Skip to main content

The Golm Metabolome Database: a database for GC-MS based metabolite profiling

  • Chapter
  • First Online:
Metabolomics

Part of the book series: Topics in Current Genetics ((TCG,volume 18))

Abstract

In the post-genomic era, biological science continues a transition from a predominantlyqualitative towards an increasingly quantitative science. Genomic, transcriptomic, proteomic, andnow metabolomic technologies significantly contribute to the generation of huge amounts of data. Thesedata, which typically describe changes in gene expression or changes in protein and metabolite pools,cannot effectively be analysed and interpreted by computer based programming if access is only providedthrough traditional publication schemes. Therefore ‘-omics’ data sets require formalisedrepresentation and access through databases. Otherwise important information will be lost which mayserve as reference data for current and future science. Transcript and protein profiling is dominatedby few almost comprehensive technologies. In contrast, the metabolomic field will require multipleanalytical profiling approaches to cover the chemical multitude of primary and secondary metabolism.As a consequence, technology-oriented metabolomics databases start to emerge. We will use GC-TOF-MS-basedmetabolite profiling as an example for the prototypical design of central database objects and structures.The focus will be on the required detailed information for the archiving of metabolite fingerprintingand profiling data sets. Special consideration is given to aspects of maintaining information sufficientand necessary for the experimental reproduction of metabolite identification and quantification results.Both aspects are essential for the sustainable use of GC-TOF-MS-based metabolite profiling and forthe comparison to other metabolomics technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  2. Arita M (2004) Computational resources for metabolomics. Briefings Funct Genomics Proteomics 3:84–93

    Article  CAS  Google Scholar 

  3. Ausloos P, Clifton CL, Lias SG, Mikaya AI, Stein SE, Tchekhovskoi DV, Sparkman OD, Zaikin V, Zhu D (1999) The critical evaluation of a comprehensive mass spectral library. J Am Soc Mass Spectrom 10:287–299

    Article  PubMed  CAS  Google Scholar 

  4. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506

    Article  PubMed  CAS  Google Scholar 

  5. Ball CA, Awad IA, Demeter J, Gollub J, Hebert JM, Hernandez-Boussard T, Jin H, Matese JC, Nitzberg M, Wymore F, Zachariah ZK, Brown PO, Sherlock G (2005) The Stanford Microarray Database accommodates additional microarray platforms and data formats. Nucleic Acids Res 33:D580–D582

    Article  PubMed  CAS  Google Scholar 

  6. Ben Wagner A (2006) SciFinder Scholar 2006: An empirical analysis of research topic query processing. J Chem Inf Model 46:767–774

    Article  PubMed  Google Scholar 

  7. Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, Nikolau BJ, Mendes P, Roessner-Tunali U, Beale MH, Trethewey RN, Lange BM, Wurtele ES, Sumner LW (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci 9:418–425

    Article  PubMed  CAS  Google Scholar 

  8. Booth D, Haas H, McCabe F, Newcomer E, Champion M, Ferris C, Orchard D (2003) Web Services Architecture. http://www.w3.org/TR/ws-arch/

  9. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    Article  PubMed  CAS  Google Scholar 

  10. Cary MP, Bader GD, Sander C (2005) Pathway information for systems biology. FEBS Letters 579:1815–1820

    Article  PubMed  CAS  Google Scholar 

  11. Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S (2004) NASCArrays: a repository for microarray data generated by NASC's transcriptomics service. Nucleic Acids Res 32:D575–D577

    Article  PubMed  CAS  Google Scholar 

  12. Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W (2005) BioMart and BioConductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21:3439–3440

    Article  PubMed  CAS  Google Scholar 

  13. Erban A, Schauer N, Fernie AR, Kopka J (2007) Non-supervised construction and application of mass spectral and retention time index libraries from time-of-flight GC-MS metabolite profiles. In: Weckwerth W (ed) Metabolomics: methods and protocols. Humana Press, Totowa, pp 19–38

    Google Scholar 

  14. Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  PubMed  CAS  Google Scholar 

  15. Fiehn O, Wohlgemuth G, Scholz M (2005) Automatic annotation of metabolomic mass spectra by integrating experimental metadata. Proc Lect Notes Bioinformatics 3615:224–239

    Google Scholar 

  16. Galperin MY (2005) The molecular database collection: 2005 update. Nucleic Acids Res 33:D5–D24

    Article  PubMed  CAS  Google Scholar 

  17. Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvolution gas chromatography mass spectrometry of urinary organic acids - potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom 13:279–284

    Article  PubMed  CAS  Google Scholar 

  18. Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic pro?ling by GC/MS and LC/MS/MS. J Exp Bot 56:219–243

    Article  PubMed  CAS  Google Scholar 

  19. Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino RJ, Hall RD, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SG, Paton NW, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, Kell DB (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22:1601–1606

    Article  PubMed  CAS  Google Scholar 

  20. Junker BH, Klukas C, Schreiber F (2006) VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109

    Article  PubMed  Google Scholar 

  21. Lindon JC, Keun HC, Ebbels TMD, Pearce JMT, Holmes E, Nicholson JK (2005) The Consortium for Metabonomic Toxicology (COMET): aims, activities and achievements. Pharmacogenomics 6:691–699

    Article  PubMed  CAS  Google Scholar 

  22. Kanehisa M (1997) A database for post-genome analysis. Trends Genet 13:375–376

    Article  PubMed  CAS  Google Scholar 

  23. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  24. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357

    Article  PubMed  CAS  Google Scholar 

  25. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahren D, Tsoka S, Darzentas N, Kunin V, Lopez-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33:6083–6089

    Article  PubMed  CAS  Google Scholar 

  26. Kenny LC, Dunn WB, Ellis DI, Myers J, Baker PN and the GOPEC Consortium, Kell DB (2005) Novel biomarkers for pre-eclamsia detected using metabolomics and machine learning. Metabolomics 1:227–234

    Article  Google Scholar 

  27. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gill M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337

    Article  PubMed  CAS  Google Scholar 

  28. Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7:234

    Article  PubMed  Google Scholar 

  29. Kopka J (2006a) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol 124:312–322

    Article  PubMed  CAS  Google Scholar 

  30. Kopka J (2006b) Gas chromatography mass spectrometry. In: Nagata T, Lörz H, Widholm JM (eds) Biotechnology in agriculture and forestry Vol 57: Saito K, Dixon RA, Willmitzer L (eds) Plant metabolomics. Springer-Verlag, Berlin Heidelberg New York, pp 3–20

    Chapter  Google Scholar 

  31. Kopka J, Fernie AF, Weckwerth W, Gibon Y, Stitt M (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biol 5:109–117

    Article  PubMed  Google Scholar 

  32. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSBDB: The Golm metabolome database. Bioinformatics 21:1635–1638

    Article  PubMed  CAS  Google Scholar 

  33. Kremsky J (2005) PubChem versus CAS. Chem Eng News 83:6

    Google Scholar 

  34. Krummenacker M, Paley S, Mueller L, Yan T, Karp PD (2005) Querying and computing with BioCyc databases. Bioinformatics 21:3454–3455

    Article  PubMed  CAS  Google Scholar 

  35. Kümmel A, Panke S, Heinemann M (2006) Putative regulatory sites unreveled by network-embedded thermodynamics analysis of metabolome data. Mol Syst Biol 2, (doi:10.1038/msb4100074 2006)

    Google Scholar 

  36. Lüdemann A, Weicht D, Selbig J, Kopka J (2004) PaVESy: Pathway visualization and editing system. Bioinformatics 20:2841–2844

    Article  PubMed  Google Scholar 

  37. Mehrotra B, Mendes P (2006) Bioinformatics: Approaches to integrate metabolomics and other systems biology data. In: Nagata T, Lörz H, Widholm JM (eds) Biotechnology in agriculture and forestry Vol 57: Saito K, Dixon RA, Willmitzer L (eds) Plant metabolomics. Springer-Verlag, Berlin Heidelberg New York, pp 3–20

    Google Scholar 

  38. Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CH (2006) A liquid chromatography mass spectrometry based metabolome database for tomato. Plant Physiol 141:1205–1218

    Article  PubMed  CAS  Google Scholar 

  39. Murray-Rust P, Rzepa HS, Tyrell SM, Zhang Y (2004a) Representation and use of chemistry in the global electronic age. Org Biomol Chem 2:3192–3203

    Article  PubMed  CAS  Google Scholar 

  40. Murray-Rust P, Rzepa HS, Stein S (2004b) The INChI as an LSID for molecules in lifescience. W3C Workshop on Semantic Web for Life Sciences, 27–28 October 2004, Cambridge, Massachusetts USA, http://lists.w3.org/Archives/Public/public-swls-ws/2004Sep/att-0026/inchi.html

  41. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T, Glover K, Pocock MR, Wipat A, Li P (2004), Taverna: a tool for the composition and enactment of bioinformatics workflows. Bionformatics 20:3045–3054

    Article  CAS  Google Scholar 

  42. Orchard S, Hermjakob H, Julian RK Jr, Runte K, Sherman D, Wojcik J, Zhu W, Apweiler R (2004) Common interchange standards for proteomics data: public availability of tools and schema. Proteomics 4:490–491

    Article  PubMed  CAS  Google Scholar 

  43. Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G, Moritz T, Lundgren K, Roessner-Tunali U, Forbes MG, Willmitzer L, Fernie AR, Kopka J (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    Article  PubMed  CAS  Google Scholar 

  44. Schomburg I, Chang A, Schomburg D (2002a) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47–49

    Article  PubMed  CAS  Google Scholar 

  45. Schomburg I, Chang AJ, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D (2002b) BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci 27:54–56

    Article  PubMed  CAS  Google Scholar 

  46. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:D431–D433

    Article  PubMed  CAS  Google Scholar 

  47. Schreiber F, Schwobbermeyer H (2005) MAVisto: a tool for the exploration of network motifs. Bioinformatics 21:3572–3574

    Article  PubMed  CAS  Google Scholar 

  48. Schwall K, Zielenbach K (2000) SciFinder – A new generation of research tool. Chem Innovat 30:45–50

    CAS  Google Scholar 

  49. Shang S, Tan DS (2005) Advancing chemistry and biology through diversity-oriented synthesis of natural product-like libraries. Curr Opin Chem Biol 9:248–258

    Article  PubMed  CAS  Google Scholar 

  50. Shinbo Y, Nakamura Y, Altaf-Ul-Amin M, Asahi H, Kurokawa K, Arita M, Saito K, Ohta D, Shibata D, Kanaya S (2006) KNApSAcK: A comprehensive species-metabolite relationship database. In: Nagata T, Lörz H, Widholm JM (eds) Biotechnology in agriculture and forestry Vol 57: Saito K, Dixon RA, Willmitzer L (eds) Plant metabolomics. Springer-Verlag, Berlin Heidelberg New York, pp 165–184

    Chapter  Google Scholar 

  51. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286

    Article  PubMed  CAS  Google Scholar 

  52. Smith CA, O'Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G (2005) METLIN - A metabolite mass spectral database. Ther Drug Monit 27:747–751

    Article  PubMed  CAS  Google Scholar 

  53. Spasiæ I, Dunn WB, Velarde G, Tseng A, Jenkins H, Hardy NW, Oliver SG, Kell DB (2006) MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics. BMC Bioinformatics 7:281

    Article  Google Scholar 

  54. Stein L (2002) Creating a bioinformatics nation. Nature 417:119–120

    Article  PubMed  CAS  Google Scholar 

  55. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781

    Article  CAS  Google Scholar 

  56. Steinhauser D, Kopka J (2007) Methods, applications and concepts of metabolite profiling: primary metabolism. In: Fernie AR, Baginsky S (eds) Plant systems biology. Birkhäuser: in press

    Google Scholar 

  57. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochem 62:817–836

    Article  CAS  Google Scholar 

  58. Sundararaj S, Guo A, Habibi-Nazhad B, Rouani M, Stothard P, Ellison M, Wishart DS (2004) The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli. Nucleic Acids Res 32:D293–D295

    Article  PubMed  CAS  Google Scholar 

  59. Thimm O, Blaesing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  60. Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochem 62:887–900

    Article  CAS  Google Scholar 

  61. Whitley KM (2002) Analysis of SciFinder scholar and web of science citation searches. J Amer Soc Informat Sci Technol 53:1210–1215

    Article  CAS  Google Scholar 

  62. Wilkinson MD, Links M (2002) BioMOBY: an open source biological web services proposal. Brief Bioinformatics 3:331–341

    Article  PubMed  Google Scholar 

  63. Zhang PF, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138:27–37

    Article  PubMed  CAS  Google Scholar 

  64. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

  65. Zimmermann P, Hennig L, Gruissem W (2005) Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci 10:407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Kopka .

Editor information

Jens Nielsen Michael C. Jewett

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hummel, J., Selbig, J., Walther, D., Kopka, J. (2007). The Golm Metabolome Database: a database for GC-MS based metabolite profiling. In: Nielsen, J., Jewett, M.C. (eds) Metabolomics. Topics in Current Genetics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/4735_2007_0229

Download citation

Publish with us

Policies and ethics