Skip to main content

Methods for Seizure Detection and Prediction: An Overview

  • Protocol
  • First Online:
Modern Electroencephalographic Assessment Techniques

Part of the book series: Neuromethods ((NM,volume 91))

Abstract

Epilepsy is one of the most common neurological diseases and the most common neurological chronic disease in childhood. Electroencephalography (EEG) still remains one of the most useful and effective tools in understanding and treatment of epilepsy. To this end, many computational methods have been developed for both the detection and prediction of epileptic seizures. Techniques derived from linear/nonlinear analysis, chaos, information theory, morphological analysis, model-based analysis, all present different advantages, disadvantages, and limitations. Recently, there is the notion of selecting and combining the most robust features from different methods for revealing various signals’ characteristics and making more reliable assumptions. Finally, intelligent classifiers are employed in order to distinguish epileptic state out of normal states. This chapter reviews the most widely adopted algorithms for the detection and prediction of epileptic seizures, emphasizing on information theory based and entropy indices. Each method’s accuracy has been evaluated through performance measures, assessing the ability of automatic seizure detection/prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472

    PubMed  Google Scholar 

  2. World Health Organization (WHO) (2012) Report, fact sheet No 999, http://www.who.int/mediacentre/factsheets/fs999/en/index.html

  3. Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS (2012) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Contr 7(4):401–408

    Google Scholar 

  4. Sakkalis V, Giurcaneanu CD, Xanthopoulos P, Zervakis ME, Tsiaras V, Yang Y, Karakonstantaki E, Micheloyannis S (2009) Assessment of linear and nonlinear synchronization measures for analyzing EEG in a mild epileptic paradigm. IEEE Trans Inform Tech Biomed 13(4):433–441

    Google Scholar 

  5. Winterhalder M, Maiwald T, Voss HU, Aschenbrenner-Scheibe R, Timmer J, Schulze-Bonhage A (2003) The seizure prediction characteristic: a general framework to assess and compare seizure prediction methods. Epilepsy Behav 4(3):318–325

    CAS  PubMed  Google Scholar 

  6. Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  7. Paivinen N, Lammi S, Pitkanen A, Nissinen J, Penttonen M, Gronfors T (2005) Epileptic seizure detection: a nonlinear viewpoint. Comput Methods Programs Biomed 79(2):151–159

    PubMed  Google Scholar 

  8. Faure P, Korn H (2001) Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C R Acad Sci III 324(9):773–793

    CAS  PubMed  Google Scholar 

  9. Korn H, Faure P (2003) Is there chaos in the brain? II. Experimental evidence and related models. C R Biol 326(9):787–840

    PubMed  Google Scholar 

  10. Liu A, Hahn JS, Heldt GP, Coen RW (1992) Detection of neonatal seizures through computerized EEG analysis. Electroencephalogr Clin Neurophysiol 82(1):30–37

    CAS  PubMed  Google Scholar 

  11. Altunay S, Telatar Z, Erogul O (2010) Epileptic EEG detection using the linear prediction error energy. Expert Syst Appl 37(8):5661–5665

    Google Scholar 

  12. Fathima T, Bedeeuzzaman M, Farooq O, Khan Y (2011) Wavelet based features for epileptic seizure detection. MES J Tech Manag 2(1):108–112

    Google Scholar 

  13. Yuan Q, Zhou W, Liu Y, Wang J (2012) Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav 24(4):415–421

    PubMed  Google Scholar 

  14. Musselman M, Djurdjanovic D (2012) Time-frequency distributions in the classification of epilepsy from EEG signals. Expert Syst Appl 39(13):11413–11422

    Google Scholar 

  15. Hassanpour H, Mesbah M, Boashash B (2004) Time-frequency based newborn EEG seizure detection using low and high frequency signatures. Physiol Meas 25(4):935–944

    PubMed  Google Scholar 

  16. Tzallas AT, Tsipouras MG, Fotiadis DI (2007) Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 2007:80510

    PubMed Central  Google Scholar 

  17. Tzallas AT, Tsipouras MG, Fotiadis DI (2007) The use of time-frequency distributions for epileptic seizure detection in EEG recordings. 29th annual international conference of the IEEE engineering in medicine and biology society, 23–26 Aug 2007, pp 3–6

    Google Scholar 

  18. Tzallas AT, Tsipouras MG, Fotiadis DI (2009) Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed 13(5):703–710

    PubMed  Google Scholar 

  19. Khlif MS, Mesbah M, Boashash B, Colditz P (2007) Multichannel-based newborn EEG seizure detection using time-frequency matched filter. 29th annual international conference of the IEEE engineering in medicine and biology society, pp 1265–1268

    Google Scholar 

  20. Boashash B, Mesbah M, Golditz P (2003) Time-frequency detection of EEG abnormalities. Elsevier, Amsterdam, pp 663–669

    Google Scholar 

  21. Rankine L, Mesbah M, Boashash B (2007) A matching pursuit-based signal complexity measure for the analysis of newborn EEG. Med Biol Eng Comput 45(3):251–260

    CAS  PubMed  Google Scholar 

  22. Nagaraj SB, Stevenson N, Marnane W, Boylan G, Lightbody G (2012) A novel dictionary for neonatal EEG seizure detection using atomic decomposition. 34th annual international conference of the IEEE engineering in medicine and biology society, pp 1073–1076

    Google Scholar 

  23. Sabesan S, Chakravarthy N, Tsakalis K, Pardalos P, Iasemidis L (2009) Measuring resetting of brain dynamics at epileptic seizures: application of global optimization and spatial synchronization techniques. J Combin Optim 17(1):74–97

    Google Scholar 

  24. Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116(10):2266–2301

    CAS  PubMed  Google Scholar 

  25. Esteller R, Vachtsevanos G, Echauz J, Litt B (2001) A comparison of waveform fractal dimension algorithms. IEEE Trans Circ Syst Fund Theor Appl 48(2):177–183

    Google Scholar 

  26. Sarkar N, Chaudhuri BB (1994) An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans Syst Man Cybern 24(1):115–120

    Google Scholar 

  27. Katz MJ (1988) Fractals and the analysis of waveforms. Comput Biol Med 18(3):145–156

    CAS  PubMed  Google Scholar 

  28. Petrosian A (1995) Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. Proceedings of the eighth IEEE symposium on computer-based medical systems, Lubbock, TX, pp 212–217

    Google Scholar 

  29. Higuchi T (1988) Approach to an irregular time-series on the basis of the fractal theory. Physica D 31(2):277–283

    Google Scholar 

  30. Güler NF, Übeyli ED, Güler İ (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 29(3):506–514

    Google Scholar 

  31. Kannathal N, Acharya UR, Lim CM, Sadasivan PK (2005) Characterization of EEG—a comparative study. Comput Methods Programs Biomed 80(1):17–23

    CAS  PubMed  Google Scholar 

  32. Kannathal N, Choo ML, Acharya UR, Sadasivan PK (2005) Entropies for detection of epilepsy in EEG. Comput Methods Programs Biomed 80(3):187–194

    CAS  PubMed  Google Scholar 

  33. Kumar SP, Sriraam N, Benakop PG, Jinaga BC (2010) Entropies based detection of epileptic seizures with artificial neural network classifiers. Expert Syst Appl 37(4):3284–3291

    Google Scholar 

  34. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Google Scholar 

  35. Bruhn J, Lehmann LE, Ropcke H, Bouillon TW, Hoeft A (2001) Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiology 95(1):30–35

    CAS  PubMed  Google Scholar 

  36. Steuer R, Ebeling W, Bengner T, Dehnicke C, Hattig H, Meencke H-J (2004) Entropy and complexity analysis of intracranially recorded EEG. Int J Bifurcat Chaos 14(02):815–823

    Google Scholar 

  37. Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katsuda Y, Hirano M (1991) Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol 79(3):204–210

    CAS  PubMed  Google Scholar 

  38. Inouye T, Shinosaki K, Iyama A, Matsumoto Y (1993) Localization of activated areas and directional EEG patterns during mental arithmetic. Electroencephalogr Clin Neurophysiol 86(4):224–230

    CAS  PubMed  Google Scholar 

  39. He Z-y, Chen X, Luo G (2006) Wavelet entropy measure definition and its application for transmission line fault detection and identification (part I: definition and methodology). International conference on power system technology, PowerCon 2006, Chongqing, 22–26 Oct 2006, pp 1–6

    Google Scholar 

  40. Powell GE, Percival IC (1979) A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems. J Phys Math Gen 12(11):2053–2071

    CAS  Google Scholar 

  41. Blanco S, Garay A, Coulombie D (2013) Comparison of frequency bands using spectral entropy for epileptic seizure prediction. ISRN Neurol 2013:5

    Google Scholar 

  42. Bezerianos A, Tong S, Thakor N (2003) Time-dependent entropy estimation of EEG rhythm changes following brain ischemia. Ann Biomed Eng 31(2):221–232

    CAS  PubMed  Google Scholar 

  43. Zygierewicz J, Durka PJ, Klekowicz H, Franaszczuk PJ, Crone NE (2005) Computationally efficient approaches to calculating significant ERD/ERS changes in the time-frequency plane. J Neurosci Methods 145(1–2):267–276

    CAS  PubMed  Google Scholar 

  44. Cohen L (1995) Time–frequency analysis. Prentice Hall, New York, NY

    Google Scholar 

  45. Quian Quiroga R, Rosso OA, Basar E (1999) Wavelet entropy: a measure of order in evoked potentials. Electroencephalogr Clin Neurophysiol Suppl 49:298–302

    Google Scholar 

  46. Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schurmann M, Basar E (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods 105(1):65–75

    CAS  PubMed  Google Scholar 

  47. Quiroga RQ, Rosso OA, Basar E, Schurmann M (2001) Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations. Biol Cybern 84(4):291–299

    CAS  PubMed  Google Scholar 

  48. Giannakakis GA, Tsiaparas NN, Xenikou MFS, Papageorgiou C, Nikita KS (2008) Wavelet entropy differentiations of event related potentials in dyslexia. 8th IEEE international conference on bioinformatics and bioengineering, Athens, 8–10 Oct 2008, pp 1–6

    Google Scholar 

  49. Hornero R, Abasolo DE, Espino P (2003) Use of wavelet entropy to compare the EEG background activity of epileptic patients and control subjects. The proceedings seventh international symposium on signal processing and its applications, vol 2, 1–4 July 2003, pp 5–8

    Google Scholar 

  50. Li X (2006) Wavelet spectral entropy for indication of epileptic seizure in extracranial EEG. In: King I, Wang J, Chan L-W, Wang D (eds) Neural information processing. Springer, Berlin, pp 66–73

    Google Scholar 

  51. Mirzaei A, Ayatollahi A, Gifani P, Salehi L (2010) EEG analysis based on wavelet-spectral entropy for epileptic seizures detection. 3rd international conference on proceedings of biomedical engineering and informatics (BMEI), Yantai, 16–18 Oct 2010, pp 878–882

    Google Scholar 

  52. Rosso OA, Blanco S, Rabinowicz A (2003) Wavelet analysis of generalized tonic-clonic epileptic seizures. Signal Process 83(6):1275–1289

    Google Scholar 

  53. Jones DL, Baraniuk RG (1995) An adaptive optimal-kernel time-frequency representation. IEEE Trans Signal Process 43(10):2361–2371

    Google Scholar 

  54. Cohen L (1989) Time frequency-distributions—a review. Proc IEEE 77(7):941–981

    Google Scholar 

  55. Giannakakis GA, Tsiaparas NN, Papageorgiou C, Nikita KS (2009) Spectral entropy of dyslexic ERP signal by means of adaptive optimal kernel. 16th international conference on digital signal processing, Santorini, Greece, 5–7 July 2009, pp 1–6

    Google Scholar 

  56. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 88(6):2297–2301

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kolmogorov AN (1958) New metric invariant of transitive dynamical systems and endomorphisms of lebesgue spaces. Doklady Russ Acad Sci Phys 119(N5):861–864

    Google Scholar 

  58. Bein B (2006) Entropy. Best Pract Res Clin Anaesthesiol 20(1):101–109

    CAS  PubMed  Google Scholar 

  59. Pincus SM, Cummins TR, Haddad GG (1993) Heart-rate control in normal and aborted sids infants. Am J Physiol 264(3):R638–R646

    CAS  PubMed  Google Scholar 

  60. Pincus SM, Goldberger AL (1994) Physiological time-series analysis—what does regularity quantify. Am J Physiol 266(4):H1643–H1656

    CAS  PubMed  Google Scholar 

  61. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

    CAS  PubMed  Google Scholar 

  62. Kim WS, Yoon YZ, Bae JH, Soh KS (2005) Nonlinear characteristics of heart rate time series: influence of three recumbent positions in patients with mild or severe coronary artery disease. Physiol Meas 26(4):517–529

    PubMed  Google Scholar 

  63. Pincus SM, Mulligan T, Iranmanesh A, Gheorghiu S, Godschalk M, Veldhuis JD (1996) Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males. Proc Natl Acad Sci U S A 93(24):14100–14105

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Srinivasan V, Eswaran C, Sriraam N (2007) Approximate entropy-based epileptic EEG detection using artificial neural network’s. IEEE Trans Inf Technol Biomed 11(3):288–295

    PubMed  Google Scholar 

  65. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036

    Google Scholar 

  66. Zhou Y, Huang RM, Chen ZY, Chang X, Chen JL, Xie LL (2012) Application of approximate entropy on dynamic characteristics of epileptic absence seizure. Neural Regen Res 7(8):572–577

    Google Scholar 

  67. Guo L, Rivero D, Pazos A (2010) Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Methods 193(1):156–163

    PubMed  Google Scholar 

  68. Giannakakis G, Sakkalis V, Pediaditis M, Farmaki C, Vorgia P, Tsiknakis M (2013) An approach to absence epileptic seizures detection using approximate entropy. 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Osaka, Japan, 3–7 July 2013, pp 413–416

    Google Scholar 

  69. Abásolo D, Hornero R, Espino P, Álvarez D, Poza J (2006) Entropy analysis of the EEG background activity in Alzheimer’s disease patients. Physiol Meas 27(3):241

    PubMed  Google Scholar 

  70. Song Y, Crowcroft J, Zhang J (2012) Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J Neurosci Methods 210(2):132–146

    PubMed  Google Scholar 

  71. Molteni E, Perego P, Zanotta N, Reni G (2008) Entropy analysis on EEG signal in a case study of focal myoclonus. Conf Proc IEEE Eng Med Biol Soc 2008:4724–4727

    PubMed  Google Scholar 

  72. Abásolo D, Muñoz D, Espino P (2012) Kullback-leibler entropy analysis of the electroencephalogram background activity in Alzheimer’s disease patients. In: The proceedings of 9th IASTED international conference on biomedical engineering, BioMed 2012, pp 43–46

    Google Scholar 

  73. Quiroga RQ, Arnhold J, Lehnertz K, Grassberger P (2000) Kulback-Leibler and renormalized entropies: applications to electroencephalograms of epilepsy patients. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62(6):8380–8386

    CAS  PubMed  Google Scholar 

  74. Abasolo D, James CJ, Hornero R (2007) Non-linear analysis of intracranial electroencephalogram recordings with approximate entropy and Lempel-Ziv complexity for epileptic seizure detection. Conf Proc IEEE Eng Med Biol Soc 2007:1953–1956

    PubMed  Google Scholar 

  75. James CJ, Abasolo D, Gupta D (2007) Space-time ICA versus Ensemble ICA for ictal EEG analysis with component differentiation via Lempel-Ziv complexity. Conf Proc IEEE Eng Med Biol Soc 2007:5473–5476

    PubMed  Google Scholar 

  76. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88(17):174102

    PubMed  Google Scholar 

  77. Li XL, Ouyang GX, Richards DA (2007) Predictability analysis of absence seizures with permutation entropy. Epilepsy Res 77(1):70–74

    PubMed  Google Scholar 

  78. Ouyang G, Dang C, Richards DA, Li X (2010) Ordinal pattern based similarity analysis for EEG recordings. Clin Neurophysiol 121(5):694–703

    PubMed  Google Scholar 

  79. Sakkalis V, Giannakakis G, Farmaki C, Mousas A, Pediaditis M, Vorgia P, Tsiknakis M (2013) Absence seizure epilepsy detection using linear and nonlinear EEG analysis methods. 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Osaka, Japan, 3–7 July 2013, pp 6333–6336

    Google Scholar 

  80. Deburchgraeve W, Cherian PJ, De Vos M, Swarte RM, Blok JH, Visser GH, Govaert P, Van Huffel S (2008) Automated neonatal seizure detection mimicking a human observer reading EEG. Clin Neurophysiol 119(11):2447–2454

    CAS  PubMed  Google Scholar 

  81. Nonclercq A, Foulon M, Verheulpen D, De Cock C, Buzatu M, Mathys P, Van Bogaert P (2009) Spike detection algorithm automatically adapted to individual patients applied to spike-and-wave percentage quantification. Neurophysiol Clin 39(2):123–131

    CAS  PubMed  Google Scholar 

  82. Adjouadi M, Sanchez D, Cabrerizo M, Ayala M, Jayakar P, Yaylali I, Barreto A (2004) Interictal spike detection using the Walsh transform. IEEE Trans Biomed Eng 51(5):868–872

    PubMed  Google Scholar 

  83. Adjouadi M, Cabrerizo M, Ayala M, Sanchez D, Yaylali I, Jayakar P, Barreto A (2005) Detection of interictal spikes and artifactual data through orthogonal transformations. J Clin Neurophysiol 22(1):53–64

    PubMed  Google Scholar 

  84. Pediaditis M, Tsiknakis M, Vorgia P, Kafetzopoulos D, Danilatou V, Fotiadis D (2010) Vision-based human motion analysis in epilepsy—methods and challenges. 10th IEEE international conference on information technology and applications in biomedicine (ITAB), Corfu, 3–5 Nov 2010, pp 1–5

    Google Scholar 

  85. Pediaditis M, Tsiknakis M, Leitgeb N (2012) Vision-based motion detection, analysis and recognition of epileptic seizures-A systematic review. Comput Methods Programs Biomed 108(3):1133–1148

    PubMed  Google Scholar 

  86. Viglione SS, Walsh GO (1975) Epileptic seizure prediction. Electroencephalogr Clin Neurophysiol 39:435–436

    CAS  PubMed  Google Scholar 

  87. Rogowski Z, Gath I, Bental E (1981) On the prediction of epileptic seizures. Biol Cybern 42(1):9–15

    CAS  PubMed  Google Scholar 

  88. Gotman J, Ives JR, Gloor P, Olivier A, Quesney LF (1982) Changes in interictal eeg spiking and seizure occurrence in humans. Epilepsia 23(4):432–433

    Google Scholar 

  89. Mormann F, Kreuz T, Rieke C, Andrzejak RG, Kraskov A, David P, Elger CE, Lehnertz K (2005) On the predictability of epileptic seizures. Clin Neurophysiol 116(3):569–587

    PubMed  Google Scholar 

  90. van Drongelen W, Nayak S, Frim DM, Kohrman MH, Towle VL, Lee HC, McGee AB, Chico MS, Hecox KE (2003) Seizure anticipation in pediatric epilepsy: use of Kolmogorov entropy. Pediatr Neurol 29(3):207–213

    PubMed  Google Scholar 

  91. McSharry PE, Smith LA, Tarassenko L (2003) Comparison of predictability of epileptic seizures by a linear and a nonlinear method. IEEE Trans Biomed Eng 50(5):628–633

    PubMed  Google Scholar 

  92. Hjorth B (1970) EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol 29(3):306–310

    CAS  PubMed  Google Scholar 

  93. Park Y, Luo L, Parhi KK, Netoff T (2011) Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia 52(10):1761–1770

    PubMed  Google Scholar 

  94. Litt B, Esteller R, Echauz J, D'Alessandro M, Shor R, Henry T, Pennell P, Epstein C, Bakay R, Dichter M, Vachtsevanos G (2001) Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30(1):51–64

    CAS  PubMed  Google Scholar 

  95. Maiwald T, Winterhalder M, Aschenbrenner-Scheibe R, Voss HU, Schulze-Bonhage A, Timmer J (2004) Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic. Physica D-Nonlinear Phenomena 194(3–4):357–368

    Google Scholar 

  96. Gigola S, Ortiz F, D’Attellis CE, Silva W, Kochen S (2004) Prediction of epileptic seizures using accumulated energy in a multiresolution framework. J Neurosci Methods 138(1–2):107–111

    CAS  PubMed  Google Scholar 

  97. Chisci L, Mavino A, Perferi G, Sciandrone M, Anile C, Colicchio G, Fuggetta F (2010) Real-time epileptic seizure prediction using AR models and support vector machines. IEEE Trans Biomed Eng 57(5):1124–1132

    PubMed  Google Scholar 

  98. Iasemidis LD, Shiau DS, Chaovalitwongse W, Sackellares JC, Pardalos PM, Principe JC, Carney PR, Prasad A, Veeramani B, Tsakalis K (2003) Adaptive epileptic seizure prediction system. IEEE Trans Biomed Eng 50(5):616–627

    PubMed  Google Scholar 

  99. Iasemidis LD, Shiau DS, Sackellares JC, Pardalos PA, Prasad A (2004) Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans Biomed Eng 51(3):493–506

    PubMed  Google Scholar 

  100. Iasemidis LD, Sackellares JC, Zaveri HP, Williams WJ (1990) Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr 2(3):187–201

    CAS  PubMed  Google Scholar 

  101. Van Quyen ML, Martinerie J, Baulac M, Varela F (1999) Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. Neuroreport 10(10):2149–2155

    Google Scholar 

  102. Le Van Quyen M, Adam C, Martinerie J, Baulac M, Clemenceau S, Varela F (2000) Spatio-temporal characterizations of non-linear changes in intracranial activities prior to human temporal lobe seizures. Eur J Neurosci 12(6):2124–2134

    PubMed  Google Scholar 

  103. Le Van Quyen M, Martinerie J, Navarro V, Boon P, D'Have M, Adam C, Renault B, Varela F, Baulac M (2001) Anticipation of epileptic seizures from standard EEG recordings. Lancet 357(9251):183–188

    PubMed  Google Scholar 

  104. Navarro V, Martinerie J, Quyen MLV, Clemenceau S, Adam C, Baulac M, Varela F (2002) Seizure anticipation in human neocortical partial epilepsy. Brain 125(3):640–655

    PubMed  Google Scholar 

  105. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349

    Google Scholar 

  106. Lehnertz K, Andrzejak RG, Arnhold J, Kreuz T, Mormann F, Rieke C, Widman G, Elger CE (2001) Nonlinear EEG analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention. J Clin Neurophysiol 18(3):209–222

    CAS  PubMed  Google Scholar 

  107. Aschenbrenner-Scheibe R, Maiwald T, Winterhalder M, Voss HU, Timmer J, Schulze-Bonhage A (2003) How well can epileptic seizures be predicted? An evaluation of a nonlinear method. Brain 126:2616–2626

    CAS  PubMed  Google Scholar 

  108. Zandi AS, Dumont GA, Javidan M, Tafreshi R (2009) An entropy-based approach to predict seizures in temporal lobe epilepsy using scalp EEG. Conf Proc IEEE Eng Med Biol Soc 2009:228–231

    PubMed  Google Scholar 

  109. Lee H, Kohrman M, Hecox K, Drongelen W (2013) Seizure prediction. In: He B (ed) Neural engineering. Springer, New York, NY

    Google Scholar 

  110. Zhang L-Y (2009) Kolmogorov entropy changes and cortical lateralization during complex problem solving task measured with EEG. J Biomed Sci Eng 2(8):661–664

    Google Scholar 

  111. Mormann F, Andrzejak RG, Kreuz T, Rieke C, David P, Elger CE, Lehnertz K (2003) Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients. Phys Rev E Stat Nonlin Soft Matter Phys 67(2):021912

    PubMed  Google Scholar 

  112. Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE (2003) Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53(3):173–185

    PubMed  Google Scholar 

  113. Lehnertz K, Mormann F, Kreuz T, Andrzejak RG, Rieke C, David P, Elger CE (2003) Seizure prediction by nonlinear EEG analysis. IEEE Eng Med Biol Mag 22(1):57–63

    PubMed  Google Scholar 

  114. Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144(3–4):358–369

    Google Scholar 

  115. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    Google Scholar 

  116. Guyon I, Aliferis C, Cooper G, Elisseeff A, Pellet J-P, Spirtes P, Statnikov A (2008) Design and analysis of the causation and prediction challenge. WCCI workshop on causality

    Google Scholar 

  117. Temko A, Thomas E, Marnane W, Lightbody G, Boylan G (2011) EEG-based neonatal seizure detection with support vector machines. Clin Neurophysiol 122(3):464–473

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Pukelsheim F (1994) The three sigma rule. Am Stat 48(2):88–91

    Google Scholar 

  119. Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187(2):1017–1026

    Google Scholar 

  120. Srinivasan V, Eswaran C, Sriraam N (2005) Artificial neural network based epileptic detection using time-domain and frequency-domain features. J Med Syst 29(6):647–660

    CAS  PubMed  Google Scholar 

  121. Ghosh-Dastidar S, Adeli H, Dadmehr N (2007) Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 54(9):1545–1551

    PubMed  Google Scholar 

  122. Übeyli ED (2010) Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst Appl 37(2):985–992

    Google Scholar 

  123. Chandaka S, Chatterjee A, Munshi S (2009) Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst Appl 36(2, Part 1):1329–1336

    Google Scholar 

  124. Freiburg EEG database. https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database

  125. The European Epilepsy Database. http://epilepsy-database.eu

  126. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlin Soft Matter Phys 64(6):061907

    CAS  PubMed  Google Scholar 

  127. Gautama T, Mandic DP, Van Hulle MM (2003) Indications of nonlinear structures in brain electrical activity. Phys Rev E Stat Nonlin Soft Matter Phys 67(4 Pt 2): 046204

    PubMed  Google Scholar 

  128. Nigam VP, Graupe D (2004) A neural-network-based detection of epilepsy. Neurol Res 26(1):55–60

    PubMed  Google Scholar 

  129. Guler I, Ubeyli ED (2005) Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J Neurosci Methods 148(2):113–121

    PubMed  Google Scholar 

  130. Güler İ, Übeyli̇ ED (2007) Expert systems for time-varying biomedical signals using eigenvector methods. Expert Syst Appl 32(4):1045–1058

    Google Scholar 

  131. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32(4):1084–1093

    Google Scholar 

  132. Polat K, Gunes S (2008) Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals. Expert Syst Appl 34(3):2039–2048

    Google Scholar 

  133. Ghosh-Dastidar S, Adeli H, Dadmehr N (2008) Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng 55(2):512–518

    PubMed  Google Scholar 

  134. Guo L, Rivero D, Dorado J, Rabunal JR, Pazos A (2010) Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods 191(1):101–109

    PubMed  Google Scholar 

  135. Guo L, Rivero D, Dorado J, Munteanu CR, Pazos A (2011) Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst Appl 38(8):10425–10436

    Google Scholar 

  136. Martis RJ, Acharya UR, Tan JH, Petznick A, Yanti R, Chua CK, Ng EY, Tong L (2012) Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals. Int J Neural Syst 22(6):1250027

    PubMed  Google Scholar 

  137. Alkan A, Koklukaya E, Subasi A (2005) Automatic seizure detection in EEG using logistic regression and artificial neural network. J Neurosci Methods 148(2):167–176

    PubMed  Google Scholar 

  138. Greene BR, Boylan GB, Reilly RB, de Chazal P, Connolly S (2007) Combination of EEG and ECG for improved automatic neonatal seizure detection. Clin Neurophysiol 118(6):1348–1359

    PubMed  Google Scholar 

  139. Vukkadala S, Vijayalakshmi S, Vijayapriya S (2009) Automated detection of epileptic EEG using approximate entropy in elman networks. Int J Recent Trends Eng 1(1):307–312

    Google Scholar 

  140. Zhou W, Liu Y, Yuan Q, Li X (2013) Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG. IEEE Trans Biomed Eng 60(12):3375–3381

    Google Scholar 

  141. Yacoob Y, Davis LS (1996) Recognizing human facial expressions from long image sequences using optical flow. IEEE Trans Pattern Anal Mach Intell 18(6):636–642

    Google Scholar 

  142. Schad A, Schindler K, Schelter B, Maiwald T, Brandt A, Timmer J, Schulze-Bonhage A (2008) Application of a multivariate seizure detection and prediction method to non-invasive and intracranial long-term EEG recordings. Clin Neurophysiol 119(1):197–211

    PubMed  Google Scholar 

  143. James CJ, Gupta D (2009) Seizure prediction for epilepsy using a multi-stage phase synchrony based system. Conf Proc IEEE Eng Med Biol Soc 2009:25–28. doi:10.1109/IEMBS.2009.5334898

    PubMed  Google Scholar 

  144. Lombroso CT (1996) Neonatal seizures: a clinician’s overview. Brain Dev 18(1):1–28

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Giannakakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Giannakakis, G., Sakkalis, V., Pediaditis, M., Tsiknakis, M. (2014). Methods for Seizure Detection and Prediction: An Overview. In: Sakkalis, V. (eds) Modern Electroencephalographic Assessment Techniques. Neuromethods, vol 91. Humana Press, New York, NY. https://doi.org/10.1007/7657_2014_68

Download citation

  • DOI: https://doi.org/10.1007/7657_2014_68

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1297-1

  • Online ISBN: 978-1-4939-1298-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics