Skip to main content

Spatial reproduction of sound is a field in which the spatial attributes of a real recording room or a virtual space are reproduced to the listener. Spatial attributes include for example directions of sound sources, directions of reflections and envelopment by reverberation. Many such systems employ more than two loudspeakers to create virtual sources. This is called multichannel sound or spatial sound reproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Blauert. Spatial Hearing, Revised edition. MIT Press, Cambridge, MA, 1997.

    Google Scholar 

  2. R. H. Gilkey and T. R. Anderson, editors. Binaural and Spatial Hearing in Real and Virtual Environments. Lawrence Erlbaum, Mahwah, NJ, 1997.

    Google Scholar 

  3. P. M. Zurek. The precedence effect. In W. A. Yost and G. Gourewitch, editors, Directional Hearing, p. 3–25. Springer, New York, 1987.

    Google Scholar 

  4. G. Steinke. Surround sound — the new phase. an overview. In Audio Engineering Society 100th Convention Preprint # 4286, Copenhagen, Denmark, 1996.

    Google Scholar 

  5. M. F. Davis. History of spatial coding. J. Audio Eng. Soc., 51(6): 554–569, June 2003.

    Google Scholar 

  6. E. Torick. Highlights in the history of multichannel sound. J. Audio Eng. Soc., 46(1/2):27–31, January/February 1998.

    Google Scholar 

  7. F. Rumsey. Spatial Audio. Focal Press, Oxford, England, 2001.

    Google Scholar 

  8. G. Theile. HDTV sound systems: How many channels? In Proceedings of AES 9th International Conference “Television Sound Today and Tomorrow”, p. 217–232, Detroit, MI, Feb. 1–2 1991.

    Google Scholar 

  9. ITU-R Recommendation BS.775-1. Multichannel stereophonic sound system with and without accompanying picture. Technical report, International Telecommunication Union, Geneva, Switzerland, 1992–1994.

    Google Scholar 

  10. V. Pulkki. Spatial Sound Generation and Perception by Amplitude Panning Techniques. Doctoral thesis, Helsinki University of Technology, Laboratory of Acoustics and Audio Signal Processing, Espoo, Finland, August 2001.

    Google Scholar 

  11. B. B. Bauer. Phasor analysis of some stereophonic phenomena. J. Acoust. Soc. Am., 33(11):1536–1539, November 1961.

    Article  ADS  Google Scholar 

  12. J. C. Bennett, K. Barker, and F. O. Edeko. A new approach to the assessment of stereophonic sound system performance. J. Audio Eng. Soc., 33(5):314–321, May 1985.

    Google Scholar 

  13. F. R. Moore. Elements of Computer Music. Prentice Hall, Englewood Cliffs, NJ, 07632, 1990.

    Google Scholar 

  14. J. Chowning. The simulation of moving sound sources. J. Audio Eng. Soc., 19(1):2–6, 1971.

    Google Scholar 

  15. V. Pulkki. Virtual source positioning using vector base amplitude panning. J. Audio Eng. Soc., 45(6):456–466, June 1997.

    Google Scholar 

  16. V. Pulkki. Compensating displacement of amplitude-panned virtual sources. In the AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio, p. 186–195, Espoo, Finland, June 15–17 2002.

    Google Scholar 

  17. V. Pulkki. Uniform spreading of amplitude panned virtual sources. In Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Mohonk Mountain House, New Paltz, NY, 1999.

    Google Scholar 

  18. R. Sadek and C. Kyriakakis. A novel multichannel panning method for standard and arbitrary loudspeaker configurations. In AES 117th Convention paper # 6263, San Francisco, CA, 2004.

    Google Scholar 

  19. M. A. Gerzon. Panpot laws for multispeaker stereo. In The 92nd Convention 1992 March 24–27 Vienna. Audio Engineering Society, Preprint No. 3309, 1992.

    Google Scholar 

  20. D. G. Malham and A. Myatt. 3-d sound spatialization using ambisonic techniques. Comput. Music J., 19(4):58–70, 1995.

    Article  Google Scholar 

  21. J. Daniel, R. Nicol, and S. Moreau. Further investigations of high order ambisonics and wavefield synthesis for holophonic sound imaging. In Proceedings of 114th Audio Engineering Society Convention, 2003. Paper # 5788.

    Google Scholar 

  22. G. Monro. In-phase corrections for ambisonics. In Proceedings of Internation Computer Music Conference, p. 292–295, Berlin, Germany, 2000.

    Google Scholar 

  23. V. Pulkki and T. Hirvonen. Localization of virtual sources in multi-channel audio reproduction. IEEE Trans Speech Audio Proc., 2005.

    Google Scholar 

  24. P. G. Craven. Continuous surround panning for 5-speaker reproduction. In AES 24th Int. Conf. Multichannel Audio, 2003.

    Google Scholar 

  25. D. H. Cooper. Problems with shadowless stereo theory: Asymptotic spectral status. J. Audio Eng. Soc., 35(9):629–642, September 1987.

    Google Scholar 

  26. S. P. Lipshitz. Stereophonic microphone techniques. Are the purists wrong? J. Audio Eng. Soc., 34(9):716–744, 1986.

    Google Scholar 

  27. V. Pulkki, M. Karjalainen, and J. Huopaniemi. Analyzing virtual sound source attributes using a binaural auditory model. J. Audio Eng. Soc., 47(4):203–217, April 1999.

    Google Scholar 

  28. A. J. Berkhout, D. de Vries, and P. Vogel. Acoustic control by wave field synthesis. J. Acoust. Soc. Am., 93(5), May 1993.

    Google Scholar 

  29. D. Vries and M. Boone. Wave field synthesis and analysis using array technology. In Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, p. 15–18, Mohonk Mountain House, New Paltz, NY 1999.

    Google Scholar 

  30. A. Apel, T. Röder, and S. Brix. Equalization of wave field synthesis systems. In Audio Eng. Soc. 116th Convention Paper # 6121, 2004.

    Google Scholar 

  31. H. Møller, M. F. Sørensen, D. Hammershøi, and C. B. Jensen. Head-related transfer functions of human subjects. J. Audio Eng. Soc., 43(5):300–321, May 1995.

    Google Scholar 

  32. D. R. Begault. 3-D Sound for Virtual Reality and Multimedia. AP Professional, Cambridge, MA, 1994.

    Google Scholar 

  33. D. H. Cooper and J. L. Bauck. Prospects for transaural recording. J. Audio Eng. Soc., 37(1/2):3–39, January/February 1989.

    Google Scholar 

  34. B. Gardner. 3-D Audio Using Loudspeakers. PhD thesis, Massachusetts Institute of Technology, Massachusetts, USA, 1997.

    Google Scholar 

  35. O. Kirkeby, P. A. Nelson, and H. Hamada. Local sound field reproduction using two closely spaced loudspeakers. J. Acoust. Soc. Am., 104:1973–1981, October 1998.

    Google Scholar 

  36. B. Gardner. Reverberation algorithms. In M. Kahrs and K. Brandenburg, editors, Applications of Digital Signal Processing to Audio and Acoustics. Kluwer Academic Publishers, Norvell, MA, 1998.

    Google Scholar 

  37. J. Merimaa and V. Pulkki. Spatial impulse response rendering I: Analysis and synthesis. J. Audio Eng. Soc., 53(12):1115–1127, 2005.

    Google Scholar 

  38. A. D. Blumlein. U.K. Patent 394,325, 1931. Reprinted in Stereophonic Techniques, Audio Eng. Soc., NY, 1986.

    Google Scholar 

  39. R. Streicher and W. Dooley. Basic stereo microphone perspectives – a review. J. Audio Eng. Soc., 33(7/8), 1985.

    Google Scholar 

  40. V. Pulkki. Microphone techniques and directional quality of sound reproduction. In Proceedings of 112th AES Convention, Preprint # 5500, Munich, Germany, 2002. Audio Engineering Society.

    Google Scholar 

  41. A. Laborie, R. Bruno, and S. Montoya. Designing high spatial resolution microphones. In Audio Eng. Soc. 117th Convention Paper # 6231, 2003.

    Google Scholar 

  42. M. Williams. Multichannel sound recording using 3, 4 and 5 channel arrays for front sound stage coverage. In Proceedings of 117th AES Convention, Preprint # 6230, San Francisco, CA, 2004.

    Google Scholar 

  43. R. Nicol and M. Emerit. 3d-sound reproduction over an extensive listening area: a hybrid method derived from holophony and ambisonic. In Proceedings of AES 16th International Conference, p. 436–453, 1999.

    Google Scholar 

  44. E. Hulsebos, D. de Vries, and E. Bourdillat. Improved microphone array configurations for auralization of sound fields by wave-field synthesis. J. Audio Eng. Soc., 50(10):779–790, October 2002.

    Google Scholar 

  45. A. Berkhout, D. de Vries, and J. Sonke. Array technology for acoustic wave field analysis in enclosures. J. Acoust. Soc. Am., 102(5): 2757–2770, 1997.

    Article  ADS  Google Scholar 

  46. V. Pulkki. Spatial sound reproduction with directional audio coding. J. Audio Eng. Soc., 55(6):503–516, 2007.

    Google Scholar 

  47. C. Faller. A highly directive 2-capsule based microphone system. In Proceedings of 123th AES Convention, Preprint #7313, New York, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pulkki, V. (2008). Multichannel Sound Reproduction. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_38

Download citation

Publish with us

Policies and ethics