Skip to main content

Mental Representation of the Timbre of Complex Sounds

  • Chapter
Book cover Analysis, Synthesis, and Perception of Musical Sounds

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

Timbre, in contrast to pitch and loudness, remains a poorly understood auditory attribute. Persons attempting to understand it may be confused as much by its nature as its definition. Indeed, timbre is a “strange and multiple” attribute of sound (Cadoz, 1991, p. 17), defined by what it is not: it is neither pitch, nor loudness, nor duration. Consider the definition proposed by the American National Standards Institute (1973, p. 56): “Timbre is that attribute of auditory sensation in terms of which a subject can judge that two sounds similarly presented and having the same loudness and pitch are dissimilar.” Therefore, timbre is that perceptual attribute by which we can distinguish the instruments of the orchestra even if they play the same note with the same dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American National Standards Institute (1973). Psychoacoustical Terminology, S3.20-1973 (American National Standards Institute, New York).

    Google Scholar 

  • Barthélemy, J.-P. and Guénoche, A. (1988). Arbres et les représentation des proximités [Trees and proximity representations]. (Masson, Paris).

    Google Scholar 

  • Beauchamp, J. W. (1993). “Unix workstation software for analysis, graphics, modifications, and synthesis of musical sounds,” 94th Convention of the Audio Engineering Society, Berlin, (Audio Eng. Soc., New York), Audio Eng. Soc. Preprint 3479.

    Google Scholar 

  • Berger, K. W. (1964). “Some factors in the recognition of timbre,” J. Acoust. Soc. Am. 36(10), 1888–1891.

    Article  ADS  Google Scholar 

  • Bey, C. and McAdams, S. (2003). “Postrecognition of interleaved melodies as an indirect measure of auditory stream formation,” J. Exp. Psychol.: Human Percept. Perform. 29, 267–279.

    Article  Google Scholar 

  • Bregman, A. S. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound (MIT Press, Cambridge, MA).

    Google Scholar 

  • Bregman, A. S., Liao, C., and Levitan, R. (1990). “Auditory grouping based on fundamental frequency and formant peak frequency,” Canadian J. Psychol. 44, 400–413.

    Google Scholar 

  • Cadoz, C. (1991). “Timbre et causalité,” in Le timbre: Métaphore pour la composition, J.-B. Barriere, ed. (Christian Bourgois, Paris), pp. 17–46.

    Google Scholar 

  • Carroll, J. D. and Chang, J. J. (1970). “Analysis of individual differences in multidimensional scaling via an n-way generalization of ‘Eckart-Young’ decomposition,” Psychometrika 35, 283–319.

    Article  MATH  Google Scholar 

  • Charbonneau, G. R. (1981). “Timbre and the perceptual effects of three types of data reduction,” Computer Music J. 5(2), 10–19.

    Article  Google Scholar 

  • Cutting, J. E. and Rosner, B. S. (1974). “Categories and boundaries in speech and music,” Perception and Psychophysics 16(3), 564–570.

    Google Scholar 

  • Cutting, J. E. and Rosner, B. S. (1976). “Discrimination functions predicted from categories in speech and music,” Perception and Psychophysics 20, 87–88.

    Google Scholar 

  • Cutting, J. E., Rosner, B. S., and Foard, C. F. (1976). “Perceptual categories for musiclike sounds: Implications for theories of speech perception,” Quarterly J. Exp. Psychol. 28, 361–378.

    Article  Google Scholar 

  • Cutting, J. E. (1982). “Plucks and bows are categorically perceived, sometimes,” Perception and Psychophysics 31, 462–476.

    Google Scholar 

  • De Brujin, A. (1978). “Timbre classification of complex tones,” Acustica 40, 108–114.

    Google Scholar 

  • Dictionnaire de l'Academie Française, 1835.

    Google Scholar 

  • Diehl, R. (1976). “Feature analyzers for the phonetic dimension stop vs. continuant,” Perception and Psychophysics 19, 267–272.

    Google Scholar 

  • Donnadieu, S. and McAdams, S. (1996). “Effect of context change on dissimilarity, discrimination and categorization task on timbre perception,” in Proc. 12th Annual Meeting of the Int. Society for Psychophysics, Padua, Italy, S. Masin, ed. (Univ. of Padua, Padua, Italy), pp. 239–244.

    Google Scholar 

  • Donnadieu, S., McAdams, S., and Winsberg, S. (1996). “Categorization, discrimination and context effects in the perception of natural and interpolated timbres,” in Proc. 4th Int. Conf. on Music Perception and Cognition (ICMPC4), Montréal, Canada, B. Pennycook and E. Costa-Giomi, eds. (McGill University, Montréal), pp. 73–78.

    Google Scholar 

  • Donnadieu, S. (1997). “Représentation mental du timbre des sons complexes et effets de contexte [Mental representation of timbre of complex sounds and the effects of context],” unpublished doctoral dissertation, Université Paris V.

    Google Scholar 

  • Ehresman, D. and Wessel, D. (1978). Perception of Timbre Analogies, IRCAM Technical Report 13/78 (Centre Georges Pompidou, Paris).

    Google Scholar 

  • Eimas, P. D. (1975). “Auditory and linguistic processing of cues for place of articulation by infants,” Perception and Psychophysics 16, 513–521.

    Google Scholar 

  • Faure, A., McAdams, S., and Nosulenko, V. (1996). “Verbal correlates of perceptual dimensions of timbre,” in Proc. 4th Int. Conf. on Music Perception and Cognition (ICMPC4), B. Pennycook and E. Costa-Giomi, eds., McGill University, Montreal, Canada, pp. 79–84.

    Google Scholar 

  • Faure, A. (2000). “Des sons aux mots: Comment parle-t-on du timbre musical [From Sounds to Words: How Does One Speak of Musical Timbre?]”, unpublished doctoral dissertation, Ecoles des Hautes Etudes en Sciences Sociales, Paris.

    Google Scholar 

  • George, W. H. (1954). “A sound reversal technique applied to the study of tone quality,” Acustica 4, 224–225.

    Google Scholar 

  • Gibson, J. J. (1966). The Senses Considered as Perceptual Systems (Houghton-Mifflin, Boston).

    Google Scholar 

  • Gibson, J. J. (1979). The Ecological Approach to Visual Perception (Houghton-Mifflin, Boston).

    Google Scholar 

  • Granier-Deferre, C. and Busnel, M-C. (1981). “L'audition prénatale [Prenatal Hearing]”, in L'aube des sens, Cahiers du Nouveau-né [The dawn of the senses, Newborn Journal], E. Herbinet and M-C. Busnel, eds. (Stock, Paris), pp. 147–175.

    Google Scholar 

  • Granier-Deferre, C. and Lecanuet, J-P. (1987). “Influence de stimulations auditives précoces sur la maturation anatomique et fonctionnel du système auditif [Influence of early auditory stimulation on anatomical and functional maturation of the auditory system],” Progrès en Néonatalogie 7, 236–249.

    Google Scholar 

  • Gregory, A. H. (1994). “Timbre and auditory streaming,” Music Perception 12(2), 161–174.

    Google Scholar 

  • Grey, J. M. (1975). “An Exploration of Musical Timbre,” unpublished doctoral dissertation, Stanford University, Stanford, CA. Also available as Stanford Dept. of Music Report STAN-M-2.

    Google Scholar 

  • Grey, J. M. (1977). “Multidimensional perceptual scaling of musical timbres,” J. Acoust. Soc. Am. 61(5), 1270–1277.

    Article  ADS  Google Scholar 

  • Grey, J. M. and Moorer, J. A. (1977). “Perceptual evaluations of synthesized musical instrument tones,” J. Acoust. Soc. Am. 62(2), 454–462.

    Article  ADS  Google Scholar 

  • Grey, J. M. and Gordon, J. W. (1978). “Perceptual effects of spectral modifications on musical timbres,” J. Acoust. Soc. Am. 63(5), 1493–1500.

    Article  ADS  Google Scholar 

  • Grey, J. M. (1978). “Timbre discrimination in musical patterns,” J. Acoust. Soc. Am. 64(2), 467–472.

    Article  ADS  Google Scholar 

  • Guyot, F. (1992). “Etude de la pertinence de deux critères acoustiques pour caractériser la sonorité des sons à spectre réduit [Study of the relevance of two acoustic criteria for characterizing the sonorities of simplified sounds],” unpublished DEA thesis, Université du Maine, France.

    Google Scholar 

  • Hartmann, W. M. and Johnson, D. (1991). “Stream segregation and peripheral channeling,” Music Perception 9(2), 155–183.

    Google Scholar 

  • Hary, J. M. and Massaro, D. W. (1982). “Categorical results do not imply categorical perception,” Perception and Psychophysics 32(5), 409–418.

    Google Scholar 

  • Iverson, P. and Krumhansl, C. L. (1991). “Measuring similarity of musical timbres,” J. Acoust. Soc. Am. 89(4), Pt. 2, 1988 (abstract).

    Article  ADS  Google Scholar 

  • Iverson, P. (1993). “Auditory segregation by musical timbre,” doctoral dissertation, Cornell University, Ithaca, NY. Dissertation Abstracts International, 54 (4-B), 2249.

    Google Scholar 

  • Iverson, P. and Krumhansl, C. L. (1993). “Isolating the dynamic attributes of musical timbre,” J. Acoust. Soc. Am. 94(5), 2595–2603.

    Article  ADS  Google Scholar 

  • Johnson, S. C. (1967). “Hierarchical clustering schemes,” Psychometrika 32, 241–254.

    Article  Google Scholar 

  • Jusczyk, P. W., Rosner, B. S., Cutting, J., Foard, C. F., and Smith, L. B. (1977). “Categorical perception of nonspeech sounds by 2-month-old infants,” Perception and Psychophysics 21(1), 50–54.

    Google Scholar 

  • Kat, D. and Samuel, A. G. (1984). “More adaptation of speech by nonspeech,” J. Exp. Psych: Human Percept. Perform. 10, 512–525.

    Article  Google Scholar 

  • Kendall, R. A. (1986). “The role of acoustic signal partitions in listener categorization of musical phrases,” Music Perception 4, 185–214.

    Google Scholar 

  • Krimphoff, J. (1993). “Analyse acoustique et perception du timbre,” unpublished DEA thesis, Université du Maine, Le Mans, France.

    Google Scholar 

  • Krimphoff, J., McAdams, S., and Winsberg, S. (1994). “Caractérisation du timbre des sons complexes. II : Analyses acoustiques et quantification psychophysique. [Characterization of the timbre of complex sounds. 2. Acoustic analysis and psychophysical quantification],” J. de Phys. 4(C5), 625–628.

    Google Scholar 

  • Krumhansl, C. L. (1989). “Why is musical timbre so hard to understand?” in Structure and Perception of Electroacoustic Sound and Music: Proc. Marcus Wallenberg Symposium, Lund, Sweden, August, 1988, S. Nielzén and O. Olsson, eds. (Excerpta Medica, Amsterdam), pp. 43–53.

    Google Scholar 

  • Kuhl, P. K. and Meltzoff, A. N. (1982). “The bimodal perception of speech in infancy,” Science 218, 1138–1144.

    Article  ADS  Google Scholar 

  • Lakatos, S. (2000). “A common perceptual space for harmonic and percussive timbres,” Perception and Psychophysics 62(7), 1426–1439.

    Google Scholar 

  • Lecanuet, J-P., Granier-Deferre, C., and Busnel, M-C. (1988). “Fetal cardiac and motor responses to octave-band noises as a function of central frequency, intensity and heart rate variability,” Early Human Development 18, 81–93.

    Article  Google Scholar 

  • Lecanuet, J-P., Granier-Deferre, C., Jacquet, A-Y., and Busnel, M-C. (1992). “Decelerative cardiac responsiveness to acoustical stimulation in the near-term fetus,” Quarterly J. Exp. Psychol. 44B, 279–303.

    Google Scholar 

  • Liberman, A. M. (1957). “Some results of research on speech perception,” J. Acoust. Soc. Am. 29, 117–123.

    Article  ADS  Google Scholar 

  • Lichte, W. H. (1941). “Attributes of complex tones,” J. Exp. Psychol. 28, 455–480.

    Article  Google Scholar 

  • Lindsay, P. H. and Norman, D. A. (1977). Human Information Processing: An Introduction to Psychology, 2nd ed. (Academic Press, New York).

    Google Scholar 

  • Locke, S. and Kellar, L. (1973). “Categorical perception in a nonlinguistic mode,” Cortex 9(4), 355–369.

    Google Scholar 

  • MacDonald, J. and McGurk, H. (1978). “Visual influences on speech perception processes,” Perception and Psychophysics 24, 253–257.

    Google Scholar 

  • Macmillan, N. A. (1979). “Categorical perception of musical sounds: The psychophysics of plucks and bows,” Bull. Psychonomic Soc. 14, 241 (abstract).

    Google Scholar 

  • Manoury, P. (1991). “Les limites de la notion de ‘timbre’,” in Le timbre: Métaphore pour la composition, J.-B. Barriere, ed. (Christian Bourgois, Paris), pp. 293–299.

    Google Scholar 

  • Mathews, M. V., Miller, J. E., Pierce, J. R., and Tenney, J. (1965). “Computer study of violin tones,” J. Acoust. Soc. Am. 38, p. 912 (abstract).

    Article  ADS  Google Scholar 

  • McAdams, S. and Bregman, A. (1979). “Hearing musical streams,” Computer Music J. 3(4), 26–43.

    Google Scholar 

  • McAdams, S. and Cunibile, J.-C. (1992). “Perception of timbral analogies,” Philosophical Transactions of the Royal Society, London, series B, 336, 383–389.

    Article  ADS  Google Scholar 

  • McAdams, S. (1993). “Recognition of sound sources and events,” in Thinking in Sound: The Cognitive Psychology of Human Audition, S. McAdams and E. Bigand, eds. (Oxford University Press, Oxford), pp.146–198.

    Google Scholar 

  • McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., and Krimphoff, J. (1995). “Perceptual scaling of synthesized musical timbres : Common dimensions, specificities, and latent subject classes,” Psychol. Res. 58, 177–192.

    Article  Google Scholar 

  • McAdams, S., Beauchamp, J. W., and Meneguzzi, S. (1999). “Discrimination of musical instrument sounds resynthesized with simplified spectrotemporal parameters,” J. Acoust. Soc. Am. 105(2), 882–897.

    Article  ADS  Google Scholar 

  • McGurk, H. and MacDonald, J. (1976). “Hearing lips and seeing voices,” Nature 264, 746–748.

    Article  ADS  Google Scholar 

  • Miller, G. A. and Heise, G. A. (1950). “The trill threshold,” J. Acoust. Soc. Am. 22, 637–638.

    Article  ADS  Google Scholar 

  • Miller, J. R. and Carterette, E. C. (1975). “Perceptual space for musical structures,” J. Acoust. Soc. Am. 58(3), 711–720.

    Article  ADS  Google Scholar 

  • Miller, J. D., Wier, C. C., Pastore, R. E., Kelly, W. J., and Dooling, R. J. (1976). “Discrimination and labeling of noise-buzz sequences with varying noise-lead times: An example of categorical perception,” J. Acoust. Soc. Am. 60, 410–417.

    Article  ADS  Google Scholar 

  • Opolko, F. and Wapnick, J. (1987). McGill University master samples [CD-ROM] (McGill University, Montreal).

    Google Scholar 

  • Pastore, R. E. (1976). “Categorical perception: A critical re-evaluation,” in Hearing and Davis: Essays Honoring Hallowell Davis (contributed by present and former colleagues on the occasion of his 80th birthday), S. K. Hirsh, D. H. Eldredge, I. J. Hirsh, and S. R. Silverman, eds. (Washington University Press, St. Louis), pp. 253–264.

    Google Scholar 

  • Pisoni, D. B. (1977). “Identification and discrimination of the relative onset time of two component tones: Implications for voicing perception in stops,” J. Acoust. Soc. Am. 61, 1352–1361.

    Article  ADS  Google Scholar 

  • Pitt, M. A. (1995). “Evidence for a central representation of instrument timbre,” Perception and Psychophysics 57(1), 43–55.

    MathSciNet  Google Scholar 

  • Plomp R. (1970). “Timbre as a multidimensional attribute of complex tones,” in Frequency Analysis and Periodicity Detection in Hearing, R. R. Plomp and G. F. Smoorenburg, eds. (Sijthoff, Leiden), pp. 397–414.

    Google Scholar 

  • Plomp, R. (1976). “Timbre of complex tones,” in Aspects of Tone Sensation: A Psychophysical Study, R. Plomp, ed. (Academic Press, London), pp. 85–110.

    Google Scholar 

  • Preis, A. (1984). “An attempt to describe the parameters determining the timbre of steady-state harmonic complex tones,” Acustica 55(1), 1–13.

    Google Scholar 

  • Remez, R. E. (1978). “An hypothesis of event-sensitivity in the perception of speech and bass violins.” Dissertation Abstracts International, 39 (11-B), 5618-B (University Microfilms No. 7911404).

    Google Scholar 

  • Remez, R. E., Cutting, J. E., and Studdert-Kennedy, M. (1980). “Cross-series adaptation using song and string,” Perception and Psychophysics 27, 524–530.

    Google Scholar 

  • Risset, J.-C. and Mathews, M. V. (1969). “Analysis of musical-instrument tones,” Physics Today 22(2), 23–30.

    Article  Google Scholar 

  • Risset, J-C. and Wessel, D. (1982). “Exploration of timbre by analysis and synthesis,” in The Psychology of Music, D. Deutsch, ed. (Academic Press, New York), pp. 25–58.

    Google Scholar 

  • Rosch, E. H. (1973a). “Natural categories,” Cognitive Psychology 4, 328–350.

    Article  Google Scholar 

  • Rosch, E. H. (1973b). “On the internal structure of perceptual and semantic categories,” in Cognitive Development and the Acquisition of Language, T. E. Moore, ed. (Academic Press, New York), pp. 111–144.

    Google Scholar 

  • Rosen, S. M. and Howell, P. (1981). “Plucks and bows are not categorically perceived,” Perception and Psychophysics 30(2), 156–168.

    Google Scholar 

  • Rosenblum, L. D. and Fowler, C. A. (1991). “Audiovisual investigation of the loudness-effort effect for speech and nonspeech events,” J. Exp. Psychol.: Human Percept. Perform. 17, 976–985.

    Article  Google Scholar 

  • Rumelhart, D. E. and Abrahamson, A. A. (1973). “A model for analogical reasoning,” Cognitive Psych, 5, 1–28.

    Article  Google Scholar 

  • Saldana, H. M. and Rosenblum, L. D. (1993). “Visual influences on auditory pluck and bow judgments,” Perception and Psychophysics 54(3), 406–416.

    Google Scholar 

  • Saldanha, E. L. and Corso, J. F. (1964). “Timbre cues and the identification of musical instruments,” J. Acoust. Soc. Am. 36, 2021–2026.

    Article  ADS  Google Scholar 

  • Samoylenko, E., McAdams, S., and Nosulenko, V. (1996). “Systematic analysis of verbalizations produced in comparing musical timbres,” Intern. J. Psychol. 31, 255–278.

    Article  Google Scholar 

  • Samson, S., Zatorre, R. J., and Ramsay, J. O. (1996). “Multidimensional scaling of synthetic musical timbre: Perception of spectral and temporal characteristics,” Canadian J. Psychol. 51, 307–315.

    Article  Google Scholar 

  • Samuel, A. G. and Newport, E. L. (1979). “Adaptation of speech by nonspeech: Evidence for complex acoustic cue detectors,” J. Exp. Psychol.: Human Perception Perform. 5, 563–578.

    Article  Google Scholar 

  • Samuel, A. G. (1988). “Central and peripheral representation of whispered and voiced speech,” J. Exp. Psychol.: Human Percept. Perform. 14, 379–388.

    Article  MathSciNet  Google Scholar 

  • Schaeffer, P. (1966). Traité des objets musicaux [Treatise on musical objects] (Seuil, Paris).

    Google Scholar 

  • Serafini, S. (1993). “Timbre Perception of Cultural Insiders: A Case Study with Javanese Gamelan Instruments,” unpublished masters thesis, University of British Columbia, Vancouver, Canada.

    Google Scholar 

  • Schoenberg, A. (1911). Harmonielehre [Harmony] (Universal, Leipzig/Vienna) [French translation (1983), Lattes, Paris].

    Google Scholar 

  • Shepard, R. N. and Arabie, P. (1979). “Additive clustering: Representation of similarity as combinations of discrete overlapping properties,” Psychol. Rev. 86, 87–123.

    Article  Google Scholar 

  • Shepard, R. N. (1982). “Structural representations of musical pitch,” in The Psychology of Music, D. Deutsch, ed. (Academic Press, New York), pp. 343–390.

    Google Scholar 

  • Siegel, J. A. and Siegel, W. (1977). “Categorical perception of tonal intervals: Musicians can't tell sharp from flat,” Perception and Psychophysics 21, 399–407.

    Google Scholar 

  • Singh, P. G. (1987). “Perceptual organization of complex-tone sequences: A tradeoff between pitch and timbre?” J. Acoust. Soc. Am. 82(3), 886–899.

    Article  ADS  Google Scholar 

  • Smurzynski, J. (1985). “Noncategorical identification of rise time,” Perception and Psychophysics 38(6), 540–542.

    Google Scholar 

  • Solomon, L. N. (1959). “Search for physical correlates to psychological dimensions of sounds,” J. Acoust. Soc. Am. 31, 492–497.

    Article  ADS  Google Scholar 

  • Strong, W. and Clark, M. (1967a). “Synthesis of wind-instrument tones,” J. Acoust. Soc. Am. 41, 39–52.

    Article  ADS  Google Scholar 

  • Strong, W. and Clark, M. (1967b). “Perturbations of synthetic orchestral wind-instrument tones,” J. Acoust. Soc. Am. 41, 277–85.

    Article  ADS  Google Scholar 

  • Studdert-Kennedy, M., Liberman, A. M., Harris, K. S., and Cooper, F. S. (1970). “Motor theory of speech perception: A reply to Lane's critical review,” Psychol. Rev. 77, 234–249.

    Article  Google Scholar 

  • Terhardt, E. (1974). “On the perception of periodic sound fluctuations (roughness),” Acustica 30, 201–213.

    Google Scholar 

  • Tversky, A. (1977). “Features of similarity,” Psychol. Rev. 84, 327–352.

    Article  Google Scholar 

  • Van Heuven, V. J. J. P. and van den Broecke, J. P. R. (1979). “Auditory discrimination of rise and decay time in tone and noise bursts,” J. Acoust. Soc. Am. 66, 1308–1315.

    Article  ADS  Google Scholar 

  • Van Noorden, L. P. A. S. (1975). “Temporal Coherence in the Perception of Tone Sequences,” unpublished doctoral dissertation, Eindhoven Univ. of Technology, Eindhoven, Pays-Bas, Germany.

    Google Scholar 

  • Vogel, A. (1974). “Roughness and its relation to the time-pattern of psychoacoustical excitation,” in Facts and Models in Hearing, E. Zwicker and E. Terhardt, eds. (Springer-Verlag, Berlin), pp. 241–250.

    Google Scholar 

  • von Bismarck, G. (1974). “Sharpness as an attribute of the timbre of steady sounds,” Acustica 30, 159–172.

    Google Scholar 

  • Wedin, L. and Goude, G. (1972). “Dimension analysis of the perception of instrumental timbre,” Scandinavian J. Psychol. 13, 228–240.

    Google Scholar 

  • Wessel, D. L. (1979). “Timbre space as a musical control structure,” Computer Music J. 3(2), 45–52.

    Article  MathSciNet  Google Scholar 

  • Wessel, D. L. (1983). Le concept de recherche en musique, IRCAM, Paris, Communication.

    Google Scholar 

  • Wessel, D., Bristow, D., and Settel, Z. (1987). “Control of phrasing and articulation in synthesis,” in Proc. 1987 Int. Computer Music Conf., Urbana, IL (Computer Music Assoc., San Francisco), pp. 108–116.

    Google Scholar 

  • Winsberg, S. and Carroll, J. D. (1989). “A quasi-nonmetric method for multidimensional scaling of multiway data via a restricted case of an extended INDSCAL model,” in Multiway Data Analysis, R. Coppi and S. Bolasco, eds. (North-Holland, Amsterdam), pp. 405–414.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

DONNADIEU, S. (2007). Mental Representation of the Timbre of Complex Sounds. In: Beauchamp, J.W. (eds) Analysis, Synthesis, and Perception of Musical Sounds. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32576-7_8

Download citation

Publish with us

Policies and ethics