyl)corrole: synthesis, spectroscopy, and structural characterization of its cobalt(III), rhodium(III), and iron(IV) complexes. Inorg Chem 39:2704–2705

    CAS  Google Scholar 

  131. Mahammed A, Giladi I, Goldberg I, Gross Z (2001) Synthesis and structural characterization of a novel covalently-bound corrole dimer. Chem Eur J 7:4259–4265

    CAS  Google Scholar 

  132. Mahammed A, Goldberg I, Gross Z (2001) Highly selective chlorosulfonation of tris(pentafluorophenyl)corrole as a synthetic tool for the preparation of amphiphilic corroles and metal complexes of planar chirality. Org Lett 3:3443–3446

    CAS  Google Scholar 

  133. Grodkowski J, Neta P, Fujita E, Mahammed A, Simkhovich L, Gross Z (2002) Reduction of cobalt and iron corroles and catalyzed reduction of CO2. J Phys Chem A 106:4772–4778

    CAS  Google Scholar 

  134. Barbe JM, Canard G, Brandes S, Francois J, Dubois G, Guilard R (2004) Metallocorroles as sensing components for gas sensors: remarkable affinity and selectivity of cobalt(III) corroles for CO vs. O2 and N2. Dalton Trans 8:1208–1214

    Google Scholar 

  135. Barbe JM, Canard G, Brandes S, Guilard R (2007) Selective chemisorption of carbon monoxide by organic-inorganic hybrid materials incorporating cobalt(III) corroles as sensing components. Chem Eur J 13:2118–2129

    CAS  Google Scholar 

  136. Chattopadhyay P, Matsuo T, Tsuji T, Ohbayashi J, Hayashi T (2011) Thermal isomerization of N-bridged cobalt corrole complexes through a transiently formed axial carbenoid. Organometallics 30:1869–1873

    CAS  Google Scholar 

  137. Jérôme F, Gros CP, Tardieux C, Barbe JM, Guilard R (1998) Synthesis of a 'face-to-face' porphyrin-corrole: a potential precursor of a catalyst for the four-electron reduction of dioxygen. New J Chem 22:1327–1329

    Google Scholar 

  138. Jérôme F, Gros CP, Tardieux C, Barbe JM, Guilard R (1998) First synthesis of sterically hindered cofacial bis(corroles) and their bis(cobalt) complexes. Chem Commun 18:2007–2008

    Google Scholar 

  139. Guilard R, Jérôme F, Barbe JM, Gros CP, Ou Z, Shao J, Fischer J, Weiss R, Kadish KM (2001) Alkyl and aryl substituted corroles 2: synthesis and characterization of linked "face-to-face" biscorroles: X-ray structure of (BCA)Co2(py)3, where BCA represents a biscorrole with an anthracenyl bridge. Inorg Chem 40:4856–4865

    CAS  Google Scholar 

  140. Guilard R, Francois J, Gros CP, Barbe JM, Ou Z, Shao J, Kadish KM (2001) Synthesis of an anthracenyl bridged porphyrin–corrole bismacrocycle: physicochemical and electrochemical characterisation [sic] of the biscobalt μ-superoxo derivative. C R Acad Sci Paris Chimie 4:245–254

    CAS  Google Scholar 

  141. Kadish KM, Ou Z, Shao J, Gros CP, Barbe JM, Jérôme F, Bolze F, Burdet F, Guilard R (2002) Alkyl and aryl substituted corroles 3: reactions of cofacial cobalt biscorroles and porphyrin-corroles with pyridine and carbon monoxide. Inorg Chem 41:3990–4005

    CAS  Google Scholar 

  142. Barbe JM, Burdet F, Espinosa E, Gros CP, Guilard R (2003) New insights into the synthesis of porphyrin-corrole and biscorrole systems. J Porphyr Phthalocyanines 7:365–374

    CAS  Google Scholar 

  143. Guilard R, Barbe JM, Stern C, Kadish KM (2003) New developments in corrole chemistry: special emphasis on face-to-face bismacrocycles. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, Academic Press – San Diego, CA and London, UK

    Google Scholar 

  144. Guilard R, Burdet F, Barbe JM, Gros CP, Espinosa E, Shao J, Ou Z, Zhan R, Kadish KM (2005) Heterobimetallic complexes of cobalt(IV) porphyrin-corrole dyads: synthesis, physicochemical properties, and X-ray structural characterization. Inorg Chem 44:3972–3983

    CAS  Google Scholar 

  145. Kadish KM, Frémond L, Ou Z, Shao J, Shi C, Anson FC, Burdet F, Gros CP, Barbe JM, Guilard R (2005) Cobalt(III) corroles as electrocatalysts for the reduction of dioxygen: reactivity of a monocorrole, biscorroles, and porphyrin—corrole dyads. J Am Chem Soc 127:5625–5631

    CAS  Google Scholar 

  146. Kadish KM, Frémond L, Burdet F, Barbe JM, Gros CP, Guilard R (2006) Cobalt(IV) corroles as catalysts for the electroreduction of O2: reactions of heterobimetallic dyads containing a face-to-face linked Mn(III) or Fe(III) porphyrin. J Inorg Biochem 100:858–868

    CAS  Google Scholar 

  147. Kadish KM, Shen J, Frémond L, Chen P, El Ojaimi M, Chkounda M, Gros CP, Barbe JM, Ohkubo K, Fukuzumi S, Guilard R (2008) Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen. Inorg Chem 47:6726–6737

    CAS  Google Scholar 

  148. Rosenthal J, Nocera DG (2007) Oxygen activation chemistry of pacman and hangman porphyrin architectures based on xanthene and dibenzofuran spacers. Prog Inorg Chem 55:483–544

    CAS  Google Scholar 

  149. Rosenthal J, Nocera DG (2007) Role of proton-coupled electron transfer in O-O bond activation. Acc Chem Res 40:543–553

    CAS  Google Scholar 

  150. Lee CH, Dogutan DK, Nocera DG (2011) Hydrogen generation by hangman metalloporphyrins. J Am Chem Soc 133:8775–8777

    CAS  Google Scholar 

  151. Schwalbe M, Dogutan DK, Stoian SA, Teets TS, Nocera DG (2011) Xanthene-modified and hangman iron corroles. Inorg Chem 50:1368–1377

    CAS  Google Scholar 

  152. Rosenthal J, Chng LL, Fried SD, Nocera DG (2007) Stereochemical control of H2O2 dismutation by hangman porphyrins. Chem Commun 25:2642–2644

    Google Scholar 

  153. Dogutan DK, Stoian SA, McGuire R Jr, Schwalbe M, Teets TS, Nocera DG (2011) Hangman corroles: efficient synthesis and oxygen reaction chemistry. J Am Chem Soc 133:131–140

    CAS  Google Scholar 

  154. Lindsey JS, Wagner RW (1989) Investigation of the synthesis of ortho-substituted tetraphenylporphyrins. J Org Chem 54:828–836

    CAS  Google Scholar 

  155. Dogutan DK, McGuire R Jr, Nocera DG (2011) Electrocatalytic water oxidation by cobalt(III) hangman β-octafluorocorroles. J Am Chem Soc. doi:10.1021/ja202138m

  156. Grigg R, King TJ, Shelton G (1970) The structure of copper 2,3,7,13,17,18,21-heptamethylcorrole. J Chem Soc D Chem Commun 1:56

    Google Scholar 

  157. Broadhurst MJ, Grigg R, Shelton G, Woodworth AJ (1970) N-alkylation of porphins and related macrocycles. J Chem Soc D Chem Commun 4:231–233

    Google Scholar 

  158. Johnson AW, Grigg R, Shelton G (1971) Structures and thermal rearrangements of alkylated palladium and copper corroles. J Chem Soc C Organic 12:2287–2294

    Google Scholar 

  159. Murakami Y, Matsuda Y, Sakata K, Sunao Y, Tanaka Y, Aoyama Y (1981) Transition-metal complexes of pyrrole pigments, XVII: preparation and spectroscopic properties of corrole complexes. Bull Chem Soc Jpn 54:163–169

    CAS  Google Scholar 

  160. Will S, Lex J, Vogel E, Schmickler H, Gisselbrecht JP, Haubtmann C, Bernard M, Gross M (1997) Nickel and copper corroles: well-known complexes in a new light. Angew Chem Int Ed Engl 36:357–361

    CAS  Google Scholar 

  161. Brückner C, Briñas RP, Krause-Bauer JA (2003) X-ray structure and variable temperature NMR spectra of [meso-triarylcorrolato]copper(III). Inorg Chem 42:4495–4497

    Google Scholar 

  162. Ou Z, Shao J, Zhao H, Ohkubo K, Wasbotten IH, Fukuzumi S, Ghosh A, Kadish KM (2004) Spectroelectrochemical and ESR studies of highly substituted copper corroles. J Porphyr Phthalocyanines 8:1236–1247

    CAS  Google Scholar 

  163. Wasbotten IH, Wondimagegn T, Ghosh A (2002) Electronic absorption, resonance raman, and electrochemical studies of planar and saddled copper(III) meso-triarylcorroles: highly substituent-sensitive soret bands as a distinctive feature of high-valent transition-metal corroles. J Am Chem Soc 124:8104–8116

    CAS  Google Scholar 

  164. Luobeznova I, Simkhovich L, Goldberg I, Gross Z (2004) Electronic structures and reactivities of corrole-copper complexes. Eur J Inorg Chem 1724–1732

    Google Scholar 

  165. Bhattacharya D, Singh P, Sarkar S (2010) Synthesis, X-structure [sic] and solvent induced electronic states tuning of meso-tris(4-nitrophenyl)corrolato-copper complex. Inorg Chim Acta 363:4313–4318

    CAS  Google Scholar 

  166. Bröring M, Brégier F, Tejero EC, Hell C, Holthausen MC (2007) Revisiting the electronic ground state of copper corroles. Angew Chem Int Ed 46:445–448

    Google Scholar 

  167. Pierloot K, Zhao H, Vancoillie S (2010) Copper corroles: the question of non-innocence. Inorg Chem 49:10316–10329

    CAS  Google Scholar 

  168. Alemayehu A, Gonzalez E, Hansen LK, Ghosh A (2009) Copper corroles are inherently saddled. Inorg Chem 48:7794–7799

    CAS  Google Scholar 

  169. Steene E, Dey A, Ghosh A (2003) β-Octafluorocorroles. J Am Chem Soc 125:16300–16309

    CAS  Google Scholar 

  170. Thomas KE, Wasbotten IH, Ghosh A (2008) Copper β-octakis(trifluoromethyl)corroles: new paradigms for ligand substituent effects in transition metal complexes. Inorg Chem 47:10469–10478

    CAS  Google Scholar 

  171. Alemayehu A, Hansen LK, Ghosh A (2010) Nonplanar, noninnocent, and chiral: a strongly saddled metallocorrole. Inorg Chem 49:7608–7610

    CAS  Google Scholar 

  172. Sashuk V, Koszarna B, Winiarek P, Gryko DT, Grela K (2004) The simple synthesis of stable A3- and trans-A2B-molybdenum(V) corrolates. Inorg Chem Commun 7:871–875

    CAS  Google Scholar 

  173. Luobeznova I, Raizman M, Goldberg I, Gross Z (2006) Synthesis and full characterization of molybdenum and antimony corroles and utilization of the latter complexes as very efficient catalysts for highly selective aerobic oxygenation reactions. Inorg Chem 45:386–394

    CAS  Google Scholar 

  174. Czernuszewicz RS, Mody V, Zareba AA, Zaczek MB, Gałęzowski M, Sashuk V, Grela K, Gryko DT (2007) Solvent-dependent resonance raman spectra of high-valent oxomolybdenum(V) tris[3,5-bis(trifluoromethyl)phenyl]corrolate. Inorg Chem 46:5616–5624

    CAS  Google Scholar 

  175. Swain CG, Swain MS, Powell AL, Alunni S (1983) Solvent effects on chemical reactivity: evaluation of anion and cation solvation components. J Am Chem Soc 105:502–513

    CAS  Google Scholar 

  176. Gutmann V (1978) The donor—acceptor approach to molecular interactions. Plenum, New York

    Google Scholar 

  177. Su YO, Czernuczewicz RS, Miller LA, Spiro TG (1988) Effects of solvents, axial ligation, and radical cation formation on the V:O stretching raman frequency in vanadyl porphyrins: implications for peroxidase intermediates. J Am Chem Soc 110:4150–4157

    CAS  Google Scholar 

  178. Mody VV, Frtzpatrick MB, Zabaneh SS, Czernuszewicz RS, Gałęzowski M, Gryko DT (2009) Solvent effects on the electronic and vibrational properties of high-valent oxomolybdenum(V) 5,10,15-triphenylcorrole probed by UV-visible and resonance raman spectroscopy. J Porphyr Phthalocyanines 13:1040–1052

    CAS  Google Scholar 

  179. Sinkhovich L, Luobeznova I, Goldberg I, Gross Z (2003) Mono- and binuclear ruthenium corroles: synthesis, spectroscopy, electrochemistry, and structural characterization. Chem Eur J 9:201–208

    Google Scholar 

  180. Collman JP, Arnold HJ (1993) Multiple metal-metal bonds in 4d and 5d metal-porphyrin dimers. Acc Chem Res 26:586–592

    CAS  Google Scholar 

  181. Collman JP, Barnes CE, Swepston PN, Ibers JA (1984) Synthesis, proton NMR spectroscopy, and structural characterization of binuclear ruthenium porphyrins. J Am Chem Soc 106:3500–3510

    CAS  Google Scholar 

  182. Collman JP, Hartford ST (1998) Structural and spectroscopic characterization of a metal-metal bonded ruthenium porphyrin dimer cation. Inorg Chem 37:4152–4153

    CAS  Google Scholar 

  183. Kadish KM, Burdet F, Jérôme F, Barbe JM, Ou Z, Shao J, Guilard R (2002) Synthesis, physicochemical and electrochemical properties of metal-metal bonded ruthenium corrole homodimers. J Organomet Chem 652:69–76

    CAS  Google Scholar 

  184. Hopf FR, O’Brien TP, Scheidt WR, Whitten DG (1975) Structure and Reactivity of Ruthenium(II) Porphyrin Complexes: Photochemical Ligand Ejection and Formation of Ruthenium Porphyrin Dimers. J Am Chem Soc 97:277–281

    CAS  Google Scholar 

  185. Boschi T, Licoccia S, Paolesse R, Tagliatesta P, Azarnia-Tehran M, Pelizzi G, Vitali F (1990) Synthesis and characterization of novel metal(III) complexes of corrole: crystal and molecular structure of (2,3,7,8,12,13,17,18-octamethylcorrolato)(triphenylarsine)rhodium(III). J Chem Soc Dalton Trans 2:463–468

    Google Scholar 

  186. Simkhovich L, Mahammed A, Goldberg I, Gross Z (2001) Synthesis and characterization of germanium, tin, phosphorous, iron and rhodium complexes of tris(pentafluorophenyl)corrole, and the utilization of the iron and rhodium corroles as cyclopropanation catalysts. Chem Eur J 7:1041–1055

    CAS  Google Scholar 

  187. Collman JP, Wang HJH, Decreau RA, Eberspacher TA, Sunderland CJ (2005) Synthesis and characterization of RhIII corroles: unusual reactivity patterns observed during metalation reactions. Chem Commun 2497–2499

    Google Scholar 

  188. Simkhovich L, Iyer P, Goldberg I, Gross Z (2002) Structure and chemistry of N-substituted corroles and their rhodium(I) and zinc(II) metal-ion complexes. Chem Eur J 8:2595–2601

    CAS  Google Scholar 

  189. Saltsman I, Simkhovich L, Balasz Y, Goldberg I, Gross Z (2004) Synthesis, spectroscopy, and structures of new rhodium(I) and rhodium(III) corroles and catalysis thereby. Inorg Chim Acta 357:3038–3046

    CAS  Google Scholar 

  190. Saltsman I, Balasz Y, Goldberg I, Gross Z (2006) Synthesis, spectroscopy, and structures of chiral rhodium(I) corrole complexes. J Mol Catal A 251:263–269

    CAS  Google Scholar 

  191. Rozenshtein V, Wagnert L, Berg A, Stavitski E, Berthold T, Kothe G, Saltsman I, Gross Z, Levanon H (2008) Probing the photoexcited states of rhodium corroles by time-resolved Q-Band EPR: observation of strong spin-orbit coupling effects. J Phys Chem A 112:5338–5343

    CAS  Google Scholar 

  192. Wagnert L, Berg A, Saltsman I, Gross Z, Rozenshtein V (2010) Time-resolved paramagnetic resonance study of rhodium(III) corrole excited states. J Phys Chem A 114:2059–2072

    CAS  Google Scholar 

  193. Wagnert L, Berg A, Stavitski E, Berthold T, Kothe G, Goldberg I, Mahammed A, Simkhovich L, Gross Z, Levanon H (2006) Exploring the photoexcited triplet states of aluminum and tin corroles by time-resolved Q-band EPR. Appl Magn Reson 30:591–604

    CAS  Google Scholar 

  194. Wagnert L, Rubin R, Berg A, Mahammed A, Gross Z, Levanon H (2010) Photoexcited triplet state properties of brominated and non-brominated Ga(III)-corroles as studied by time-resolved electron paramagnetic resonance. J Phys Chem B 114:14303–14308

    CAS  Google Scholar 

  195. Kadish KM, Lin XQ, Ding JQ, Araullo C (1986) A reinvestigation of silver porphyrin electrochemistry: reactions of Ag(III), Ag(II), and Ag(I). Inorg Chem 25:3236–3242

    CAS  Google Scholar 

  196. Brückner C (2004) The silver complexes of porphyrins, corroles, and carbaporphyrins: silver in the oxidation states II and III. J Chem Educ 81:1665–1669

    Google Scholar 

  197. Stefanelli M, Shen J, Zhu W, Mastroianni M, Mandoj F, Nardis S, Ou Z, Kadish KM, Fronczek FR, Smith KM, Paolesse R (2009) Demetalation of silver(III) corrolates. Inorg Chem 48:6879–6887

    CAS  Google Scholar 

  198. Capar C, Thomas KE, Ghosh A (2008) Reductive demetalation of copper corroles: first simple route to free-base β-octabromocorroles. J Porphyr Phthalocyanines 12:964–967

    CAS  Google Scholar 

  199. Capar C, Hansen LK, Conradie J, Ghosh A (2010) β-octabromo-meso-tris(pentafluorophenyl)corrole: reductive demetalation-based synthesis of a heretofore inaccessible, perhalogenated free-base corrole. J Porphyr Phthalocyanines 14:509–512

    CAS  Google Scholar 

  200. Palmer JH, Mahammed A, Lancaster KM, Gross Z, Gray HB (2009) Structures and reactivity patterns of group 9 metallocorroles. Inorg Chem 48:9308–9315

    CAS  Google Scholar 

  201. Dong SS, Nielsen RJ, Palmer JH, Gray HB, Gross Z, Dasgupta S, Goddard WA III (2011) Electronic structures of group 9 metallocorroles with axial ammines. Inorg Chem 50:764–770

    CAS  Google Scholar 

  202. Palmer JH, Durrell AC, Gross Z, Winkler JR, Gray HB (2010) Near-IR phosphorescence of iridium(III) corroles at ambient temperature. J Am Chem Soc 132:9230–9231

    CAS  Google Scholar 

  203. Palmer JH, Brock-Nannestad T, Mahammed A, Durrell AC, VanderVelde D, Virgil S, Gross Z, Gray HB (2011) Nitrogen insertion into a corrole ring: iridium monoazaporphyrins. Angew Chem Int Ed (Accepted Article)

    Google Scholar 

  204. Koren K, Borisov S, Saf R, Klimant I (2011) Strongly Phosphorescent iridium(III) porphyrins: new oxygen indicators with tuneable [sic] photophysical properties and functionalities. Eur J Inorg Chem 1531–1534

    Google Scholar 

Download references

Acknowledgments

I thank Harry Gray and Zeev Gross for introducing me to corroles, and Kyle Lancaster, Alec Durrell, Theis Brock-Nannestad, and all my other collaborators for working with me throughout my investigations of these macrocycles. Kyle Lancaster and Jeff Warren provided helpful advice on the preparation of this chapter, which is very much appreciated. I am also grateful to the Editors of Structure and Bonding for allowing me the opportunity to participate in this Special Volume dedicated to one of the great modern chemists. Additionally, I would like to express my gratitude to Robert Grubbs for allowing me to undertake this time-consuming endeavor while on a postdoctoral fellowship in his laboratory group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua H. Palmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palmer, J.H. (2011). Transition Metal Corrole Coordination Chemistry. In: Mingos, D., Day, P., Dahl, J. (eds) Molecular Electronic Structures of Transition Metal Complexes I. Structure and Bonding, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2011_52

Download citation

Publish with us

Policies and ethics