Skip to main content

Metal-Organic Frameworks with d–f Cyanide Bridges: Structural Diversity, Bonding Regime, and Magnetism

  • Chapter
  • First Online:
Lanthanide Metal-Organic Frameworks

Part of the book series: Structure and Bonding ((STRUCTURE,volume 163))

Abstract

We present a selection of metal-organic frameworks based on d–f and f–f linkages, discussing their structural features and properties from experimental and theoretical viewpoints. We give an overview of our own synthetic and modeling methodologies, highlighting the complexity of the interdisciplinary approach developed. Significant experimental and computational strategies of other researchers are also reviewed. The bonding regime of lanthanide units in MOFs is similar to those encountered in mono- or polynuclear f-type coordination compounds. However, the steric demands of constructing a three-dimensional network determine specific ligand composition and topologies at the local f nodes. Due to weak interaction propensity of the inner shell f orbitals, the electronic structure treatments of lanthanide units require certain conceptual and technical subtleties. With proper handling, multiconfiguration wave function approaches as well as density functional theory (DFT) treatments can be analyzed in terms of meaningful ligand field (LF) modeling. The interplay of LF and spin–orbit (SO) effects in determining the magnetic anisotropy is illustrated, after reviewing the experimental magnetic behavior of several d–f cyanide-bridged systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADF:

Amsterdam density functional

AO:

Atomic orbital

AOC:

Average of configurations

bpy:

2,2′-Bipyridyl

bpym:

2,2′-Bipyrimidine

CASSCF:

Complete active space self-consistent field

DFT:

Density functional theory

DMF:

Dimethylformamide

EDA:

Energy decomposition analysis

H2mpca:

5-Methyl-2-pyrazine dicarboxylic acid

HF:

Hartree–Fock

hfac:

1,1,1,5,5,5-Hexafluoro-pentane-2,4-dionate

HINA:

Isonicotinic acid

LF:

Ligand field theory

LFDFT:

Ligand field density functional theory

MO:

Molecular orbital

MOF:

Metal-organic framework

PBAs:

Prussian blue analogues

PT2:

Second-order perturbation

pz:

Pyrazine

pzam:

Pyrazine-2-carboxamide

ROHF:

Restricted open-shell Hartree–Fock

SO:

Spin–orbit

terpy:

2,2:6′2″-Terpyridine

References

  1. Cable ML, Kirby JP, Gray HB, Ponce A (2013) Enhancement of anion binding in lanthanide optical sensors. Acc Chem Res 46(11):2576–2584. doi:10.1021/ar400050t

    CAS  Google Scholar 

  2. Cui Y, Chen B, Qian G (2014) Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord Chem Rev 273:76–86. doi:10.1016/j.ccr.2013.10.023

    Google Scholar 

  3. Habib F, Murugesu M (2013) Lessons learned from dinuclear lanthanide nano-magnets. Chem Soc Rev 42(8):3278–3288. doi:10.1039/c2cs35361j

    CAS  Google Scholar 

  4. Roy S, Chakraborty A, Maji TK (2014) Lanthanide-organic frameworks for gas storage and as magneto-luminescent materials. Coord Chem Rev 273:139–164. doi:10.1016/j.ccr.2014.03.035

    Google Scholar 

  5. Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113(7):5110–5148. doi:10.1021/cr400018q

    CAS  Google Scholar 

  6. Tanase S, Reedijk J (2006) Chemistry and magnetism of cyanido-bridged d-f assemblies. Coord Chem Rev 250(19–20):2501–2510. doi:10.1016/j.ccr.2006.03.021

    CAS  Google Scholar 

  7. Beltran LMC, Long JR (2005) Directed assembly of metal-cyanide cluster magnets. Acc Chem Res 38(4):325–334. doi:10.1021/ar040158e

    CAS  Google Scholar 

  8. Bleuzen A, Marvaud V, Mathoniere C, Sieklucka B, Verdaguer M (2009) Photomagnetism in clusters and extended molecule-based magnets. Inorg Chem 48(8):3453–3466. doi:10.1021/ic802007g

    CAS  Google Scholar 

  9. Culp JT, Park JH, Frye F, Huh YD, Meisel MW, Talham DR (2005) Magnetism of metal cyanide networks assembled at interfaces. Coord Chem Rev 249(23):2642–2648. doi:10.1016/j.ccr.2005.05.011

    CAS  Google Scholar 

  10. Newton GN, Nihei M, Oshio H (2011) Cyanide-bridged molecular squares – the building units of prussian blue. Eur J Inorg Chem 20:3031–3042. doi:10.1002/ejic.201100407

    Google Scholar 

  11. Shatruk M, Avendano C, Dunbar KR (2009) Cyanide-bridged complexes of transition metals: a molecular magnetism perspective. In: Karlin KD (ed) Progress in inorganic chemistry, vol 56. Progress in inorganic chemistry. pp 155–334. doi:10.1002/9780470440124.ch3

  12. Sieklucka B, Podgajny R, Korzeniak T, Nowicka B, Pinkowicz D, Koziel M (2011) A decade of octacyanides in polynuclear molecular materials. Eur J Inorg Chem 3:305–326. doi:10.1002/ejic.201001055

    Google Scholar 

  13. Wang S, Ding X-H, Zuo J-L, You X-Z, Huang W (2011) Tricyanometalate molecular chemistry: a type of versatile building blocks for the construction of cyano-bridged molecular architectures. Coord Chem Rev 255(15–16):1713–1732. doi:10.1016/j.ccr.2011.01.057

    CAS  Google Scholar 

  14. Newman DJ, Ng B (2000) Crystal field handbook. Cambridge University Press, Cambridge

    Google Scholar 

  15. Ferbinteanu M, Cimpoesu F (2014) Magnetic anisotropy in case studies. In: Putz M (ed) Quantum nanosystems: structure, properties and interactions. Apple Academics, Toronto, pp 254–294. ISBN 978-1-926895-90-1

    Google Scholar 

  16. Sorace L, Sangregorio C, Figuerola A, Benelli C, Gatteschi D (2009) Magnetic interactions and magnetic anisotropy in exchange coupled 4f-3d systems: a case study of a heterodinuclear Ce3+−Fe3+ cyanide-bridged complex. Chem Eur J 15(6):1377–1388. doi:10.1002/chem.200801638

    CAS  Google Scholar 

  17. Tanase S, Ferbinteanu M, Cimpoesu F (2011) Rationalization of the lanthanide-ion-driven magnetic properties in a series of 4f-5d cyano-bridged chains. Inorg Chem 50(19):9678–9687. doi:10.1021/ic201427w

    CAS  Google Scholar 

  18. Hulliger F, Landolt M, Vetsch H (1976) Rare-earth ferricyanides and chromicyanides LNT(CN)6.NH2O. J Solid State Chem 18(3):283–291. doi:10.1016/0022-4596(76)90107-9

    CAS  Google Scholar 

  19. Hulliger F, Landolt M, Vetsch H (1976) Rare-earth cobalticyanides LNCO(CN)6.NH2O. J Solid State Chem 18(4):307–312. doi:10.1016/0022-4596(76)90111-0

    CAS  Google Scholar 

  20. Mullica DF, Perkins HO, Sappenfield EL, Grossie DA (1988) Synthesis and structural study of samarium hexacyanoferrate (III) tetrahydrate, SMFE(CN)6.4H2O. J Solid State Chem 74(1):9–15. doi:10.1016/0022-4596(88)90324-6

    CAS  Google Scholar 

  21. Dechambenoit P, Long JR (2011) Microporous magnets. Chem Soc Rev 40(6):3249–3265. doi:10.1039/c0cs00167h

    CAS  Google Scholar 

  22. Uemura T, Ohba M, Kitagawa S (2004) Size and surface effects of Prussian blue nanoparticles protected by organic polymers. Inorg Chem 43(23):7339–7345. doi:10.1021/ic0488435

    CAS  Google Scholar 

  23. Sun HL, Shi HT, Zhao F, Qi LM, Gao S (2005) Shape-dependent magnetic properties of low-dimensional nanoscale Prussian blue (PB) analogue SmFe(CN)(6)center dot 4H(2)O. Chem Commun 34:4339–4341. doi:10.1039/b507240a

    Google Scholar 

  24. Guari Y, Larionova J, Corti M, Lascialfari A, Marinone M, Poletti G, Molvinger K, Guerin C (2008) Cyano-bridged coordination polymer nanoparticles with high nuclear relaxivity: toward new contrast agents for MRI. Dalton Trans 28:3658–3660. doi:10.1039/b808221a

    Google Scholar 

  25. Yamada M, Yonekura S (2009) Nanometric metal-organic framework of Ln Fe(CN)(6): morphological analysis and thermal conversion dynamics by direct TEM observation. J Phys Chem C 113(52):21531–21537. doi:10.1021/jp907180e

    CAS  Google Scholar 

  26. Mullica DF, Hayward PK, Sappenfield EL (1996) Structural analyses of two hexacyanoruthenate(II) complexes. Inorg Chim Acta 253(1):97–101. doi:10.1016/s0020-1693(96)05113-4

    CAS  Google Scholar 

  27. Goubard F, Tabuteau A (2003) Synthesis, spectroscopic, thermal, and structural characterization of complex ferrocyanides KLnFe((II))(CN)(6)center dot 3.5H(2)O (Ln=Gd-Ho). Struct Chem 14(3):257–262. doi:10.1023/a:1023807728378

    CAS  Google Scholar 

  28. Artemkina SB, Naumov NG, Virovets AV, Gromilov SA, Fenske D, Fedorov VE (2001) New polymeric structure of rhenium octahedral chalcocyanide complex: Ln(3+)-derived network with one-dimensional channels. Inorg Chem Commun 4(8):423–426. doi:10.1016/s1387-7003(01)00230-1

    CAS  Google Scholar 

  29. Artemkina SB, Naumov NG, Virovets AV, Fedorov VE (2005) 3D-coordination cluster polymers Ln(H2O)(3)Re6Te8(CN)(6) center dot nH(2)O (Ln=La3+, Nd3+): direct structural analogy with the mononuclear LnM(CN)(6)center dot nH(2)O family. Eur J Inorg Chem 1:142–146. doi:10.1002/ejic.200400139

    Google Scholar 

  30. Efremova OA, Mironov YV, Kuratieva NV, Fedorov VE (2011) Two types of coordination polymers based on cluster anions Re(4)Q(4)(CN)(12) (4-) (Q=S, Se) and cations of rare-earth metals Ln(3+): syntheses and crystal structures. Polyhedron 30(8):1404–1411. doi:10.1016/j.poly.2011.02.051

    CAS  Google Scholar 

  31. Tarasenko MS, Naumov NG, Virovets AV, Kim SJ, Fedorov VE (2008) Crystal structure of Cs Gd(H2O)(4)Re6Te8(CN)(6) center dot 4H(2)O. J Struct Chem 49(6):1128–1131. doi:10.1007/s10947-008-0191-4

    CAS  Google Scholar 

  32. Tarasenko MS, Naumov NG, Naumov DY, Kim SJ, Fedorov VE (2008) A series of three-dimensional coordination polymers with general formula {Ln(H(2)O)(n)}{Re(6)Te(8)(CN)(6)} center dot xH(2)O (Ln=Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb; n=3, 4, x=0, 2.5). Polyhedron 27(11):2357–2364. doi:10.1016/j.poly.2008.04.054

    CAS  Google Scholar 

  33. Tarasenko MS, Naumov NG, Virovets AV, Naumov DY, Kuratieva NV, Mironov YV, Ikorskii VN, Fedorov VE (2005) New coordination polymers based on paramagnetic cluster anions Re6Se8(Cn)(6) (3-) and rare earth cations: the synthesis and structure of {Ln(H2O)(3))}{Re6Se8(CN)(6)} center dot 3.5H(2)O. J Struct Chem 46:S137–S144. doi:10.1007/s10947-006-0164-4

    CAS  Google Scholar 

  34. Compain JD, Nakabayashi K, Ohkoshi S (2012) A polyoxometalate-cyanometalate multilayered coordination network. Inorg Chem 51(9):4897–4899. doi:10.1021/ic300263f

    CAS  Google Scholar 

  35. Compain JD, Nakabayashi K, Ohkoshi S (2013) Multilayered networks built from polyoxometalates and cyanometalates. Polyhedron 66:116–122. doi:10.1016/j.poly.2013.03.004

    CAS  Google Scholar 

  36. Plecnik CE, Liu SM, Shore SG (2003) Lanthanide-transition-metal complexes: from ion pairs to extended arrays. Acc Chem Res 36(7):499–508. doi:10.1021/ar010050o

    CAS  Google Scholar 

  37. Liu SM, Plecnik CE, Meyers EA, Shore SG (2005) Two distinct Ln(III)-Cu(I) cyanide extended arrays: structures and synthetic methodology for inclusion and layer complexes. Inorg Chem 44(2):282–292. doi:10.1021/ic040113+

    CAS  Google Scholar 

  38. Liu SM, Meyers EA, Shore SG (2002) An inclusion complex with Gd(dmf)(8) (3+) ions encapsulated in pockets of an anionic array of {Cu-6(CN)(9)}(3-) (infinity)units; a cyanide-bridged Cu-Gd layer structure. Angew Chem Int Ed 41(19):3609–3611. doi:10.1002/1521-3773(20021004)41:19<3609::aid-anie3609>3.0.co;2-#

    CAS  Google Scholar 

  39. Wang ZX, Shen XF, Wang J, Zhang P, Li YZ, Nfor EN, Song Y, Ohkoshi SI, Hashimoto K, You XZ (2006) A sodalite-like framework based on octacyanomolybdate and neodymium with guest methanol molecules and neodymium octahydrate ions. Angew Chem Int Ed 45(20):3287–3291. doi:10.1002/anie.200600455

    CAS  Google Scholar 

  40. Shiga T, Okawa H, Kitagawa S, Ohba M (2006) Stepwise synthesis and magnetic control of trimetallic magnets Co(2)Ln(L)(2)(H2O)(4) Cr(CN)(6) center dot nH(2)O (Ln = La, Gd; H2L=2,6-di(acetoacetyl)pyridine) with 3-D pillared-layer structure. J Am Chem Soc 128(51):16426–16427. doi:10.1021/ja066434x

    CAS  Google Scholar 

  41. Tanase S, Prins F, Smits JMM, de Gelder R (2006) Three-dimensional Ln(III)-W-IV complexes with cyanido and carboxylato bridges. Crystengcomm 8(12):863–865. doi:10.1039/b614215j

    CAS  Google Scholar 

  42. Tanase S, Mittelmeijer-Hazeleger MC, Rothenberg G, Mathoniere C, Jubera V, Smits JMM, de Gelder R (2011) A facile building-block synthesis of multifunctional lanthanide MOFs. J Mater Chem 21(39):15544–15551. doi:10.1039/c1jm12789f

    CAS  Google Scholar 

  43. Zhou H, Diao GW, Qian SY, Yang XZ, Yuan AH, Song Y, Li YZ (2012) Lanthanide-ion-tuned magnetic properties in a series of three-dimensional cyano-bridged Ln(III)W(V) assemblies. Dalton Trans 41(35):10690–10697. doi:10.1039/c2dt30615h

    CAS  Google Scholar 

  44. Zhou H, Yuan AH, Qian SY, Song Y, Diao GW (2010) Efficient synthetic strategy to construct three-dimensional 4f-5d networks using neutral two-dimensional layers as building blocks. Inorg Chem 49(13):5971–5976. doi:10.1021/ic100518b

    CAS  Google Scholar 

  45. Bowes CL, Ozin GA (1996) Self-assembling frameworks: beyond microporous oxides. Advanced Materials 8 (1):13. doi:10.1002/adma.19960080103

  46. Ma Y-Z, Zhang L-M, Peng G, Zhao C-J, Dong R-T, Yang C-F, Deng H (2014) A series of three-dimensional 3d-4f cyanide heterometallic coordination polymers: synthesis, crystal structure, photoluminescent and magnetic properties. Crystengcomm 16(4):667–683. doi:10.1039/c3ce42025f

    CAS  Google Scholar 

  47. Herrera JM, Baca SG, Adams H, Ward MD (2006) Syntheses and structures of two- and three-dimensional cyanide-bridged coordination networks derived from crystallization of diimine-tetracyanoruthenate anions with gadolinium(III) cations. Polyhedron 25(4):869–875. doi:10.1016/j.poly.2005.09.013

    CAS  Google Scholar 

  48. Figuerola A, Diaz C, Ribas J, Tangoulis V, Granell J, Lloret F, Mahia J, Maestro M (2003) Synthesis and characterization of heterodinuclear Ln(3+)-Fe3+ and Ln(3+)-Co3+ complexes, bridged by cyanide ligand (Ln(3+)=lanthanide ions). Nature of the magnetic interaction in the Ln(3+)-Fe3+ complexes. Inorg Chem 42(2):641–649. doi:10.1021/ic025669g

    CAS  Google Scholar 

  49. Figuerola A, Diaz C, Ribas J, Tangoulis V, Sangregorio C, Gatteschi D, Maestro M, Mahia J (2003) Magnetism of cyano-bridged hetero-one-dimensional Ln(3+)-M3+ complexes (Ln(3+)=Sm, Gd, Yb; M3+=Fe-LS, Co). Inorg Chem 42(17):5274–5281. doi:10.1021/ic034051j

    CAS  Google Scholar 

  50. Figuerola A, Ribas J, Casanova D, Maestro M, Alvarez S, Diaz C (2005) Magnetism of cyano-bridged Ln(3+)-M3+ complexes. Part II: one-dimensional complexes (Ln(3+)=Eu, Tb, Dy, Ho, Er, Tm; M3+=Fe or Co) with bpy as blocking ligand. Inorg Chem 44(20):6949–6958. doi:10.1021/ic050650+

    CAS  Google Scholar 

  51. Figuerola A, Ribas J, Llunell M, Casanova D, Maestro M, Alvarez S, Diaz C (2005) Magnetic properties of cyano-bridged Ln(3+)-M3+ complexes. Part I: trinuclear complexes (Ln(3+) = La, Ce, Pr, Nd, Sm; M3+ = Fe-LS, Co) with bpy as blocking ligand. Inorg Chem 44(20):6939–6948. doi:10.1021/ic050648i

    CAS  Google Scholar 

  52. Tangoulis V, Estrader M, Figuerola A, Ribas J, Diaz C (2007) Anisotropic exchange interactions in hetero-one-dimensional Ln(3+)-M3+ systems (Ln(3+)=Er, Yb; M3+=Cr, Fe-LS): magnetometry and dual mode X-band electron paramagnetic resonance spectroscopic studies. Chem Phys 336(1):74–82. doi:10.1016/j.chemphys.2007.05.016

    CAS  Google Scholar 

  53. Nowicka B, Korzeniak T, Stefanczyk O, Pinkowicz D, Chorazy S, Podgajny R, Sieklucka B (2012) The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord Chem Rev 256(17–18):1946–1971. doi:10.1016/j.ccr.2012.04.008

    CAS  Google Scholar 

  54. Przychodzen P, Lewinski K, Pelka R, Balanda M, Tomala K, Sieklucka B (2006) Ln(terpy) (3+) (Ln=Sm, Gd) entity forms isolated magnetic chains with W(CN)(8) (3-). Dalton Trans 4:625–628. doi:10.1039/b511788g

    Google Scholar 

  55. Przychodzen P, Pelka R, Lewinski K, Supel J, Rams M, Tomala K, Sieklucka B (2007) Tuning of magnetic properties of polynuclear lanthanide(III)-octacyanotungstate(V) systems: determination of ligand-field parameters and exchange interaction. Inorg Chem 46(21):8924–8938. doi:10.1021/ic700795q

    CAS  Google Scholar 

  56. Hozumi T, Ohkoshi S, Arimoto Y, Seino H, Mizobe Y, Hashimoto K (2003) Cooling-rate dependent ferromagnetism in a two-dimensional cyano-bridged Sm(III)-W(V) complex. J Phys Chem B 107(42):11571–11574. doi:10.1021/jp0356057

    CAS  Google Scholar 

  57. Pasca E, Roscilde T, Evangelisti M, Burzuri E, Luis F, de Jongh LJ, Tanase S (2012) Realization of the one-dimensional anisotropic XY model in a Tb(III)-W(V) chain compound. Phys Rev B 85(18). doi:10.1103/PhysRevB.85.184434

  58. Prins F, Pasca E, de Jongh LJ, Kooijman H, Spek AL, Tanase S (2007) Long-range magnetic ordering in a Tb-III-Mo-V cyanido-bridged quasi-one-dimensional complex. Angew Chem Int Ed 46(32):6081–6084. doi:10.1002/anie.200701847

    CAS  Google Scholar 

  59. Tanase S, de Jongh LJ, Prins F, Evangelisti M (2008) Ferrimagnetic Heisenberg chains derived from M(CN)(8) (3-) (M=MOV, W-V) building-blocks. ChemPhysChem 9(14):1975–1978. doi:10.1002/cphc.200800345

    CAS  Google Scholar 

  60. Tanase S, Evangelisti M, de Jongh LJ (2011) Short-range correlations in d-f cyanido-bridged assemblies with XY and XY-Heisenberg anisotropy. Dalton Trans 40(33):8407–8413. doi:10.1039/c1dt10310e

    CAS  Google Scholar 

  61. Tanase S, Evangelisti M, de Jongh LJ, Smits JMM, de Gelder R (2008) Crystal structure, magnetic and thermal properties of the one-dimensional complex Nd(pzam)(3)(H(2)O)Mo(CN)(8) center dot H(2)O. Inorg Chim Acta 361(12–13):3548–3554. doi:10.1016/j.ica.2008.03.026

    CAS  Google Scholar 

  62. Hüfner S (1978) Optical spectra of transparent rare earth compounds. Academic, New York

    Google Scholar 

  63. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  64. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-VCH, Berlin

    Google Scholar 

  65. ADF Code (2012), Scientific computing & modelling (SCM), theoretical chemistry, Vrije Universiteit, Amsterdam. http://www.scm.com

  66. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99(6):391–403. doi:10.1007/s002140050021

    CAS  Google Scholar 

  67. Cotton S (2006) Lanthanide and actinide chemistry. Wiley, New York

    Google Scholar 

  68. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York

    Google Scholar 

  69. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38(6):3098–3100. doi:10.1103/PhysRevA.38.3098

    CAS  Google Scholar 

  70. Perdew JP (1986) Density-functional approximation for the correlation-energy of the inhomogeneous electron-gas. Phys Rev B 33(12):8822–8824. doi:10.1103/PhysRevB.33.8822

    Google Scholar 

  71. Perdew JP, Sahni V, Harbola MK, Pathak RK (1986) 4th-Order gradient expansion of the fermion kinetic-energy – extra terms for nonanalytic densities. Phys Rev B 34(2):686–691. doi:10.1103/PhysRevB.34.686

    Google Scholar 

  72. von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. Wiley Interdisciplinary Rev Computat Mol Sci 2(1):43–62. doi:10.1002/wcms.71

    Google Scholar 

  73. Ziegler T, Rauk A (1977) Calculation of bonding energies by Hartree–Fock slater method. 1. Transition-state method. Theor Chim Acta 46(1):1–10. doi:10.1007/bf02401406

    CAS  Google Scholar 

  74. Dykstra CE, Frenking G, Kim KS, Scuseria GE (2005) Theory and applications of computational chemistry. Elsevier BV, Amsterdam

    Google Scholar 

  75. Gritsenko OV, Schipper PRT, Baerends EJ (1998) Effect of Pauli repulsion on the molecular exchange-correlation Kohn-Sham potential: a comparative calculation of Ne-2 and N-2. Phys Rev A 57(5):3450–3457. doi:10.1103/PhysRevA.57.3450

    CAS  Google Scholar 

  76. Ferbinteanu M, Zaharia A, Girtu MA, Cimpoesu F (2010) Noncovalent effects in the coordination and assembling of the Fe(bpca)(2) Er(NO3)(3)(H2O)(4) NO3 system. Central Eur J Chem 8(3):519–529. doi:10.2478/s11532-010-0019-x

    CAS  Google Scholar 

  77. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967. doi:10.1002/jcc.1056

    Google Scholar 

  78. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3):864–871. doi:10.1103/PhysRev.136.B864

    Google Scholar 

  79. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138. doi:10.1103/PhysRev.140.A1133

    Google Scholar 

  80. Atanasov M, Busche C, Comba P, El Hallak F, Martin B, Rajaraman G, van Slageren J, Wadepohl H (2008) Trinuclear {M-1}CN{M-2}(2) complexes (M-1 = Cr-III, Fe-III, Co-III; M-2 = Cu-II, Ni-II, Mn-II). Are single molecule magnets predictable? Inorg Chem 47(18):8112–8125. doi:10.1021/ic800556c

    CAS  Google Scholar 

  81. Atanasov M, Daul CA, Rauzy C (2003) New insights into the effects of covalency on the ligand field parameters: a DFT study. Chem Phys Lett 367(5–6):737–746. doi:10.1016/s0009-2614(02)01762-1

  82. Atanasov M, Comba P, Daul CA (2008) Combined ligand field and density functional theory analysis of the magnetic anisotropy in oligonuclear complexes based on Fe-III-CN-M-II exchange-coupled pairs. Inorg Chem 47(7):2449–2463. doi:10.1021/ic701702x

    CAS  Google Scholar 

  83. Atanasov M, Daul C, Gudel HU, Wesolowski TA, Zbiri M (2005) Ground states, excited states, and metal-ligand bonding in rare earth hexachloro complexes: a DFT-based ligand field study. Inorg Chem 44(8):2954–2963. doi:10.1021/ic040105t

    CAS  Google Scholar 

  84. Zbiri M, Atanasov M, Daul C, Garcia-Lastra JM, Wesolowski TA (2004) Application of the density orbital-free embedding potential functional theory derived to calculate the splitting energies of lanthanide cations in chloroelpasolite crystals. Chem Phys Lett 397(4–6):441–446. doi:10.1016/j.cplett.2004.09.010

    CAS  Google Scholar 

  85. Reinen D, Atanasov M (2004) The angular overlap model and vibronic coupling in treating s-p and d-s mixing – a DFT study. Struct Bond 107:159–178

    CAS  Google Scholar 

  86. Gross EKU, Oliveira LN, Kohn W (1988) Density-functional theory for ensembles of fractionally occupied states. 1. Basic formalism. Phys Rev A 37(8):2809–2820. doi:10.1103/PhysRevA.37.2809

    CAS  Google Scholar 

  87. Ullrich CA, Kohn W (2001) Kohn-Sham theory for ground-state ensembles. Phys Rev Lett 87(9). doi:10.1103/PhysRevLett.87.093001

  88. Jensen F (2002) Introduction to quantum chemistry. Wiley, New York

    Google Scholar 

  89. Roos BO (2007) The complete active space self-consistent field method and its applications in electronic structure calculations. In: Lawley KP (ed) Advances in chemical physics: ab initio methods in quantum chemistry part 2, vol 69. Wiley, New Jersey

    Google Scholar 

  90. Daul C (1994) Density-functional theory applied to the excited-states of coordination-compounds. Int J Quantum Chem 52(4):867–877. doi:10.1002/qua.560520414

    CAS  Google Scholar 

  91. Minerva T, Goursot A, Daul C (2001) Chem Phys Lett 350:147–154. doi:10.1016/S0009-2614(01)01264-7

    Google Scholar 

  92. Nagao H, Nishino M, Shigeta Y, Soda T, Kitagawa Y, Onishi T, Yoshioka Y, Yamaguchi K (2000) Theoretical studies on effective spin interactions, spin alignments and macroscopic spin tunneling in polynuclear manganese and related complexes and their mesoscopic clusters. Coord Chem Rev 198:265–295. doi:10.1016/s0010-8545(00)00231-9

    CAS  Google Scholar 

  93. Noodleman L, Peng CY, Case DA, Mouesca JM (1995) Orbital interactions, electron delocalization and spin coupling in iron-sulfur clusters. Coord Chem Rev 144:199–244. doi:10.1016/0010-8545(95)07011-l

    CAS  Google Scholar 

  94. Ramanantoanina H, Urland W, Garcia-Fuente A, Cimpoesu F, Daul C (2013) Calculation of the 4f(1) -> 4f(0)5d(1) transitions in Ce3+−doped systems by Ligand Field Density Functional Theory. Chem Phys Lett 588:260–266. doi:10.1016/j.cplett.2013.10.012

    CAS  Google Scholar 

  95. Ferbinteanu M, Cimpoesu F, Girtu MA, Enachescu C, Tanase S (2012) Structure and magnetism in Fe-Gd based dinuclear and chain systems. The interplay of weak exchange coupling and zero field splitting effects. Inorg Chem 51(1):40–50. doi:10.1021/ic1023289

    CAS  Google Scholar 

  96. Cimpoesu F, Dahan F, Ladeira S, Ferbinteanu M, Costes J-P (2012) Chiral crystallization of a heterodinuclear Ni-Ln series: comprehensive analysis of the magnetic properties. Inorg Chem 51(21):11279–11293. doi:10.1021/ic3001784

    CAS  Google Scholar 

  97. Pierloot K, Cundari T (2001) Computational organometallic chemistry. Marcel Dekker Inc., New York

    Google Scholar 

  98. Nakano H, Nakayama K, Hirao K, Dupuis M (1997) Transition state barrier height for the reaction H2CO->H-2+CO studied by multireference Moller-Plesset perturbation theory. J Chem Phys 106(12):4912–4917. doi:10.1063/1.473540

    CAS  Google Scholar 

  99. Roos BO, Andersson K, Fulscher MP, Malmqvist PA, SerranoAndres L, Pierloot K, Merchan M (1996) Multiconfigurational perturbation theory: applications in electronic spectroscopy. Adv Chem Phys 93:219–331. doi:10.1002/9780470141526.ch5

    CAS  Google Scholar 

  100. Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) 2nd-Order perturbation-theory with a casscf reference function. J Phys Chem 94(14):5483–5488. doi:10.1021/j100377a012

    CAS  Google Scholar 

  101. Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 114(23):10252–10264. doi:10.1063/1.1361246

    CAS  Google Scholar 

  102. Cimpoesu F, Dragoe N, Ramanantoanina H, Urland W, Daul C (2014) The theoretical account of the ligand field bonding regime and magnetic anisotropy in the DySc2N@C-80 single ion magnet endohedral fullerene. Phys Chem Chem Phys 16(23):11337–11348. doi:10.1039/c4cp00953c

    CAS  Google Scholar 

  103. Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K (2004) Mechanism of ferromagnetic coupling in copper(II)-gadolinium(II) complexes. J Am Chem Soc 126(10):3321–3331. doi:10.1021/ja030628k

    CAS  Google Scholar 

  104. Ferbinteanu M, Kajiwara T, Choi K-Y, Nojiri H, Nakamoto A, Kojima N, Cimpoesu F, Fujimura Y, Takaishi S, Yamashita M (2006) A binuclear Fe(III)Dy(III) single molecule magnet. Quantum effects and models. J Am Chem Soc 128(28):9008–9009. doi:10.1021/ja062399i

    CAS  Google Scholar 

  105. Schäffer CE (1966) A ligand field approach to orthoaxial complexes. Theor Chim Acta 4(2):166–173

    Google Scholar 

  106. Schäffer CE (1967) The angular overlap model applied to chiral chromophores and the parentage interrelation of absolute configurations. Proc Roy Soc A 297:96–133. doi:10.1098/rspa.1967.0055

    Google Scholar 

  107. Ramanantoanina H, Urland W, Cimpoesu F, Daul C (2014) The angular overlap model extended for two-open-shell f and d electrons. Phys Chem Chem Phys 16(24):12282–12290. doi:10.1039/c4cp01193g

    CAS  Google Scholar 

  108. Martin WC, Zalubas R, Hagan L (1978) Atomic energy levels – the rare-earth elements. Nat 1432, Stand Ref Data Ser NSRDS-NBS 60, U.S. Gov. Printing Office, Washington

    Google Scholar 

  109. Aravena D, Ruiz E (2013) Shedding light on the single-molecule magnet behavior of mononuclear Dy-III complexes. Inorg Chem 52(23):13770–13778. doi:10.1021/ic402367c

    CAS  Google Scholar 

  110. Gatteschi D, Sessoli R (2003) Quantum tunneling of magnetization and related phenomena in molecular materials. Angew Chem Int Ed 42(3):268–297. doi:10.1002/anie.200390099

    CAS  Google Scholar 

  111. Sessoli R, Powell AK (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253(19–20):2328–2341. doi:10.1016/j.ccr.2008.12.014

    CAS  Google Scholar 

  112. Wang X-Y, Avendano C, Dunbar KR (2011) Molecular magnetic materials based on 4d and 5d transition metals. Chem Soc Rev 40(6):3213–3238. doi:10.1039/c0cs00188k

    CAS  Google Scholar 

  113. Zhang P, Guo Y-N, Tang J (2013) Recent advances in dysprosium-based single molecule magnets: structural overview and synthetic strategies. Coord Chem Rev 257(11–12):1728–1763. doi:10.1016/j.ccr.2013.01.012

    CAS  Google Scholar 

  114. Di Sante D, Stroppa A, Jain P, Picozzi S (2013) Tuning the ferroelectric polarization in a multiferroic metal-organic framework. J Am Chem Soc 135(48):18126–18130. doi:10.1021/ja408283a

    Google Scholar 

  115. Stroppa A, Barone P, Jain P, Perez-Mato JM, Picozzi S (2013) Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv Mater 25(16):2284–2290. doi:10.1002/adma.201204738

    CAS  Google Scholar 

Download references

Acknowledgments

ST thanks the Netherlands Organisation for Scientific Research (NWO) for a Veni grant. FC and MF acknowledge support from the Romania-Italy cooperation grant of Romanian Academy and PCE 14/2013 UEFISCDI research grant. We thank Dr. Alessandro Stroppa for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Tanase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferbinteanu, M., Cimpoesu, F., Tanase, S. (2014). Metal-Organic Frameworks with d–f Cyanide Bridges: Structural Diversity, Bonding Regime, and Magnetism. In: Cheng, P. (eds) Lanthanide Metal-Organic Frameworks. Structure and Bonding, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_2014_156

Download citation

Publish with us

Policies and ethics