Skip to main content

The Effect of Dynamic Acoustical Features on Musical Timbre

  • Chapter
Analysis, Synthesis, and Perception of Musical Sounds

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

Timbre has been an important concept for scientific exploration of music at least since the time of Helmholtz ([1877] 1954). Since Helmholtz’s time, a number of studies have defined and investigated acoustical features of musical instrument tones to determine their perceptual importance, or salience (e.g., Grey, 1975, 1977; Kendall, 1986; Kendall et al., 1999; Luce and Clark, 1965; McAdams et al., 1995, 1999; Saldanha and Corso, 1964; Wedin and Goude, 1972). Most of these studies have considered only nonpercussive, or continuant, tones of Western orchestral instruments (or emulations thereof). In the past few years, advances in computing power and programming have made possible and affordable the definition and control of new acoustical variables. This chapter gives an overview of past and current research, with a special emphasis on the time-variant aspects of musical timbre. According to common observation, “music is made of tones in time” (Spaeth, 1933). We will also consider the fact that music is made of “time in tones.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabie, P., Carroll, J. D., and DeSarbo, W. S. (1987). Three-Way Scaling and Clustering. Sage university papers. Quantitative applications in the social sciences; no. 07–065. (Sage Publications, Beverly Hills and London).

    Google Scholar 

  • Beauchamp, J. W. (1982). “Synthesis by spectral amplitude and ‘brightness’ matching of analyzed musical instrument tones,” J. Audio Eng. Soc. 30(6), 396–406.

    Google Scholar 

  • Beauchamp, J. W. (1993). “Unix workstation software for analysis, graphics, modification, and synthesis of musical sounds,” 94th Convention of the Audio Engineering Society, Berlin, Audio Eng. Soc. Preprint 3479.

    Google Scholar 

  • Beauchamp, J. W. (1998). “Methods for measurement and manipulation of timbral physical correlates,” Proc. 16th International Congress on Acoustics and 135th Meeting of the Acoustical Society of America, 1998, Seattle, Vol. 3, P. K. Kuhl and L. A. Crum, eds. (Acoustical Society of America, Woodbury, NY), pp. 1883–1884.

    Google Scholar 

  • Berger, K. W. (1964). “Some factors in the recognition of timbre,” J. Acoust. Soc. Am. 36(10), 1888–1891.

    Article  ADS  Google Scholar 

  • Britten, B. (1946). Variations and Fugue on a Theme of Henry Purcell (The Young Person's Guide to the Orchestra) (Boosey & Hawkes, London and New York).

    Google Scholar 

  • Campbell, W. C. and Heller, J. J. (1978). “The contribution of the legato transient to instrument identification,” Proc. Research Symposium on the Psychology and Acoustics of Music, 1978, University of Kansas, Lawrence, KS, pp. 30–44.

    Google Scholar 

  • Campbell, W. and Heller, J. (1979). “Convergence procedures for investigating music listening tasks,” Bull. Council for Res. Music Educ. 59, 18–23.

    Google Scholar 

  • Clark, M., Jr., Luce, D., Abrams, R., Schlossberg, H., and Rome, J. (1963). “Preliminary experiments on the aural significance of parts of tones of orchestral instruments and on choral tones,” J. Audio Eng. Soc. 11(1), 45–54.

    Google Scholar 

  • Clark, M., Jr., Robertson, P. T., and Luce, D. (1964). “A preliminary experiment on the perceptual basis for musical instrument families,” J. Audio Eng. Soc. 12(3), 199–203.

    Google Scholar 

  • Ehresman, D., and Wessel, D. (1978). Perception of Timbral Analogies, IRCAM Technical Report 13/78 (IRCAM, Centre Georges Pompidou, Paris).

    Google Scholar 

  • Ekman, G. (1965). “Two methods for the analysis of perceptual dimensionality,” Perceptual and Motor Skills 20, 557–572.

    Google Scholar 

  • Elliott, C. A. (1975). “Attacks and releases as factors in instrument identification,” J. Res. Music Educ. 23(1), 35–40.

    Article  Google Scholar 

  • Estes, W. K. (1994). Classification and Cognition (Oxford University Press, New York).

    Book  Google Scholar 

  • Faure, A., McAdams, S., and Nosulenko, V. (1996). “Verbal correlates of perceptual dimensions of timbre,” Proc. 1996 Int. Conf. on Music Perception and Cognition, Montreal (Faculty of Music, McGill University, Montreal), pp. 79–84.

    Google Scholar 

  • Freed, D. J. (1990). “Auditory correlates of perceived mallet hardness for a set of recorded percussive sound events,” J. Acoust. Soc. Am. 87(1), 311–322.

    Article  ADS  Google Scholar 

  • Grey, J. M. (1975). An Exploration of Musical Timbre (Report STAN-M-2, CCRMA, Dept. of Music, Stanford University, Stanford, CA).

    Google Scholar 

  • Grey, J. M. (1977). “Multidimensional perceptual scaling of musical timbres,” J. Acoust. Soc. Am. 61(5), 1270–177.

    Article  ADS  Google Scholar 

  • Grey, J. M., and Gordon, J. W. (1978). “Perceptual effects of spectral modifications on musical timbres,” J. Acoust. Soc. Am. 63(5), 1493–1500.

    Article  ADS  Google Scholar 

  • Guyot, F. (1992). “Etude de la pertinence de deux critères acoustiques pour caractériser la sonorité des sons à spectre reduits,” Unpublished D.E.A. thesis, Université du Maine, Le Mans, France.

    Google Scholar 

  • Hajda, J. M. (1995). “The relationship between perceptual and acoustical analyses of natural and synthetic impulse signals,” masters thesis, University of California, Los Angeles, 1995, Masters Abstracts International, 33(6). (University Microfilms International Publications No. 13–61, 681)

    Google Scholar 

  • Hajda, J. (1996). “A new model for segmenting the envelope of musical signals: The relative salience of steady state versus attack, revisited,” 101st Convention of the Audio Engineering Society, Los Angeles, Audio Eng. Soc. Preprint 4391.

    Google Scholar 

  • Hajda, J. M. (1997). “Relevant acoustical cues in the identification of Western orchestral instrument tones” (abstract), J. Acoust. Soc. Am. 102(5), pt. 2, 3085.

    Article  ADS  Google Scholar 

  • Hajda, J. M., Kendall, R. A., Carterette, E. C., and Harshberger, M. L. (1997). “Methodological issues in timbre research,” in Perception and Cognition of Music, I. Deliège and J. Sloboda, eds. (Psychology Press, Hove, UK), pp. 253–306.

    Google Scholar 

  • Hajda, J. M. (1998). “The effect of amplitude and centroid trajectories on the timbre of percussive and nonpercussive orchestral instruments,” Proc. 16th International Congress on Acoustics and 135th Meeting of the Acoustical Society of America, Vol. 3, Seattle (Acoustical Society of America, Woodbury, NY), pp. 1887–1888.

    Google Scholar 

  • Hajda, J. M. (1999). “The Effect of Time-Variant Acoustical Properties on Orchestral Instrument Timbres,” doctoral dissertation, University of California, Los Angeles. UMI number 9947018.

    Google Scholar 

  • Helmholtz, H. L. F. ([1877], 1954). On the Sensations of Tone as a Psychological Basis for the Theory of Music (Dover, New York).

    Google Scholar 

  • Iverson, P., and Krumhansl, C. L. (1993). “Isolating the dynamic attributes of musical timbre,” J. Acoust. Soc. Am. 94(5), 2595–2603.

    Article  ADS  Google Scholar 

  • Jeong, D., and Fricke, F. R. (1998). “The dependence of timbre perception on the acoustics of the listening environment,” Proc. 16th Int. Congress on Acoustics and 135th Meeting of the Acoustical Society of America, Vol. 3, Seattle (Acoustical Society of America, Woodbury, NY), pp. 2225–2226.

    Google Scholar 

  • Kendall, R. A. (1986). “The role of acoustic signal partitions in listener categorization of musical phrases,” Music Perception 4, 185–214.

    Google Scholar 

  • Kendall, R. A. and Carterette, E. C. (1992). “Convergent methods in psychomusical research based on integrated, interactive computer control,” Behavior Research Methods, Instruments, and Computers 24(2), 116–131.

    Article  Google Scholar 

  • Kendall, R. A. and Carterette, E. C. (1993a). “Verbal attributes of simultaneous wind instrument timbres: I. von Bismarck's adjectives,” Music Perception 10(4), 445–468.

    Google Scholar 

  • Kendall, R. A. and Carterette, E. C. (1993b). “Verbal attributes of simultaneous wind instrument timbres: II. Adjectives induced from Piston's ‘Orchestration’,” Music Perception 10, 469–502.

    Google Scholar 

  • Kendall, R. A. and Carterette, E. C. (1993c). “Identification and blend of timbres as a basis for orchestration,” Contemp. Music Rev. 9(1/2), 51–67.

    Article  Google Scholar 

  • Kendall, R. A. and Carterette, E. C. (1996). “Difference thresholds for timbre related to spectral centroid,” Proc. 4th Int. Conference on Music Perception and Cognition, Montreal, Canada, (Faculty of Music, McGill University, Montreal), pp. 91–95.

    Google Scholar 

  • Kendall, R. A., Carterette, E. C., and Hajda, J. M. (1999). “Perceptual and acoustical features of natural and synthetic orchestral instrument tones,” Music Perception 16(3), 327–363.

    Google Scholar 

  • Knopoff, L. (1963). “An index for the relative quality among musical instruments,” Ethnomusicology 7(3), 229–233.

    Article  Google Scholar 

  • Krimphoff, J. (1993). “Analyse acoustique et perception du timbre,” unpublished D.E.A. thesis, Université du Maine, Le Mans, France.

    Google Scholar 

  • Krimphoff, J., McAdams, S., and Winsberg, S. (1994). “Caractérisation du timbre des sons complexes. II. Analyses acoustiques et quantification psychophysique,” [Characterization of the timbre of complex sounds. 2. Acoustic analysis and psychophysical quantification.] J. de Physique 4(C5), 625–628.

    Google Scholar 

  • Krumhansl, C. L. (1989). “Why is musical timbre so hard to understand?,” in Structure and Perception of Electroacoustic Sound and Music: Proceedings of the Marcus Wallenberg Symposium held in Lund, Sweden, on 21–28 August 1988, S. Nielzen and O. Olsson, eds. (Excerpta Medica, Amsterdam), pp. 43–53.

    Google Scholar 

  • Kruskal, J. B. and Wish, M. (1978). Multidimensional Scaling, Sage university papers, Quantitative applications in the social sciences, no. 07–011 (Sage Publications, Beverly Hills and London).

    Google Scholar 

  • Lakatos, L. (2000). “A common perceptual space for harmonic and percussive timbres,” Perception & Psychophysics 62(7), 1426–1439.

    Article  Google Scholar 

  • Lichte, W. H. (1941). “Attributes of complex tones,” J. Exp. Psych. 28, 455–480.

    Article  Google Scholar 

  • Luce, D. A. (1963). Physical Correlates of Nonpercussive Musical Instrument Tones, unpublished doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Luce, D. and Clark, M. (1965). “Durations of attack transients of nonpercussive orchestral instruments,” J. Audio Eng. Soc. 13(3), 194–199.

    Google Scholar 

  • Martens, W. L. (1985). “Palette: An environment for developing an individualized set of psychophysically scaled timbres,” Proc. 1985 International Computer Music Conference, Simon Fraser University, Burnaby, British Columbia, (Computer Music Association, San Francisco), pp. 355–365.

    Google Scholar 

  • McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., and Krimphoff, J. (1995). “Perceptual scaling of synthesized musical timbres: Common dimensions, specificities, and latent subject classes,” Psych. Res. 58(3), 177–192.

    Article  Google Scholar 

  • McAdams, S., Beauchamp, J. W., and Meneguzzi, S. (1999). “Discrimination of musical instrument sounds resynthesized with simplified spectrotemporal parameters,” J. Acoust. Soc. Am. 105(2), 882–897.

    Article  ADS  Google Scholar 

  • Miller, J. R. and Carterette, E. C. (1975). “Perceptual space for musical structures,” J. Acoust. Soc. Am. 58, 711–720.

    Article  ADS  Google Scholar 

  • Opolko, F. and Wapnick, J. (1989). McGill University Master Samples User's Manual (Faculty of Music, McGill University, Montreal).

    Google Scholar 

  • Osgood, C. E., Suci, G. J., and Tannenbaum, P. H. (1957). The Measurement of Meaning (University of Illinois Press, Urbana, IL).

    Google Scholar 

  • Piston, W. (1955). Orchestration (W. W. Norton, New York).

    Google Scholar 

  • Saldanha, E. L. and Corso, J. F. (1964). “Timbre cues and the identification of musical instruments,” J. Acoust. Soc. Am. 36, 2021–2026.

    Article  ADS  Google Scholar 

  • Sandell, G. J. (1995). “Roles for spectral centroid and other factors in determining ‘blended’ instrument pairings in orchestration,” Music Perception 13, 209–246.

    Google Scholar 

  • Sandell, G. J. (1998). “Macrotimbre: Contribution of attack and steady state,” Proc. 16th Int. Congress on Acoustics and 135th Meeting of the Acoustical Society of America, Vol. 3, Seattle (Acoustical Society of America, Woodbury, NY), pp. 1881–1882.

    Google Scholar 

  • Seashore, C. E. ([1938], 1967). The Psychology of Music (Dover, New York).

    Google Scholar 

  • Serafini, S. (1995). “Timbre judgments of Javanese gamelan instruments by trained and untrained adults,” Psychomusicology 14, 137–153.

    Google Scholar 

  • Shepard, R. N. (1982). “Structural representations of musical pitch,” in The Psychology of Music, D. Deutsch, ed. (Academic Press, New York), pp. 334–390.

    Google Scholar 

  • Slaney, M., Covell, M., and Lassiter, B. (1995). “Automatic Audio Morphing,” Proc. 1996 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-96), Vol. 2 (IEEE, New York), pp. 1001–1004.

    Google Scholar 

  • Spaeth, S. G. (1933). The Art of Enjoying Music (McGraw-Hill, New York).

    Google Scholar 

  • von Bismarck, G. (1974). “Timbre of steady tones: A factorial investigation of its verbal attributes,” Acustica 30, 146–159.

    Google Scholar 

  • von Helmholtz, H. L. F. (1877). Die Lehre von den Tonempfindungen als physiologische Grudlage für die Theorie der Musik. F. Vieweg and Sohn, Braunschweig. English translation by A. J. Ellis, “On the Sensations of Tone as a Physiological Basis for the Theory of Music (2nd ed., 1885),” reprinted by Dover Publications, New York, 1954.

    Google Scholar 

  • Wedin, L. and Goude, G. (1972). “Dimension analysis of the perception of instrumental timbre,” Scandinavian J. Psych. 13(3), 228–240.

    Article  Google Scholar 

  • Wessel, D. L. (1973). “Psychoacoustics and music: A report from Michigan State University,” PAGE: Bulletin of the Computers Arts Soc. 30, 1–2.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

HAJDA, J.M. (2007). The Effect of Dynamic Acoustical Features on Musical Timbre. In: Beauchamp, J.W. (eds) Analysis, Synthesis, and Perception of Musical Sounds. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32576-7_7

Download citation

Publish with us

Policies and ethics