Skip to main content

2011 | OriginalPaper | Buchkapitel

Constitutive Modelling of Brain Tissue for Prediction of Traumatic Brain Injury

verfasst von : J. A. W. van Dommelen, M. Hrapko, G. W. M. Peters

Erschienen in: Neural Tissue Biomechanics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To develop protective measures for crash situations, an accurate assessment of injury risk is required. By using a Finite Element model of the head, the mechanical behaviour of the brain can be predicted for any acceleration and improved injury criteria can be developed and implemented into safety standards. Many head models are based on a detailed geometrical description of the anatomical components. However, for reliable predictions of injury, also an accurate constitutive model for brain tissue is required that is applicable for large deformations and complex loading conditions that occur during an impact to the head. This chapter deals with constitutive modelling of brain tissue. Different approaches towards modelling of the mechanical response of biological tissues are discussed. A short overview of the large strain behaviour of brain tissue and constitutive models that have been developed for this material is given. A non-linear viscoelastic model for brain tissue is then discussed in more detail. The model is based on a multi-mode Maxwell model and consists of a non-linear elastic mode in combination with a number of viscoelastic modes. For this model, also a numerical implementation scheme is given. The influences of constitutive non-linearities of brain tissue in numerical head model simulations are shown by comparing the performance of the model of Hrapko et al. with a simplified version, based on neo-Hookean elastic behaviour, and a third non-linear constitutive model from literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It is important to make a clear distinction between functional and mechanical damage. Functional damage can be considered as injury, i.e. change or loss of functionality of the brain tissue, whereas mechanical damage only affects the mechanical properties of the tissue. At these strain levels, functional damage may still occur (as observed by for example Bain and Meaney [2] and Morrison et al. [33]) and at larger time scales also mechanical changes could develop.
 
Literatur
1.
Zurück zum Zitat Arbogast, K.B., Meaney, D.F., Thibault, L.E.: Biomechanical characterization of the constitutive relationship for the brainstem. In: Proceedings of the 39th Stapp Car Crash Conference, SAE 952716, pp. 153–159 (1995) Arbogast, K.B., Meaney, D.F., Thibault, L.E.: Biomechanical characterization of the constitutive relationship for the brainstem. In: Proceedings of the 39th Stapp Car Crash Conference, SAE 952716, pp. 153–159 (1995)
2.
Zurück zum Zitat Bain, A.C., Meaney, D.F.: Tissue-level thresholds for axonal damage in an experimental model of cerebral nervous system white matter injury. J. Biomech. Eng. Trans. ASME 122(6), 615–622 (2000)CrossRef Bain, A.C., Meaney, D.F.: Tissue-level thresholds for axonal damage in an experimental model of cerebral nervous system white matter injury. J. Biomech. Eng. Trans. ASME 122(6), 615–622 (2000)CrossRef
3.
Zurück zum Zitat Bandak, F.A., Eppinger, R.H.: A three-dimensional finite elements analysis of the human brain under combined rotational and translational accelerations. In: Proceedings of the 38th Stapp Car Crash Conference, SAE 942215, pp. 148–163 (1994) Bandak, F.A., Eppinger, R.H.: A three-dimensional finite elements analysis of the human brain under combined rotational and translational accelerations. In: Proceedings of the 38th Stapp Car Crash Conference, SAE 942215, pp. 148–163 (1994)
4.
Zurück zum Zitat Bilston, L.E., Liu, Z., Phan-Thien, N.: Large strain behavior of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(3), 335–345 (2001) Bilston, L.E., Liu, Z., Phan-Thien, N.: Large strain behavior of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(3), 335–345 (2001)
5.
Zurück zum Zitat Brands, D.W.A.: Implementation of Sliding Interface in the tu/e fe Head Model. Technical Report, TNO Automotive, The Netherlands (2002) Brands, D.W.A.: Implementation of Sliding Interface in the tu/e fe Head Model. Technical Report, TNO Automotive, The Netherlands (2002)
6.
Zurück zum Zitat Brands, D.W.A., Bovendeerd, P.H.M., Peters, G.W.M., Wismans, J.S.H.M.: The large shear strain dynamic behavior of in-vitro porcine brain tissue and the silicone gel model material. In: Proceedings of the 44th Stapp Car Crash Conference, SAE 2000-01-SC17, pp. 249–260 (2000) Brands, D.W.A., Bovendeerd, P.H.M., Peters, G.W.M., Wismans, J.S.H.M.: The large shear strain dynamic behavior of in-vitro porcine brain tissue and the silicone gel model material. In: Proceedings of the 44th Stapp Car Crash Conference, SAE 2000-01-SC17, pp. 249–260 (2000)
7.
Zurück zum Zitat Brands, D.W.A., Bovendeerd, P.H.M., Wismans, J.S.H.M.: On the potential importance of non-linear viscoelastic material modelling for numerical prediction of the tissue response: test and application. Stapp Car Crash J. 46(SAE 2002-22-0006), 103–121 (2002) Brands, D.W.A., Bovendeerd, P.H.M., Wismans, J.S.H.M.: On the potential importance of non-linear viscoelastic material modelling for numerical prediction of the tissue response: test and application. Stapp Car Crash J. 46(SAE 2002-22-0006), 103–121 (2002)
8.
Zurück zum Zitat Brands, D.W.A., Peters, G.W.M., Bovendeerd, P.H.M.: Design and numerical implementation of a 3-d non-linear viscoelastic constitutive model for brain tissue during impact. J. Biomech. 37(1), 127–134 (2004)CrossRef Brands, D.W.A., Peters, G.W.M., Bovendeerd, P.H.M.: Design and numerical implementation of a 3-d non-linear viscoelastic constitutive model for brain tissue during impact. J. Biomech. 37(1), 127–134 (2004)CrossRef
9.
Zurück zum Zitat Claessens, M.H.A., Sauren, F., Wismans, J.S.H.M.: Modelling of the human head under impact conditions: a parametric study. In: Proceedings of the 41th Stapp Car Crash Conference, SAE 973338, pp. 315–328 (1997) Claessens, M.H.A., Sauren, F., Wismans, J.S.H.M.: Modelling of the human head under impact conditions: a parametric study. In: Proceedings of the 41th Stapp Car Crash Conference, SAE 973338, pp. 315–328 (1997)
10.
Zurück zum Zitat Darvish, K.K., Crandall, J.R.: Investigating Nonlinear Viscoelastic Properties of Brain Tissue Using the Forced Vibration Method. American Society of Biomechanics, 24th Annual Meeting (1999) Darvish, K.K., Crandall, J.R.: Investigating Nonlinear Viscoelastic Properties of Brain Tissue Using the Forced Vibration Method. American Society of Biomechanics, 24th Annual Meeting (1999)
11.
Zurück zum Zitat Darvish, K.K., Crandall, J.R.: Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23(9), 633–645 (2001)CrossRef Darvish, K.K., Crandall, J.R.: Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23(9), 633–645 (2001)CrossRef
12.
Zurück zum Zitat Darvish, K.K., Takhounts, E.G., Crandall, J.R.: A dynamic method to develop nonlinear viscoelastic model of brain tissue. Advances in Bioengineering. In: Proceedings of the ASME International Mechanical Engineering Congress, vol. 39. Anaheim, California (1998) Darvish, K.K., Takhounts, E.G., Crandall, J.R.: A dynamic method to develop nonlinear viscoelastic model of brain tissue. Advances in Bioengineering. In: Proceedings of the ASME International Mechanical Engineering Congress, vol. 39. Anaheim, California (1998)
13.
Zurück zum Zitat Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng. Trans. ASME 119(4), 423–432 (1997)CrossRef Donnelly, B.R., Medige, J.: Shear properties of human brain tissue. J. Biomech. Eng. Trans. ASME 119(4), 423–432 (1997)CrossRef
14.
Zurück zum Zitat Franceschini, G., Bigoni, D., Regitnig, P., Holzapfel, G.A.: Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54(12), 2592–2620 (2006)MATHCrossRef Franceschini, G., Bigoni, D., Regitnig, P., Holzapfel, G.A.: Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54(12), 2592–2620 (2006)MATHCrossRef
15.
Zurück zum Zitat Fung, Y.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981) Fung, Y.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1981)
16.
Zurück zum Zitat Gurdjian, E.S., Lissner, H.R., Patrick, L.M.: Protection of the head and neck in sports. J. Am. Med. Assoc. 182, 502–512 (1962) Gurdjian, E.S., Lissner, H.R., Patrick, L.M.: Protection of the head and neck in sports. J. Am. Med. Assoc. 182, 502–512 (1962)
17.
Zurück zum Zitat Horgan, T.J., Gilchrist, M.D.: The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8(3), 1–14 (2003) Horgan, T.J., Gilchrist, M.D.: The creation of three-dimensional finite element models for simulating head impact biomechanics. Int. J. Crashworthiness 8(3), 1–14 (2003)
18.
Zurück zum Zitat Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43(5), 623–636 (2006) Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: The mechanical behaviour of brain tissue: large strain response and constitutive modelling. Biorheology 43(5), 623–636 (2006)
19.
Zurück zum Zitat Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: Characterisation of the mechanical behaviour of brain tissue in compression and shear. Biorheology 45, 663–676 (2008) Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: Characterisation of the mechanical behaviour of brain tissue in compression and shear. Biorheology 45, 663–676 (2008)
20.
Zurück zum Zitat Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: The influence of test conditions on characterisation of the mechanical properties of brain tissue. J. Biomech. Eng. Trans. ASME 130(3), 031003 (2008) Hrapko, M., van Dommelen, J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: The influence of test conditions on characterisation of the mechanical properties of brain tissue. J. Biomech. Eng. Trans. ASME 130(3), 031003 (2008)
21.
Zurück zum Zitat Hrapko, M., van Dommelen. J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: On the consequences of non linear constitutive modelling of brain tissue for injury prediction with numerical head models. Int. J. Crashworthiness 14, 245–257 (2009)CrossRef Hrapko, M., van Dommelen. J.A.W., Peters, G.W.M., Wismans, J.S.H.M.: On the consequences of non linear constitutive modelling of brain tissue for injury prediction with numerical head models. Int. J. Crashworthiness 14, 245–257 (2009)CrossRef
22.
Zurück zum Zitat Iwata, A., Stys, P.K., Wolf, J.A., Chen, X.H., Taylor, A.G., Meaney, D.F., Smith, D.H.: Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J. Neurosci. 24(19), 4605–4613 (2004)CrossRef Iwata, A., Stys, P.K., Wolf, J.A., Chen, X.H., Taylor, A.G., Meaney, D.F., Smith, D.H.: Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J. Neurosci. 24(19), 4605–4613 (2004)CrossRef
23.
Zurück zum Zitat Kleiven, S.: Evaluation of head injury criteria using a finite element model validation against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthiness 11(1), 65–79 (2006)CrossRef Kleiven, S.: Evaluation of head injury criteria using a finite element model validation against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthiness 11(1), 65–79 (2006)CrossRef
24.
Zurück zum Zitat Langlois, J.A., Rutland-Brown, W., Thomas, K.E.: Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Technical Report, Centers for Disease Control and Prevention, National Center for Injury Prevention and Control (2004) Langlois, J.A., Rutland-Brown, W., Thomas, K.E.: Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths. Technical Report, Centers for Disease Control and Prevention, National Center for Injury Prevention and Control (2004)
25.
Zurück zum Zitat Macosko, C.W.: Rheology: Principles, Measurements, and Applications. VCH Publishers, Berlin (1994) Macosko, C.W.: Rheology: Principles, Measurements, and Applications. VCH Publishers, Berlin (1994)
26.
Zurück zum Zitat Meaney, D.F.: Relationship between structural modeling and hyperelastic material behavior: application to cns white matter. Biomech. Model. Mechanobiol. 1, 279–293 (2003)CrossRef Meaney, D.F.: Relationship between structural modeling and hyperelastic material behavior: application to cns white matter. Biomech. Model. Mechanobiol. 1, 279–293 (2003)CrossRef
27.
Zurück zum Zitat Mendis, K.K., Stalnaker, R.L., Advani, S.H.: A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng. Trans. ASME 117(3), 279–285 (1995)CrossRef Mendis, K.K., Stalnaker, R.L., Advani, S.H.: A constitutive relationship for large deformation finite element modeling of brain tissue. J. Biomech. Eng. Trans. ASME 117(3), 279–285 (1995)CrossRef
28.
Zurück zum Zitat Miller, K.: Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J. Biomech. 32(5), 531–537 (1999)CrossRef Miller, K.: Constitutive model of brain tissue suitable for finite element analysis of surgical procedures. J. Biomech. 32(5), 531–537 (1999)CrossRef
29.
Zurück zum Zitat Miller, K.: Biomechanics of soft tissues. Med. Sci. Monit. 6(1), 158–167 (2000) Miller, K.: Biomechanics of soft tissues. Med. Sci. Monit. 6(1), 158–167 (2000)
30.
Zurück zum Zitat Miller, K.: How to test very soft biological tissue in extension. J. Biomech. 34(5), 651–657 (2001)CrossRef Miller, K.: How to test very soft biological tissue in extension. J. Biomech. 34(5), 651–657 (2001)CrossRef
31.
Zurück zum Zitat Miller, K., Chinzei, K.: Constitutive modeling of brain tissue: experiment and theory. J. Biomech. 30(11, 12), 1115–1121 (1997) CrossRef Miller, K., Chinzei, K.: Constitutive modeling of brain tissue: experiment and theory. J. Biomech. 30(11, 12), 1115–1121 (1997) CrossRef
32.
Zurück zum Zitat Moerman, K., Herlaar, K.: Finite Element Modelling of the Human Head to Predict and Analyse Brain Injury due to Blast Induced Acceleration. Technical Report. TNO-DV2 2005 IN017, TNO Defense, Security and Safety, The Netherlands (2006) Moerman, K., Herlaar, K.: Finite Element Modelling of the Human Head to Predict and Analyse Brain Injury due to Blast Induced Acceleration. Technical Report. TNO-DV2 2005 IN017, TNO Defense, Security and Safety, The Netherlands (2006)
33.
Zurück zum Zitat Morrison, B. III., Cater, H.L., Wang, C.C.B., Thomas, F.C., Hung, C.T., Ateshian, G.A., Sundstrom, L.E.: A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47(SAE 2003-22-0006), 93–106 (2003) Morrison, B. III., Cater, H.L., Wang, C.C.B., Thomas, F.C., Hung, C.T., Ateshian, G.A., Sundstrom, L.E.: A tissue level tolerance criterion for living brain developed with an in vitro model of traumatic mechanical loading. Stapp Car Crash J. 47(SAE 2003-22-0006), 93–106 (2003)
34.
Zurück zum Zitat Nahum, A.M., Smith, R.W., Ward, C.C.: Intracranial pressure dynamics during head impact. In: Proceedings of the 21st Stapp Car Crash Conference, SAE 770922, pp. 339–366 (1977) Nahum, A.M., Smith, R.W., Ward, C.C.: Intracranial pressure dynamics during head impact. In: Proceedings of the 21st Stapp Car Crash Conference, SAE 770922, pp. 339–366 (1977)
35.
Zurück zum Zitat Nicolle, S., Lounis, M., Willinger, R.: Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results. Stapp Car Crash J. 48(SAE 2004-22-0011), 239–258 (2004) Nicolle, S., Lounis, M., Willinger, R.: Shear properties of brain tissue over a frequency range relevant for automotive impact situations: new experimental results. Stapp Car Crash J. 48(SAE 2004-22-0011), 239–258 (2004)
36.
Zurück zum Zitat Nicolle, S., Lounis, M., Willinger, R., Palierne, J.F.: Shear linear behaviour of brain tissue over a large frequency range. Biorheology 42(3), 209–223 (2005) Nicolle, S., Lounis, M., Willinger, R., Palierne, J.F.: Shear linear behaviour of brain tissue over a large frequency range. Biorheology 42(3), 209–223 (2005)
37.
Zurück zum Zitat Peters, G.W.M., Baaijens, F.: Modelling of non-isothermal viscoelastic flows. J. Non-Newt. Fluid Mech. 68(2, 3), 205–224 (1997)CrossRef Peters, G.W.M., Baaijens, F.: Modelling of non-isothermal viscoelastic flows. J. Non-Newt. Fluid Mech. 68(2, 3), 205–224 (1997)CrossRef
38.
Zurück zum Zitat Peters, G.W.M., Meulman, J.H., Sauren, A.H.J.: The applicability of the time/temperature superposition principle to brain tissue. Biorheology 34(2), 127–138 (1997)CrossRef Peters, G.W.M., Meulman, J.H., Sauren, A.H.J.: The applicability of the time/temperature superposition principle to brain tissue. Biorheology 34(2), 127–138 (1997)CrossRef
39.
Zurück zum Zitat Prange, M.T., Margulies, S.S.: Directional properties of gray and white brain tissue. In: Symp. Proc. Center for Disease Control, Wayne State University (1998) Prange, M.T., Margulies, S.S.: Directional properties of gray and white brain tissue. In: Symp. Proc. Center for Disease Control, Wayne State University (1998)
40.
Zurück zum Zitat Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. Trans. ASME 124(2), 244–252 (2002)CrossRef Prange, M.T., Margulies, S.S.: Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. Trans. ASME 124(2), 244–252 (2002)CrossRef
41.
Zurück zum Zitat Prange, M.T., Meaney, D.F., Margulies, S.S.: Defining brain mechanical properties: effects of region, direction, and species. In: Proceedings of the 44th Stapp Car Crash Conference, SAE 2000-01-SC15, pp. 205–213 (2000) Prange, M.T., Meaney, D.F., Margulies, S.S.: Defining brain mechanical properties: effects of region, direction, and species. In: Proceedings of the 44th Stapp Car Crash Conference, SAE 2000-01-SC15, pp. 205–213 (2000)
42.
Zurück zum Zitat Ruan, J.S., Prasad, P. Head injury potential assessment in frontal impacts by mathematical modeling. In: Proceedings of the 38th Stapp Car Crash Conference SAE 942212, pp. 111–121 (1994) Ruan, J.S., Prasad, P. Head injury potential assessment in frontal impacts by mathematical modeling. In: Proceedings of the 38th Stapp Car Crash Conference SAE 942212, pp. 111–121 (1994)
43.
Zurück zum Zitat Shen, F., Tay, T.E., Li, J.Z., Nigen, S., Lee, P.V.S., Chan, H.K.: Modified bilston nonlinear viscoelastic model for finite element head injury studies. J. Biomech. Eng. Trans. ASME 128(5), 797–801 (2006)CrossRef Shen, F., Tay, T.E., Li, J.Z., Nigen, S., Lee, P.V.S., Chan, H.K.: Modified bilston nonlinear viscoelastic model for finite element head injury studies. J. Biomech. Eng. Trans. ASME 128(5), 797–801 (2006)CrossRef
44.
Zurück zum Zitat Takhounts, E.G., Crandall, J.R., Matthews, B.T.: Shear properties of brain tissue using non-linear green-rivlin viscoelastic constitutive equation. In: Injury Biomechanics Research, Proceedings of the 27th International Workshop, pp. 141–156 (1999) Takhounts, E.G., Crandall, J.R., Matthews, B.T.: Shear properties of brain tissue using non-linear green-rivlin viscoelastic constitutive equation. In: Injury Biomechanics Research, Proceedings of the 27th International Workshop, pp. 141–156 (1999)
45.
Zurück zum Zitat Takhounts, E.G., Crandall, J.R., Darvish, K.K.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47(SAE 2003-22-0005), 107–134 (2003) Takhounts, E.G., Crandall, J.R., Darvish, K.K.: On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47(SAE 2003-22-0005), 107–134 (2003)
46.
Zurück zum Zitat Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5(1), 53–61 (2006) CrossRef Velardi, F., Fraternali, F., Angelillo, M.: Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5(1), 53–61 (2006) CrossRef
47.
Zurück zum Zitat Versace, J.: A review of the severity index. In: Proceedings of the 15th Stapp Car Crash Conference, SAE 710881, pp. 771–796 (1971) Versace, J.: A review of the severity index. In: Proceedings of the 15th Stapp Car Crash Conference, SAE 710881, pp. 771–796 (1971)
48.
Zurück zum Zitat Willinger R, Baumgartner D (2003) Human head tolerance limits to specific injury mechanisms.Int. J. Crashworthiness 8, 605–617CrossRef Willinger R, Baumgartner D (2003) Human head tolerance limits to specific injury mechanisms.Int. J. Crashworthiness 8, 605–617CrossRef
Metadaten
Titel
Constitutive Modelling of Brain Tissue for Prediction of Traumatic Brain Injury
verfasst von
J. A. W. van Dommelen
M. Hrapko
G. W. M. Peters
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2010_16

Neuer Inhalt