Skip to main content

Introduction to Fish Bioacoustics

  • Chapter
Fish Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 32))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodnar DA, Bass AH (1999) Midbrain combinatorial code for temporal and spectral information in concurrent acoustic signals. J Neurophysiol 81:552–563.

    PubMed  CAS  Google Scholar 

  • Cahn PH, ed (1967) Lateral Line Detectors. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Chapman CJ, Sand O (1974) Field studies of hearing in two species of flatfish, Pleuronectes platessa (L.) and Limanda limanda (L.) (family Pleuronectidae). Comp Biochem Physiol 47A:371–385.

    Article  Google Scholar 

  • Coombs S, Görner P, Münz H, eds (1989) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag.

    Google Scholar 

  • Crawford JD (1997) Feature-detecting auditory neurons in the brain of a sound-producing fish. J Comp Physiol 180:439–450.

    Article  CAS  Google Scholar 

  • Fay RR (1985) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954.

    Article  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR (2005) Sound source localization by fishes. In: Popper AN, Fay RR (eds) Sound Source Localization. New York: Springer Science+Business Media, pp. 36–66.

    Chapter  Google Scholar 

  • Fay RR, Edds-Walton PL (1997) Directional response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 111:1–21.

    Article  PubMed  CAS  Google Scholar 

  • Fay RR, Popper AN, eds (1999). Comparative Hearing: Fishes and Amphibians. New York: Springer-Verlag.

    Google Scholar 

  • Grose B, Carr CE, Casseday JH, Fritzsch B, Koppl C (2004) The evolution of central pathways and their neural processing patterns. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 289–359.

    Google Scholar 

  • Herrick CJ (1948) The Brain of the Tiger Salamander. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear systems. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–216.

    Google Scholar 

  • Kalmijn AJ (1997) Electric and near-field acoustic detection, a comparative study. Acta Physiol Scand 638:25–38.

    CAS  Google Scholar 

  • Ladich F, Popper AN (2004) Parallel evolution in fish hearing organs. In: Manley G, Popper A, Fay R (eds) Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 95–127.

    Google Scholar 

  • Lewis ER, Fay RR (2004) Environmental variables and the fundamental nature of hearing. In: Manley G, Popper A, Fay R (eds) Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 27–54.

    Google Scholar 

  • Lu Z, Fay RR (1996) Acoustic response properties of single neurons in the central posterior nucleus of the thalamus of the goldfish (Carassiuis auratus). J Comp Physiol 176:747–760.

    Google Scholar 

  • Ma W-L, Fay RR (2002) Neural representations of the axis of acoustic particle motion in nucleus centralis of the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol 188:301–313.

    Article  Google Scholar 

  • McCormick CA (1999) Anatomy of the central auditory pathways of fish and amphibians. In: Fay RR, Popper AN (eds) Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 155–217.

    Google Scholar 

  • McCormick CA, Hernandez DV (1996) Connections of octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47:113–137.

    Article  PubMed  CAS  Google Scholar 

  • McKibben JR, Bass AH (1999) Peripheral encoding of behaviorally relevant acoustic signals in a vocal fish: single tones. J Comp Physiol A 184:563–576.

    Article  PubMed  CAS  Google Scholar 

  • Moulton JM (1963) Acoustic behaviour of fishes. In: Busnel R-G (ed) Acoustic Behaviour of Animals. Amsterdam: Elsevier, pp. 655–693.

    Google Scholar 

  • Moulton JM, Dixon RH (1967) Directional hearing in fishes. In: Tavolga WN (ed) Marine Bio-Acoustics II. Oxford: Pergamon Press, pp. 187–228.

    Google Scholar 

  • Myrberg AA Jr, Spires JY (1980) Hearing in damselfishes: an analysis of signal detection among closely related species. J Comp Physiol 140:135–144.

    Article  Google Scholar 

  • National Research Council (1994) Low-Frequency Sound and Marine Mammals: Current Knowledge and Research Needs. National Research Council, National Academy Press, Washington, DC.

    Google Scholar 

  • Northcutt RG (1980). Central auditory pathways in anamniotic vertebrates. In: Popper AN, Fay RR (eds) Comparative Studies of Hearing in Vertebrates. New York: Springer-Verlag, pp. 79–118.

    Google Scholar 

  • Northcutt RG (1981) Audition in the central nervous system of fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 331–355.

    Google Scholar 

  • Parker GH (1903) The sense of hearing in fishes. Am Nat 37:185–203.

    Article  Google Scholar 

  • Popper AN (1980) Scanning electron microscopic studies of the sacculus and lagena in several deep-sea fishes. Am J Anat 157:115–136.

    Article  PubMed  CAS  Google Scholar 

  • Popper AN (2003) Effects of anthropogenic sound on fishes. Fisheries 28:24–31.

    Article  Google Scholar 

  • Popper AN, Carlson TJ (1998) Application of sound and other stimuli to control fish behavior. Trans Am Fish Soc 127:673–707.

    Article  Google Scholar 

  • Popper AN, Tavolga WN (1981) Structure and function of the ear of the marine catfish, Arius felis. J Comp Physiol 144:27–34.

    Article  Google Scholar 

  • Popper AN, Salmon M, Parvulescu A (1973) Sound localization by two species of Hawaiian squirrelfish, Myripristis berndti and M. argyromus. Anim Behav 21:86–97.

    Article  PubMed  CAS  Google Scholar 

  • Popper AN, Fay RR, Platt C, Sand O (2003) Sound detection mechanisms and capabilities of teleost fishes. In: Collin SP, Marshall NJ (eds) Sensory Processing in Aquatic Environments. New York: Springer-Verlag, pp. 3–38.

    Chapter  Google Scholar 

  • Popper AN, Fewtrell J, Smith ME, McCauley RD (2004) Anthropogenic sound: effects on the behavior and physiology of fishes. Mar Technol Soc J 37:35–40.

    Article  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere, Vol. I. Stockholm: Samson and Wallin.

    Google Scholar 

  • Sand O (1974) Directional sensitivity of microphonic potentials from the perch ear. J Exp Biol 60:881–899.

    PubMed  CAS  Google Scholar 

  • Schuijf A (1975) Directional hearing of cod (Gadus morhua) under approximate free field conditions. J Comp Physiol 98:307–332.

    Article  Google Scholar 

  • Schuijf A, Visser C, Willers AFM, Buwalda RJA (1977) Acoustic localization in an ostariophysan fish. Experientia 33:1062–1063.

    Article  PubMed  CAS  Google Scholar 

  • Sisneros JA, Bass AH (2003) Seasonal plasticity of peripheral auditory frequency selectivity. J Neurosci 23:1049–1058.

    PubMed  CAS  Google Scholar 

  • Striedter GF (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the forebrain in channel catfishes. J Comp Neurol 312:311–331.

    Article  PubMed  CAS  Google Scholar 

  • Tavolga WN, ed (1964) Marine Bio-Acoustics. Oxford: Pergamon Press.

    Google Scholar 

  • Tavolga WN, ed (1967) Marine Bio-Acoustics II. Oxford: Pergamon Press.

    Google Scholar 

  • Tavolga WN (1971) Sound production and detection. In: Hoar WS, Randall DJ (eds) Fish Physiology, Vol. V. New York: Academic Press, pp. 135–205.

    Google Scholar 

  • Tavolga WN, ed (1976) Sound Reception in Fishes—Benchmark Papers in Animal Behavior, Vol. 7. Stroudsburg PA: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Tavolga WN, ed (1977) Sound Production in Fishes—Benchmark Papers in Animal Behavior, Vol. 9. Stroudsburg PA: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Tavolga WN, Wodinsky J (1963) Auditory capacities in fishes. Pure tone thresholds in nine species of marine teleosts. Bull Am Mus Nat Hist 126:177–240.

    Google Scholar 

  • Tavolga WN, Popper AN, Fay RR, eds (1981) Hearing and Sound Communication in Fishes. New York: Springer-Verlag.

    Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • von Frisch K (1923) Ein Zwergwels der kommt, wenn man ihm pfeift. Biol Zentralbl Leipzig 43:439–446.

    Google Scholar 

  • von Frisch K, Dijkgraaf S (1935). Können Fische die Schallrichtung wahrnehmen? Z Vergl Physiol 22:641–655.

    Google Scholar 

  • Wartzog D, Popper AN, Gordon J, Merrill J (2004) Factors affecting the responses of marine mammals to acoustic disturbance. Mar Technol Soc J 37:6–15.

    Google Scholar 

  • Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral line system in teleost fishes. Brain Behav Evol 33:34–53.

    Article  PubMed  CAS  Google Scholar 

  • Webb JF (1998) Laterophysic connection: a unique link between the swim bladder and the lateral-line system in Chaetodon (Perciformes: Chaetodontidae). Copeia 1998:1032–1036.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fay, R.R., Popper, A.N., Webb, J.F. (2008). Introduction to Fish Bioacoustics. In: Webb, J.F., Fay, R.R., Popper, A.N. (eds) Fish Bioacoustics. Springer Handbook of Auditory Research, vol 32. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73029-5_1

Download citation

Publish with us

Policies and ethics