Skip to main content

Nanowires in Electronics Packaging

  • Chapter
  • First Online:
Nanopackaging

Abstract

In the light of continuous miniaturization of traditional microelectronic components, the demand for decreasing wire diameters becomes immediately evident. The observation of metallic conductor properties for certain configurations of carbon nanotubes (CNT) and their current carrying capability [1] set the minimal diameter of a true wire to about 3 nm (compare Chap. 15). Investigations are in progress even below that diameter on nanocontacts, formed by single metal atoms, i.e., quantum wires. Quantum wires can be produced by mechanical wire breaking [2], its combination with etching and deposition [3], or other techniques. The properties of quantum wires are only about to be understood theoretically [4]. Doubtless, they are worth considering for packaging solutions in molecular electronics to come [5]. In this chapter, we focus on metal wires and rods in the size range above 10 nm up to submicron diameters, evaluated already to be attractive for microelectronic packaging purposes. Techniques to generate, to characterize, and to handle them, as well as their interaction with electromagnetic fields will be useful for packaging applications in the age of nanotechnology. With the wealth of information available, this review focuses on general trends and starting points for deeper study. Although the cited references are representative, they cannot be complete, since numerous activities are ongoing to produce and to characterize new kinds of wire-like geometries from different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86:3128–3131

    Article  CAS  Google Scholar 

  2. Muller CJ, van Ruitenbeek JM, de Jongh LJ (1992) Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. Phys Rev Lett 69:140–143

    Article  CAS  Google Scholar 

  3. Li CZ, Bogozi A, Huang W, Tao NJ (1999) Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 10:221–223

    Article  Google Scholar 

  4. Landman U, Barnett RN, Scherbakov AG, Avouris P (2000) Metal-semiconductor nanocontacts: Silicon nanowires. Phys Rev Lett 85:1958–1961

    Article  CAS  Google Scholar 

  5. Grüter L (2005) Mechanical controllable break junction in liquid environment: A tool to measure single molecules. Inauguraldissertation Universität Basel, Basel

    Google Scholar 

  6. Okawa Y, Aono M (2001) Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. J Chem Phys 115:2317–2322

    Article  CAS  Google Scholar 

  7. Gu J, Li D, Lederman D, Timperman A (2005) Self-assembly of fibrous proteins for molecular electronics. American Physics Society Meeting, March abstract W35.8. http://meetings.aps.org/link/BAPS.2005.MAR.W35.8

  8. Gu Q, Cheng C, Gonela R, Suryanarayanan S, Anabathula S, Dai K, Haynie DT (2006) DNA nanotechnology. Nanotechnology 17:R14–R25

    Article  CAS  Google Scholar 

  9. Wang Z, Medforth CJ, Shelnutt JA (2004) Self-metallization of photocatalytic porphyrin nanotubes. J Am Chem Soc 126:16720–16721

    Article  CAS  Google Scholar 

  10. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall nanotubes as quantum wires. Nature 386:474–477

    Article  CAS  Google Scholar 

  11. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Circuits with carbon nanotube transistors. Science 294:1317–1320

    Article  CAS  Google Scholar 

  12. Javey A, Qi P, Wang Q, Dai H (2004) Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography. Proc Natl Acad Sci 101:13408–13410

    Article  CAS  Google Scholar 

  13. Li J, Ye Q, Cassell A, Ng HT, Stevens R, Han J, Meyyappan M (2003) Bottom–up approach for carbon nanotube interconnects. Appl Phys Lett 82:2491–2493

    Article  CAS  Google Scholar 

  14. Hoenlein W, Kreupl F, Duesberg GS, Graham AP, Liebau M, Seidel RV, Unger E (2004) Carbon nanotube applications in microelectronics. IEEE Trans Compon Packag Technol 27:629–634

    Article  CAS  Google Scholar 

  15. Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408

    Article  CAS  Google Scholar 

  16. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  CAS  Google Scholar 

  17. Huang Y, Duan X, Cui Y, Lauhon LJ, Kim K-H, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317

    Article  CAS  Google Scholar 

  18. Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Ultrahigh-density nanowire lattices and circuits. Science 300:112–115

    Article  CAS  Google Scholar 

  19. Thelander C, Agarwal P, Brongersma S, Eymery J, Feiner LF, Forchel A, Scheffler M, Riess W, Ohlsson BJ, Gösele U, Samuelson L (2006) Nanowire-based one-dimensional electronics. Mater Today 9:28–35

    Article  CAS  Google Scholar 

  20. Li Y, Qian F, Xiang J, Lieber CM (2006) Nanowire electronic and optoelectronic devices. Mater Today 9:18–27

    Article  CAS  Google Scholar 

  21. Law M, Goldberger J, Yang P (2004) Semiconductor nanowires and nanotubes. Ann Rev Mater Res 34:83–122

    Article  CAS  Google Scholar 

  22. Lu W, Lieber CM (2006) Semiconductor nanowires. J Phys D Appl Phys 39:R387–R406

    Article  CAS  Google Scholar 

  23. Shankar KS, Raychaudhuri AK (2005) Fabrication of nanowires of multicomponent oxides: Review of recent advances. Mater Sci Eng C25:738–751

    CAS  Google Scholar 

  24. Lieber CM (1998) One-dimensional nanostructures: Chemistry, physics and applications. Solid State Commun 107:607–616

    Article  CAS  Google Scholar 

  25. International Technology Roadmap for Semiconductors 2001. Semiconductor Industry Association, San Jose, CA. www.itrs.net

  26. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: Chemistry, physics and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  27. Kovtyukhova NI, Mallouk TE (2002) Nanowires as building blocks for self-assembling logic and memory circuits. Chem Eur J 8:4354–4363

    Article  CAS  Google Scholar 

  28. Wang ZL (Ed.) (2006) Nanowires and nanobelts: Materials, properties and devices. I. Metal and semiconductor nanowires. 1 (st ed., 2003) Springer, Berlin

    Google Scholar 

  29. Rao CNR, Govindaraj A (2005) Nanotubes and nanowires. Series RSC Nanoscience and Nanotechnology Series. Royal Society of Chemistry, London

    Google Scholar 

  30. Banerjee S, Dan A, Chakravorty D (2002) Synthesis of conducting nanowires. J Mater Sci 37:4261–4271

    Article  CAS  Google Scholar 

  31. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18:533–550

    Article  CAS  Google Scholar 

  32. He H, Tao NJ (2003) Electrochemical fabrication of metal nanowires. In: Encyclopedia of nanoscience and nanotechnology, Nalwa HS (Ed.). American Scientific Publishers, Stevenson Ranch, CA, 2:755–772

    Google Scholar 

  33. Natelson D (2002) Fabrication of metal nanowires. In: Recent research developments in vacuum science and technology, Dabrowski J (Ed.). Research Signpost, Kerala, Chapter 9

    Google Scholar 

  34. Kline TR, Tian M, Wang J, Sen A, Chan MWH, Mallouk TE (2006) Template-grown metal nanowires. Inorg Chem 45:7555–7565

    Article  CAS  Google Scholar 

  35. Dresselhaus MS, Lin Y-M, Rabin O, Black MR, Dresselhaus G (2004) Nanowires. In: Springer handbook of nanotechnology, Bhushan B (Ed.). Springer, Berlin, 99–145

    Chapter  Google Scholar 

  36. Taczak MD, Rolfe B (2005) Nanowire research and development: A survey of selected research from 2001 to 2005. MITRE McLean, VA (MP 05W0000171). www.mitre.org/work/tech_papers/tech_papers_05/05_1223/05_1223.pdf

  37. Possin GE (1970) A method for forming very small diameter wires. Rev Sci Instrum 41:772–774

    Article  CAS  Google Scholar 

  38. Fleischer RL, Price PB, Walker RM (1965) Tracks of charged particles in solids. Science 149:383–393

    Article  CAS  Google Scholar 

  39. Petrov AV, Fink D, Richter G, Szimkowiak P, Chemseddine A, Alegaonkar PS, Berdinsky AS, Chadderton LT, Fahrner WR (2003) Creation of nanoscale electronic devices by the swift heavy ion technology. In: Proceedings of Fourth Siberian Russian Workshop and Tutorials EDM’2003, Section I, 1–4 July, Erlagol, 40–45

    Google Scholar 

  40. Fraflex®, distributed by FRACTAL AG Staßfurt (Germany)

    Google Scholar 

  41. Hulteen JC, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7:1075–1087

    Article  CAS  Google Scholar 

  42. Martin JI, Nogues J, Liu K, Vicent JL, Schuller IK (2003) Ordered magnetic nanostructures: Fabrication and properties. J Magn Magn Mater 256:449–501

    Article  CAS  Google Scholar 

  43. Granström M, Carlberg JC, Inganäs O (1995) Electrically conductive polymer fibres with mesoscopic diameters. II. Studies of polymerization behaviour. Polymer 36:3191–3196

    Article  Google Scholar 

  44. Kumar S, Zagorski DL, Kumar S, Chakarvarti SK (2004) Chemical synthesis of polypyrrole nano/microstructures using track etch membranes. J Mater Sci 39:6137–6139

    Article  CAS  Google Scholar 

  45. Despic A, Parkhutik VP (1989) Electrochemistry of aluminum in aqueous solutions and physics of its anodic oxide. In: Modern aspects of electrochemistry, Bockris JO’M, Conway BE, White RE (Eds.). Plenum, New York, 20:401–503

    Google Scholar 

  46. Sauer G, Brehm G, Schneider S, Nielsch K, Wehrspohn RB, Choi J, Hofmeister J, Gösele U (2002) Highly ordered monocrystalline silver nanowire arrays. J Appl Phys 91:3243–3247

    Article  CAS  Google Scholar 

  47. Moon J-M, Wei A (2005) Uniform gold nanorod arrays from polyethylenimine-coated alumina templates. J Phys Chem B 109:23336–23341

    Article  CAS  Google Scholar 

  48. Rabin O, Herz PR, Lin Y-M, Akinwande AI, Cronin SB, Dresselhaus MS (2003) Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Adv Funct Mater 13:631–638

    Article  CAS  Google Scholar 

  49. Zhang Z, Lai C, Xu N, Ren S, Ma B, Zhang Z, Jin Q (2007) Novel nanostructured metallic nanorod arrays with multibranched root tails. Nanotechnology 18:1–6

    Google Scholar 

  50. Gelves GA, Murakami ZTM, Krantz MJ, Haber JA (2006) Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J Mater Chem 16:3075–3083

    Article  CAS  Google Scholar 

  51. Wu B, Boland JJ (2006) Synthesis and dispersion of isolated high aspect ratio gold nanowires. J Colloid Interface Sci 303:611–616

    Article  CAS  Google Scholar 

  52. Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl Phys Lett 79:1039–1041

    Article  CAS  Google Scholar 

  53. Karthaus J (2000) Galvanische Abscheidung von Metallen aus nichtwäšrigen Elektrolyten für die Mikrosystemtechnik. Dissertation, Universität Karlsruhe, Karlsruhe, Germany

    Google Scholar 

  54. Martin CR (1994) Nanomaterials: A membrane-based synthetic approach. Science 266:1961–1966

    Article  CAS  Google Scholar 

  55. Apel PYu, Schulz A, Spohr R, Trautmann C, Vutsadakis V (1997) Tracks of very heavy ions in polymers. Nucl Instrum Methods Phys Res B 130:55–63; Compare: Apel P, Spohr R. Introduction to ion track etching in polymers. http://www.iontracktechnology.de

    Article  Google Scholar 

  56. Ferain E, Legras R (2003) Track-etched templates designed for micro- and nanofabrication. Nucl Instrum Methods Phys Res B 208:115–122

    Article  CAS  Google Scholar 

  57. Ferain E, Legras R (2001) Pore shape control in nanoporous particle track etched membrane. Nucl Instrum Methods Phys Res 174:116–122

    Article  CAS  Google Scholar 

  58. Spohr R (1990) Ion tracks and microtechnology. Principles and applications. Vieweg, Braunschweig

    Book  Google Scholar 

  59. Apel PYu, Korchev YuE, Siwy Z, Spohr R, Yoshida M (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Methods B 184:337–346

    Article  CAS  Google Scholar 

  60. Toimil-Molares ME, Chtanko N, Cornelius TW, Dobrev D, Enculescu I, Blick RH, Neumann R (2004) Fabrication and contacting of single Bi nanowires. Nanotechnology 15:S201–S207

    Article  CAS  Google Scholar 

  61. Chittrakarn T, Bhongsuwan T, Wanichapichart P, Nuanuin P, Chongkum S, Khonduangkaew A, Bordeepong S (2002) Nuclear track-etched pore membrane production using neutrons from the Thai research reactor TRR-1/M1. Songklanakarin J Sci Technol 24 : 863–870

    CAS  Google Scholar 

  62. Lindeberg M (2003) High aspect ratio microsystem fabrication by ion track lithography. PhD Dissertation, Uppshala Universitet; Lindeberg M, Jaccard Y, Ansermet JP, Hjort K (2001) In: TRANSDUCERS’01, EUROSENSORS XV 2001, Munich, Germany (Springer), 172–175

    Google Scholar 

  63. Shorin VS (2002) Analytical description of the hole overlapping process on the nuclear-track membrane surface. High Energy Chem 36:294–299

    Article  CAS  Google Scholar 

  64. Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71:2770–2772

    Article  CAS  Google Scholar 

  65. Lee W, Ji R, Ross CA, Gösele U, Nielsch K (2006) Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography. Small 2:978–982

    Article  CAS  Google Scholar 

  66. Fiedler S, Zwanzig M, Schmidt R, Auerswald E, Klein M, Scheel W, Reichl H (2006) Evaluation of metallic nano-lawn structures for application in microelectronic packaging. In: First Electronics System Integration Technology Conference, Dresden, September, 2:886–891

    Google Scholar 

  67. Hong BH, Bae SC, Lee C-W, Jeong S, Kim KS (2001) Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294:348–351

    Article  CAS  Google Scholar 

  68. Schüth F (2003) Endo- and exotemplating to create high-surface-area inorganic materials. Angew Chem Intl Ed 42:3604–3622

    Article  CAS  Google Scholar 

  69. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391:775–778

    Article  CAS  Google Scholar 

  70. Richter J, Mertig M, Pompe W, Mönch I, Schackert HK (2001) The construction of highly conductive nanowires on a DNA template. Appl Phys Lett 78:536–538

    Article  CAS  Google Scholar 

  71. Richter J, Seidel R, Kirsch R, Mertig M, Pompe W, Plaschke J, Schackert HK (2000) Nanoscale palladium metallization of DNA. Adv Mater 12:507–510

    Article  CAS  Google Scholar 

  72. Gu Q, Cheng C, Gonela R, Suryanarayanan S, Anabathula S, Dai K, Haynie DT (2006) DNA nanowire fabrication. Nanotechnology 17:R14–R25

    Article  CAS  Google Scholar 

  73. Ford WE, Harnack O, Yasuda A, Wessels JM (2001) DNA nanowire fabrication. Adv Mater 13:1793–1797

    Article  CAS  Google Scholar 

  74. Scheibel T, Parthasarathy R, Sawicki G, Lin X-M, Jaeger H, Lindquist SL (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci 100:4527–4532

    Article  CAS  Google Scholar 

  75. Maubach G, Csáki A, Seidel R, Mertig M, Pompe W, Born D, Fritzsche W (2003) Controlled positioning of a DNA molecule in an electrode setup based on self-assembly and microstructuring. Nanotechnology 14:1055–1056

    Article  CAS  Google Scholar 

  76. Liu Y, Meyer-Zaika W, Franzka S, Schmid G, Tsoli M, Kuhn H (2003) Gold-cluster degradation by the transition of B-DNA into A-DNA and the formation of nanowires. Angew Chem Int Ed 42:2853–2857

    Article  CAS  Google Scholar 

  77. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888

    Article  CAS  Google Scholar 

  78. Patolsky F, Weizmann Y, Willner I (2004) Actin-based metallic nanowires as bio-nanotransporters. Nat Mater 3:692–695

    Article  CAS  Google Scholar 

  79. Hornung J, Müller T, Fuhr G (1996) Cryopreservation of anchorage-dependent mammalian cells fixed to structured glass and silicon substrates. Cryobiology 33:260–270

    Article  CAS  Google Scholar 

  80. Gimsa U, Iglic A, Fiedler S, Zwanzig M, Kralj-Iglic V, Jonas L, Gimsa J (2007) Actin is not required for nanotubular protrusions of primary astrocytes grown on metal nano-lawn. Mol Membr Biol 24:243–255

    Article  CAS  Google Scholar 

  81. Evans E, Bowman H, Leung A, Needham D, Tirrel D (1996) Biomembrane templates for nanoscale conduits and networks. Science 273:933–935

    Article  CAS  Google Scholar 

  82. Karlsson A, Karlsson R, Karlsson M, Cans A-S, Strömberg A, Ryttsén F, Orwar O (2001) Networks of nanotubes and containers. Nature 409:150–152

    Article  CAS  Google Scholar 

  83. Lobovkina T, Dommersnes P, Joanny J-F, Bassereau P, Karlsson M, Orwar O (2004) Mechanical tweezer action by self-tightening knots in surfactant nanotubes. Proc Natl Acad Sci 101:7949–7953

    Article  CAS  Google Scholar 

  84. Schnur JM (1993) Lipid tubules: A paradigm for molecularly engineered structures. Science 262:1669–1676

    Article  CAS  Google Scholar 

  85. Yang Y, Constance BH, Deymier PA, Hoying J, Raghavan S, Zelinski BJJ (2004) Electroless metal plating of microtubules: Effect of microtubule-associated proteins. J Mater Sci 39:1927–1933

    Article  CAS  Google Scholar 

  86. Ng HT, Li J, Smith MK, Nguyen P, Cassell A, Han J, Meyyappan M (2003) Growth of epitaxial nanowires at the junctions of nanowalls. Science 300:1249

    Article  CAS  Google Scholar 

  87. Vasilev K, Zhu T, Wilms M, Gillies G, Lieberwirth I, Mittler S, Knoll W, Kreiter M (2005) Simple, one-step synthesis of gold nanowires in aqueous solution. Langmuir 21:12399–12403

    Article  CAS  Google Scholar 

  88. Wei Z, Mieszawska AJ, Zamborini FP (2004) Synthesis and manipulation of high aspect ratio gold nanorods grown directly on surfaces. Langmuir 20:4322–4326

    Article  CAS  Google Scholar 

  89. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  90. Chen C, Wang L, Jiang G, Zhou J, Chen X, Yu H, Yang Q (2006) Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology 17:3933–3938

    Article  CAS  Google Scholar 

  91. Huang L, Wang H, Wang Z, Mitra A, Yan Y (2001) Silver nanowires eelectrodeposited from reverse hexagonal liquid crystals. Mater Res Soc Symp Proc 676:Y3321–Y3326

    Article  Google Scholar 

  92. Hamley IW (2003) Nanostructure fabrication using block copolymers. Nanotechnology 14:R39–R54

    Article  CAS  Google Scholar 

  93. Goolaup S, Singh N, Adeyeye NO (2005) Coercivity variation in Ni80Fe20 ferromagnetic nanowires. IEEE Trans Nanotechnol 4:523–526

    Article  Google Scholar 

  94. Gubbiotti G, Tacchi S, Carlotti G, Vavassori P, Singh N, Goolaup S, Adeyeye AO, Stashkevich A, Kostylev M (2005) Magnetostatic interaction in arrays of nanometric permalloy wires: A magneto-optic Kerr effect and a Brillouin light scattering study. Phys Rev B 72:224413–224420

    Article  CAS  Google Scholar 

  95. Cheung CK, Nikolic RJ, Reinhardt CE, Wang TF (2006) Fabrication of nanopillars by nanosphere lithography. Nanotechnology 17:1339–1343

    Article  CAS  Google Scholar 

  96. Martensson T, Carlberg P, Borgström M, Montelius L, Seifert W, Samuelson L (2004) Nanowire arrays defined by nanoimprint lithography. Nano Lett 4:699–702

    Article  CAS  Google Scholar 

  97. Tikhodeev SG, Gippius NA, Christ A, Zentgraf T, Kuhl J, Giessen H (2005) Waveguide-plasmon polaritons in photonic crystal slabs with metal nanowires. Phys Status Solidi C 2:795–800

    Article  CAS  Google Scholar 

  98. Ozbay E (2006) Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  99. Menke EJ, Thompson MA, Xiang C, Yang LC, Penner RM (2006) Lithographically patterned nanowire electrodeposition. Nat Mater 5:914–919

    Article  CAS  Google Scholar 

  100. Prober DE, Feuer MD, Giordano N (1980) Fabrication of 300-Angstrom metal lines with substrate-step techniques. Appl Phys Lett 37:94–96

    Article  CAS  Google Scholar 

  101. Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290:2120–2123

    Article  CAS  Google Scholar 

  102. Favier F, Walter EC, Zach MP, Benter T, Penner RM (2001) Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293:2227–2231

    Article  CAS  Google Scholar 

  103. Adelung R, Aktas OC, Franc J, Biswas A, Kunz R, Elbahri M, Kanzow J, Schürmann U, Faupel F (2004) Strain-controlled growth of nanowires within thin-film cracks. Nat Mater 3:375–379

    Article  CAS  Google Scholar 

  104. Mützel M, Müller M, Haubrich D, Rasbach U, Meschede D, O’Dwyer C, Gay G, Viaris de Lesegno B, Weiner J, Ludolph K, Georgiev G, Oesterschulze E (2005) The atom pencil: Serial writing in the sub-micrometre domain. Appl Phys B 80:941–944

    Article  CAS  Google Scholar 

  105. Hochleitner G, Fischer M, Wanzenboeck H, Heerb R, Brueckl H, Bertagnolli E (2006) Electron beam-induced direct-deposition of magnetic nanostructures. Proceedings of Micro-and Nano-Engineering MNE06, 17–20 September, Barcelona, Spain, 165–166

    Google Scholar 

  106. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283:661–663

    Article  CAS  Google Scholar 

  107. Yang D-Q, Sacher E (2007) Accurate assembly and size control of Cu nanoparticles into nanowires by contact atomic force microscope-based nanopositioning. J Phys Chem C 111:10105–10109

    Article  CAS  Google Scholar 

  108. Winograd GI, Han L, McCord MA, Pease RFW, Krishnamurthi V (1998) Multiplexed blanker array for parallel electron beam lithography. J Vac Sci Technol B 16:3174–3176

    Article  CAS  Google Scholar 

  109. Bullen D, Chung S-W, Wang X, Zou J, Mirkin CA, Liu C (2004) Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl Phys Lett 84:789–791

    Article  CAS  Google Scholar 

  110. Guo W, Wang ZB, Li L, Whitehead DJ, Luk’yanchuk BS, Liu Z (2007) Near-field laser parallel nanofabrication of arbitrary-shaped patterns. Appl Phys Lett 90:243101

    Article  CAS  Google Scholar 

  111. Moormann C, Bolten J, Kurz H (2004) Spatial phase-locked combination lithography for photonic crystal devices. Microelectron Eng 73–74:417–422

    Article  Google Scholar 

  112. Kretschmer R, Fritzsche W (2004) Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis. Langmuir 20:11797–11801

    Article  CAS  Google Scholar 

  113. Bhatt KH, Velev OD (2004) Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 20:467–476

    Article  CAS  Google Scholar 

  114. Guan L, Shi Z, Li H, Youb L, Gu Z (2004) Super-long continuous Ni nanowires encapsulated in carbon nanotubes. Chem Commun 1988–1989

    Google Scholar 

  115. Schuchert IU, Toimil-Molares ME, Dobrev D, Vetter J, Neumann R, Martin M (2003) Electrochemical copper deposition in etched ion track membranes. Experimental results and a qualitative kinetic model. J Electrochem Soc 150:C189–C194

    Article  CAS  Google Scholar 

  116. Kazeminezhad I, Barnes AC, Holbrey JD, Seddon KR, Schwarzacher W (2007) Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte. Appl Phys A 86:373–375

    Article  CAS  Google Scholar 

  117. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  CAS  Google Scholar 

  118. Chtanko N, Toimil-Molares ME, Cornelius TW, Dobrev D, Neumann R (2005) Ion-track based single-channel templates for single-nanowire contacting. Nucl Instrum Methods Phys Res B 236:103–108

    Article  CAS  Google Scholar 

  119. Gelves GA, Murakami ZTM, Krantz MJ, Haber JA (2006) Multigram synthesis of copper nanowires using ac electrodeposition into porous aluminium oxide templates. J Mater Chem 16:3075–3083

    Article  CAS  Google Scholar 

  120. Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338–358

    Article  CAS  Google Scholar 

  121. Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Fabrication and magnetic properties of arrays of metallic nanowires. Science 261:1316–1319

    Article  CAS  Google Scholar 

  122. Zabala N, Puska MJ, Nieminen RM (1998) Spontaneous magnetization of simple metal nanowires. Phys Rev Lett 80:3336–3339

    Article  CAS  Google Scholar 

  123. Krauss PR, Fischer PB, Chou SY (1994) Fabrication of single-domain magnetic pillar array of 35 nm diameter and 65 Gbits/in2 density. J Vac Sci Technol B 12:3639–3642

    Article  CAS  Google Scholar 

  124. Tehrani S, Chen E, Durlam M, DeHerrera M, Slaughter JM, Shi J, Kerszykowski G (1999) High density submicron magnetoresistive random access memory. J Appl Phys 85:5822–5827

    Article  CAS  Google Scholar 

  125. Denver H, Hong J, Borca-Tasciuc DA (2007) Fabrication and characterization of nickel nanowire polymer composites. In: Nanowires and carbon nanotubes – Science and applications, Bandaru P, Endo M, Kinloch IA, Rao AM (Eds.). Mater Res Soc Symp Proc 963E, Warrendale, PA

    Google Scholar 

  126. RenJen L, Yung Yu H, YuChih C, SyhYuh C, Uang R-H (2005) Fabrication of nanowire anisotropic conductive film for ultrafine pitch flip chip interconnection. IEEE Electron Compon Technol Conf 2005 Proc 55:66–70

    Article  Google Scholar 

  127. Nicewarner-Peña SR, Freeman RG, Reiss BD, He L, Peña DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Submicrometer metallic barcodes. Science 294:137–141

    Article  Google Scholar 

  128. Mock JJ, Oldenburg SJ, Smith DR, Schultz DA, Schultz S (2002) Composite plasmon resonant nanowires. Nano Lett 2:465–469

    Article  CAS  Google Scholar 

  129. Lehmann V (2002) Barcoded molecules. Nat Mater 1:12–13

    Article  CAS  Google Scholar 

  130. Keating CD, Natan MJ (2003) Striped metal nanowires as building blocks and optical tags. Adv Mater 15:451–454

    Article  CAS  Google Scholar 

  131. Sioss JA, Keating CD (2005) Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. Nano Lett 5:1779–1783

    Article  CAS  Google Scholar 

  132. Qin L, Park S, Huang L, Mirkin CA (2005) On-wire lithography. Science 309:113–115

    Article  CAS  Google Scholar 

  133. Yan X-M, Kwon S, Contreras AM, Koebel MM, Bokor J, Somorjai G (2005) Fabrication of dense arrays of platinum nanowires on silica, alumina, zirconia and ceria surfaces as 2-D model catalysts. Catal Lett 105:127–132

    Article  CAS  Google Scholar 

  134. Contreras AM, Yan X-M, Kwon S, Bokor J, Somorjai GA (2006) Catalytic CO oxidation reaction studies on lithographically fabricated platinum nanowire arrays with different oxide supports. Catal Lett 111:5–13

    Article  CAS  Google Scholar 

  135. Dobrev D, Vetter J, Angert N, Neumann R (2000) Periodic reverse current electrodeposition of gold in an ultrasonic field using ion-track membranes as templates: Growth of gold single crystals. Electrochim Acta 45:3117–3125

    Article  CAS  Google Scholar 

  136. Moon J-C, Wei A (2005) Uniform gold nanorod arrays from polyethylenimine-coated alumina templates. J Phys Chem B 109:23336–23341

    Article  CAS  Google Scholar 

  137. Toimil Molares ME, Buschmann V, Dobrev D, Neumann R, Scholz R, Schuchert IU, Vetter J (2001) Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv Mater 13:62–65

    Article  Google Scholar 

  138. Wang J, Tian M, Mallouk TE, Chan MHW (2004) Microtwinning in template synthesized single crystal metal nanowires. J Phys Chem B 108:841–845

    Article  CAS  Google Scholar 

  139. Bietsch A, Michel B (2002) Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy. Appl Phys Lett 80:3346–3348

    Article  CAS  Google Scholar 

  140. Zhu Y, Ke C, Espinosa HD (2007) Experimental techniques for the mechanical characterization of one-dimensional nanostructures. Exp Mech 47:7–24

    Article  Google Scholar 

  141. Landman U (1998) On nanotribological interactions: Hard and soft interfacial junctions. Solid State Commun 107:693–708

    Article  CAS  Google Scholar 

  142. Johansson J, Karlsson LS, Svensson CPT, Martensson T, Wacaser BA, Deppert K, Samuelson L, Seifert W (2006) Structural properties of <111> B-oriented III–V nanowires. Nat Mater 5:575–580

    Article  CAS  Google Scholar 

  143. Sabate N, Vogel D, Gollhardt A, Keller J, Michel B, Cane C, Gracia I, Morante JR (2006) Measurement of residual stresses in micromachined structures in a microregion. Appl Phys Lett 88:071910.1–071910.3

    Article  CAS  Google Scholar 

  144. Wunderle B, Mrossko R, Kaulfersch E, Wittler O, Ramm P, Michel B, Reichl H (2006) Thermo-mechanical reliability of 3D-integrated structures in stacked silicon. Proceedings of MRS Fall Meeting, November 2006, Boston, MA, 0970-Y02–04

    Google Scholar 

  145. Kraft O, Freund LB, Phillips R, Arzt E (2002) Dislocation plasticity in thin metal films. MRS Bull 27:30–37

    Article  CAS  Google Scholar 

  146. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529

    Article  CAS  Google Scholar 

  147. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  CAS  Google Scholar 

  148. Gilman JJ, Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Oxide surface films on metal crystals. Science 306:1134–1135

    Article  CAS  Google Scholar 

  149. Uchic MD, Dimiduk DM, Wheeler R, Shade PA, Fraser HL (2006) Application of micro-sample testing to study fundamental aspects of plastic flow. Scripta Mater 54:759–764

    Article  CAS  Google Scholar 

  150. Huber CA, Huber TA, Sadoqi M, Lubin JA, Manalis S, Prater CB (1994) Nanowire array composites. Science 263:800–802

    Article  CAS  Google Scholar 

  151. Buffat P, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298

    Article  CAS  Google Scholar 

  152. Toimil-Molares ME, Balogh AG, Cornelius TW, Neumann R, Trautmann C (2004) Fragmentation of nanowires driven by Rayleigh instability. Appl Phys Lett 85:5337–5339

    Article  CAS  Google Scholar 

  153. Jakobsen B, Poulsen HF, Lienert U, Almer J, Shastri SD, Sørensen HO, Gundlach C, Pantleon W (2006) Formation and subdivision of deformation structures during plastic deformation. Science 312:889–892

    Article  CAS  Google Scholar 

  154. US Patent 020060057354A1, March 16, 2006

    Google Scholar 

  155. US Patent 000006359288B1, March 19, 2002

    Google Scholar 

  156. Kovtyukhova NA, Martin BR, Mbindyo JKN, Mallouk TE, Cabassi M, Mayer TS (2002) Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices. Mater Sci Eng C 19:255–262

    Article  Google Scholar 

  157. Vila L, Vincent P, Dauginet-De Pra L, Pirio G, Minoux E, Gangloff L, Demoustier-Champagne S, Sarazin N, Ferain E, Legras R, Piraux L, Legagneux P (2004) Growth and field-emission properties of vertically aligned cobalt nanowire arrays. Nano Lett 4:521–524

    Article  CAS  Google Scholar 

  158. Dobrev D, Vetter J, Neumann R, Angert N (2001) Conical etching and electrochemical metal replication of heavy-ion tracks in polymer foils. J Vac Sci Technol B 19:1385–1387

    Article  CAS  Google Scholar 

  159. Sides CR, Martin CR (2005) Nanostructured electrodes and the low-temperature performance of Li-ion batteries. Adv Mater 17:125–128

    Article  CAS  Google Scholar 

  160. Lindeberg M, Öjefors E, Rydberg A, Hjort K (2003) 30 GHz litz wires defined by ion track lithography. In: TRANSDUCERS’03, 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, MA, June 8–12, 887–890

    Google Scholar 

  161. Toimil ME, Höhberger EM, Schäflein C, Blick RH, Neumann R, Trautmann C (2003) Electrical characterization of electrochemically grown single copper nanowires. Appl Phys Lett 82:2139–2141

    Article  CAS  Google Scholar 

  162. Barati M, Sadeghi E (2001) Study of the ordinary size effect in the electrical conductivity of Bi nanowires. Nanotechnology 12:277–280

    Article  CAS  Google Scholar 

  163. Fusil S, Piraux L, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Michotte S, Saul CK, Pereira L, Bouzehouane K, Cros V, Deranlot C, George J-M (2005) Nanotechnology nanolithography based contacting method for electrical measurements on single template synthesized nanowires. 16:2936–2940

    Google Scholar 

  164. Cronin SB, Lin YM, Koga T, Sun X, Ying JY, Dresselhaus MS (1999) Thermoelectric investigation of bismuth nanowires. In: 18th International Conference on Thermoelectrics, Baltimore, MD, 554–557

    Google Scholar 

  165. Valizadeh S, Abid M, Rodríguez AR, Hjort K, Schweitz JÅ (2006) Template synthesis and electrical contacting of single Au nanowires by focused ion beam techniques. Nanotechnology 17:1134–1139

    Article  CAS  Google Scholar 

  166. Penate-Quesada L, Mitra J, Dawson P (2007) Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology 18:215203

    Article  CAS  Google Scholar 

  167. Li Q, Koo S, Richter CA, Edelstein MD, Bonevich JE, Kopanski JJ, Suehle JS, Vogel EM (2007) Precise alignment of single nanowires and fabrication of nanoelectromechanical switch and other test structures. IEEE Trans Nanotechnol 6:256–262

    Article  Google Scholar 

  168. Walton AS, Allen CS, Critchley K, Gorzny MŁ, McKendry JE, Brydson RMD, Hickey BJ, Evans SD (2007) Four-probe electrical transport measurements on individual metallic nanowires. Nanotechnology 18; doi:101088/0957–4484/18/6/065204

    Google Scholar 

  169. Keebaugh S, Kalkan AK, Nam WJ, Fonash SJ (2006) Gold nanowires for the detection of elemental and ionic mercury. Electrochem Solid State Lett 9:H88–H91

    Article  CAS  Google Scholar 

  170. Fuhr G, Müller T, Schnelle Th, Hagedorn R, Voigt A, Fiedler S, Arnold WM, Zimmermann U, Wagner B, Heuberger A (1994) Radio-frequency microtools for particle and live cell manipulation. Naturwissenschaften 81:528–535

    Article  CAS  Google Scholar 

  171. Schnelle Th, Müller T, Fiedler S, Fuhr G (1999) The influence of higher moments on particle behaviour in dielectrophoretic field cages. J Electrostat 46:13–28

    Article  CAS  Google Scholar 

  172. Fiedler S. (2004) Nano-bio-packaging – Ansätze, Chancen und Trends, Part I and Part II. PLUS (Produktion von Leiterplatten und Systemen) 8:1169–1178; 1362–1368 (ISSN 1436–7505, B 49475)

    Google Scholar 

  173. Fiedler S, Shirley SG, Schnelle Th, Fuhr G (1998) Dielectrophoretic sorting of particles and cells in a microsystem. Anal Chem 70:1909–1915

    Article  CAS  Google Scholar 

  174. Müller T, Pfennig A, Klein P, Gradl G, Jäger M, Schnelle T (2003) The potential of dielectrophoresis for single-cell experiments. Eng Med Biol Mag IEEE 22:51–61

    Article  Google Scholar 

  175. Smith PA, Nordquist CD, Jackson TN, Mayer TS, Martin BR, Mbindyo J, Mallouk TE (2000) Electric-field assisted assembly and alignment of metallic nanowires. Appl Phys Lett 77:1399–1401

    Article  CAS  Google Scholar 

  176. Boote JJ, Evans SD (2005) Dielectrophoretic manipulation and electrical characterization of gold nanowires. Nanotechnology 16:1500–1505

    Article  CAS  Google Scholar 

  177. Papadakis SJ, Gu Z, Gracias DH (2006) Dielectrophoretic assembly of reversible and irreversible metal nanowire networks and vertically aligned arrays. Appl Phys Lett 88:2331181–2331183

    Article  CAS  Google Scholar 

  178. Hangarter CM, Rheem Y, Yoo B, Yang E-H, Myung NV (2007) Hierarchical magnetic assembly of nanowires. Nanotechnology 18:205305; doi:101088/0957–4484/18/20/205305

    Article  CAS  Google Scholar 

  179. Lapointe C, Hultgren A, Silevitch DM, Felton EJ, Reich DH, Leheny RL (2004) Elastic torque and the levitation of metal wires by a nematic liquid crystal. Science 303:652–655

    Article  CAS  Google Scholar 

  180. Boote JJ, Critchley K, Evans SD (2006) Surfactant mediated assembly of gold nanowires on surfaces. J Exp Nanosci 1:125–142

    Article  CAS  Google Scholar 

  181. Martin BR, Dermody DJ, Reiss BD, Fang M, Lyon LA, Natan MJ, Mallouk TE (1999) Orthogonal self-assembly on colloidal gold-platinum nanorods. Adv Mater 11:1021–1025

    Article  CAS  Google Scholar 

  182. Chen C, Yan L, Kong ES-W, Zhang Y (2006) Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology 17:2192–2197

    Article  CAS  Google Scholar 

  183. Yoo B, Rheem Y, Beyermann WP, Myung NV (2006) Magnetically assembled 30 nm diameter nickel nanowire with ferromagnetic electrode. Nanotechnology 17:2512–2517

    Article  CAS  Google Scholar 

  184. Scheel W, Fiedler S, Krause F, Schütt J (2000) Vorrichtung zur elektrischen und mechanischen Fügung von flächigen Anschlussstrukturen. DE 10002182.4:19.01.2000/09.08.2001, Fraunhofer Ges z Förderung d angew Forschung, München

    Google Scholar 

  185. Lin R-J, Hsu Y-Y, Chen Y-C, Cheng S-Y, Uang R-H (2005) Fabrication of nanowire anisotropic conductive film for ultra-fine pitch flip chip interconnection. Electronic Components and Technology Concerence ECTC Proceedings IEEE, Orlando, FL, 66–70

    Google Scholar 

  186. Langford RM, Wang T-X, Thornton M, Heidelberg A, Sheridan JG, Blau W, Leahy R (2006) Comparison of different methods to contact to nanowires. J Vac Sci Technol B 24:2306–2311

    Article  CAS  Google Scholar 

  187. Gu Z, Ye H, Gracias DH (2005) The bonding of nanowire assemblies using adhesive and solder. JOM 57:60–64

    Article  CAS  Google Scholar 

  188. Sharma G, Chong CS, Ebin L, Kripesh V, Gan CL, Sow CH (2007) Patterned micropads made of copper nanowires on silicon substrate for application as chip to substrate interconnects. Nanotechnology 18:305306

    Article  CAS  Google Scholar 

  189. Sharma G, Chong SC, Ebin L, Hui C, Gan CL, Kripesh V (2007) Fabrication of patterned and non-patterned metallic nanowire arrays on silicon substrate. Thin Solid Films 515:3315–3322

    Article  CAS  Google Scholar 

  190. Pang YT, Meng GW, Fang Q, Zhang LD (2003) Silver nanowire array infrared polarizers. Nanotechnology 14:20–24

    Article  CAS  Google Scholar 

  191. Wehrspohn RB, Schilling J (2001) Electrochemically prepared pore arrays for photonic-crystal applications. MRS Bull 26:623–626

    Article  CAS  Google Scholar 

  192. Saib A, Vanhoechenacker-Janvier D, Raskin J-P, Crahay A, Huynen I (2001) Microwave tunable filters and nonreciprocal devices using magnetic nanowires. Proceedings of the First IEEE Conference on Nanotechnology, IEEE-NANO 2001, 28–30 October, Maui, HI, 260–265

    Google Scholar 

  193. Ren B, Yao JL, She CX, Huang QJ, Tian ZQ, Surface Raman spectroscopy on transition metal surfaces. Internet J Vib Spectrosc 4, 2nd Ed. www.ijvs.com/volume4/edition2/section3.html

  194. Papadakis SJ, Miragliotta JA, Gu Z, Gracias DH (2005) Scanning surface-enhanced Raman spectroscopy of silver nanowires. In: Plasmonics: Metallic nanostructures and their optical properties. III. Stockman MI (Ed.). Proc SPIE, Bellingham, WA, 59271:H1–H8

    Google Scholar 

  195. Choi J, Sauer G, Nielsch K, Wehrspohn RB, Gösele U (2003) Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater 15:776–779

    Article  CAS  Google Scholar 

  196. Mühlschlegel P, Eisler H-J, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609

    Article  CAS  Google Scholar 

  197. Podolskiy VA, Sarychev AK, Shalaev VM (2003) Plasmon modes and negative refraction in metal nanowire composites. Optics Express 11:735–745

    Article  Google Scholar 

  198. Neubrech F, Kolb T, Lovrincic R, Fahsold G, Pucci A, Aizpurua J, Cornelius TW, Toimil-Molares ME, Neumann R, Karim S (2006) Resonances of individual metal nanowires in the infrared. Appl Phys Lett 89:253104–1 –253104–3

    Article  CAS  Google Scholar 

  199. Girard C, Dujardin E (2006) Near-field optical properties of top-down and bottom-up nanostructures. J Opt A Pure Appl Opt 8:S73–S86

    Article  CAS  Google Scholar 

  200. Schider G, Krenn JR, Hohenau A, Ditlbacher H, Leitner A, Aussenegg FR, Schaich WL, Puscasu I, Monacelli B, Boremann G (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68:1555427/1 – 155427/4

    Article  CAS  Google Scholar 

  201. van der Zande BMI, Koper GJM, Lekkerkerker HNW (1999) Alignment of rod-shaped gold particles by electric fields. J Phys Chem B 103:5754–5760

    Article  CAS  Google Scholar 

  202. Chiu J-C, Chang C-M, Jou W-S, Cheng W-H (2007) Electromagnetic shielding performance for a 2.5 Gb/s plastic transceiver module using dispersive multiwall carbon nanotubes. In: Proceedings of 57th ECTC Electronic Components and Technology Conference, 29 May – 1 June, Reno, NV, 183–187

    Google Scholar 

  203. Burke PJ, Li S, Yu Z (2006) Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans Nanotechnol 5:14–334

    Article  Google Scholar 

  204. Rheem Y, Yoo B-Y, Beyermann WP, Myung NV (2007) Electro- and magneto-transport properties of a single CoNi nanowire. Nanotechnology 18:015202

    Article  CAS  Google Scholar 

  205. Tang X-T, Wang G-C, Shima M (2006) Perpendicular giant magnetoresistance of electrodeposited Co/Cu-multilayered nanowires in porous alumina templates. J Appl Phys 99:033906–1 – 033906–7

    Article  CAS  Google Scholar 

  206. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67:1920–1928

    Article  CAS  Google Scholar 

  207. Dalby MJ, Berry CC, Riehle MO, Sutherland DS, Agheli H, Curtis ASG (2004) Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp Cell Res 295:387–394

    Article  CAS  Google Scholar 

  208. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2001) Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc Natl Acad Sci 100:1484–1489

    Article  CAS  Google Scholar 

  209. Katsen-Globa A, Peter L, Pflueger S, Doerge T, Daffertshofer M, Preckel H, Zwanzig M, Fiedler S, Schmitt D, Zimmermann H (2006) Cell behaviour on nano-and microstructured surfaces: From fabrication, treatment and evaluation of substrates towards cryopreservation. Cryobiology 53:445–446

    Article  Google Scholar 

  210. Töpper M, Klein M, Buschick K, Glaw V, Orth K, Ehrmann O, Hutter M, Oppermann H, Becker K-F, Braun T, Ebling F, Reichl H, Kim S, Tathireddy P, Chakravarty S, Solzbacher F (2006). Biocompatible hybrid flip chip microsystem integration for next generation wireless neural interfaces. In: 56th Electronic Components and Technology Conference ECTC, 30 May – 2 June, San Diego, CA, 705–708

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fielder, S., Zwanzig, M., Schmidt, R., Scheel, W. (2008). Nanowires in Electronics Packaging. In: Morris, J. (eds) Nanopackaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-47325-3_20

Download citation

Publish with us

Policies and ethics